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Preface

Here are notes from a talk given in the mathematics department of
Gebze Institute of Technology on Friday, May , , at : p.m.
Physically, the talk was in the Molecular Biology and Genetics con-
ference room, to provide room for students to attend. I prepared a
draft of the present notes by way of preparing to give the talk. Now I
have edited the notes so that they are closer to what I actually said.
Additional material is in footnotes. In order to include that material
in a future talk, I may shorten or remove §, “Geometry.”

The abstract that I submitted for the talk was:

A proportion is an identification of ratios. In the Elements, Euclid (c.
 b.c.e.) gives two definitions of a proportion: a clear definition
for arbitrary magnitudes, and an unclear definition for numbers. A
positive real number, as defined by Richard Dedekind (–),
can be understood as a ratio of magnitudes in Euclid’s sense. How-
ever, unlike Euclid, Dedekind establishes the existence of all of the
so-called real numbers: this has been overlooked, at least by some of
Dedekind’s contemporaries. It has also been thought that Euclid’s







ratios of numbers are just fractions in the modern sense; but this
makes Euclid wrong in ways that he is not likely to have been wrong.
Euclid is more careful than we often are today with the founda-
tions of number theory. He proves rigorously that in an ordered ring
whose positive elements are well-ordered, multiplication is commuta-
tive. Seeing this can be helped by treating the reading of Euclid as
an instance of doing history: history in the sense worked out by the
philosopher R. G. Collingwood (–) in several of his books.

The talk is based mostly on a long (draft) essay of mine [].
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Introduction

We are going to look at the two definitions of proportion in Euclid’s
Elements:





. the geometric,
. the arithmetic.

The first is clear, but hard to understand; the second is obscure, but
thought to be easy to understand. So people make mistakes about both
of them. A way to avoid mistakes is to treat Euclid historically. We
should not assume that his mathematics is the same as ours.

 Geometry

. Dedekind

We start with the question of how Dedekind’s account, in “Continu-
ity and Irrational Numbers” (), of the real numbers depends on
Euclid’s geometric definition of proportion.

Given (Q+, <) (the linear order of positive rational numbers), fol-
lowing Dedekind, we define a cut as a pair (A,B) of nonempty disjoint
subsets of Q+ such that

A ∪B = Q+, A < B.

For example, every c in Q+ determines the two cuts

({x ∈ Q+ : x < c}, {x ∈ Q+ : c 6 x}),
({x ∈ Q+ : x 6 c}, {x ∈ Q+ : c < x})

(which for Dedekind are “not essentially different”). But there are also
cuts such as

({x ∈ Q+ : x2 < 2}, {x ∈ Q+ : 2 < x2}),

not determined by a rational number: we consider it as defining a
new, irrational number (called

√
2 in this case), which, conversely,

determines the cut.
Then we can define R+ as Q+ ∪ {irrationals}.

Thus (R, <) is a complete linear order (every nonempty subset with an upper





. Bertrand

In the preface to “The Nature and Meaning of Numbers” (), Dede-
kind reports claims that his (and others’) idea is already found in
Bertrand, Traité d’Arithmétique ().

However, given nonsquare N in Q+, Bertrand defines
√
N geomet-

rically : If a unit length and a ray from an origin O have been chosen,
then √

N = |OA|,

where A is the unique point on the ray such that

OB < OA < OC =⇒ |OB|2 < N < |OC|2.

Probably |OB| and |OC| can be assumed to be rational, but Bertrand

b b b b
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Figure : Bertrand’s definition of
√
N

is not clear. Unlike Dedekind’s, Bertrand’s account does not show how
to multiply possibly irrational numbers. It also does not show why
the point A should exist.

bound has a least upper bound). The algebraic structure of Q+ has not been
needed. Given (Q+, <,+), if C and D are cuts, we define

C +D = {x+ y : x ∈ C ∧ y ∈ D}.

Then C + D ∈ R, and (X,Y ) 7→ X + Y is continuous, and (R,+, <) is an
abelian ordered semigroup. Similarly we obtain (R+,×, <) as an abelian ordered
group. Introducing 0 and negative numbers, we obtain (R,+,×, <) as a complete
ordered field.

For example, it does not show
√
2 ·

√
3 =

√
6 (this is Dedekind’s example).





. Euclid

As Dedekind observes, it has been understood since Euclid’s Elements,

Book v, that an irrational number is defined by the cut of rational
numbers that it determines. In Euclid, line segments A, B, C, and D

are proportional if, for all natural numbers k and m,

kA > mB ⇐⇒ kC > mD,

kA = mB ⇐⇒ kC = mD,

kA < mB ⇐⇒ kC < mD.

In this case, one may say
• A is to B as C is to D,
• A has the same ratio to B that C has to D.

In Euclid:
• Two distinct line-segments can be equal (for example, an isosce-

les triangle has two equal sides).
• Two ratios are never equal, but they may be the same.

Thus, if A is to B as C is to D, I prefer to write

A : B :: C : D,

rather than A : B = C : D. Then the ratio A : B is defined by the cut
({

x

y
∈ Q+ : xB 6 yA

}

,

{
x

y
∈ Q+ : xB > yA

})

(and by “essentially the same” cut, if A and B are commensurable), as
in Bertrand. But Dedekind defines cuts in terms of rational numbers
alone, not magnitudes.

Euclid’s Elements had been the foundational mathematical textbook
for over two thousand years. Mathematics had changed, but this may

They could be arbitrary magnitudes, such as planar regions, or solids. In any
case, A and B have a ratio, which means some multiple of either magnitude
exceeds the other, so that they generate an archimedean ordered semigroup;
also C and D must have a ratio.





have been hard to see. It had been assumed that the real number line
was a geometric object. Finally, Dedekind was able to see that it was
not. Everything in Euclid requires only algebraic numbers.

 Arithmetic

In the Elements, Books vii, viii, and ix concern arithmetic. They are
headed by some definitions:

Definition . Unity (or a unit) is that by virtue of which every ex-
isting thing is called one.

Definition . A number is a multitude composed of units.

Definition . A number is a part of a number, the less of the greater,
when it measures the greater.

Definition . But parts, when it does not measure.
Definition . And the greater [number] is a multiple of the less when

it is measured by the less.
Definition . A number is said to multiply a number when, however

many units are in it, so many times is the multiplicand composed,
and some number comes to be.

We may write

a · b = a+ · · ·+ a
︸ ︷︷ ︸

b

.

Here a and b are what we call positive integers, elements of N. Thus

• a · b is a multiplied by b, or b times a.
• a measures a · b.
• a is a part of a · b.
• a · b is a multiple of a.
• b divides a · b. (Euclid does not use this.)

Unity is normally not a number, though sometimes must be allowed to be.





If a < b, and a is parts of b, does this mean, for some c, k, and m,

a = c · k, b = c ·m, 1 < k < m?

Euclid’s Definition  (of Book vii) is,

Numbers are proportional when the first is of the second, and the
third is of the fourth, equally multiple, or the same part, or the same
parts.

Can we interpret this to mean a : b :: c : d if and only if, for some e, f ,
k, and m,

a = e · k, b = f · k,
b = e ·m, d = f ·m?

As Pengelley and Richman () observe, by this interpretation, the
relation “ :: ” between a : b and c : d is not obviously transitive.

I would go further: the interpretation does not give a way to extract
a definition of the ratios a : b and c : d in the first place. But again,
one way Euclid reads our expression a : b :: c : d is,

a has the same ratio to b that c has to d.

Therefore the above interpretation must be wrong. We could say

(a : b) = {(x, y) : for some e, a = e · x & b = e · y}.
The term “parts” may allude to Egyptian fractions. There were tables from which

one could learn, for example,

12

17
=

1

2
+

1

12
+

1

17
+

1

34
+

1

51
+

1

68
.

The example is from David Fowler, The Mathematics of Plato’s Academy

(), where it is said, “We have no evidence for any conception of common
fractions p/q and their manipulations such as, for example, p/q × r/s = pr/qs
and p/q + r/s = (ps + qr)/qs, in Greek mathematical, scientific, financial, or
pedagogical texts before the time of Heron and Diophantus. . . ”





Then, by the above interpretation,

a : b :: c : d ⇐⇒ (a : b) ∩ (c : d) 6= ∅.

This does not say a : b and c : d are the same.
Consider Proposition  of Book vii:

Every number is of every number, the less of the greater, either part
or parts.

Euclid’s proof is not, “Immediate from the definitions.” It considers
cases. Assume a < b.

. If a and b are coprime, then

a = 1 · a, b = 1 · b.

. Suppose a and b are not coprime.
a) If a measures b, then a is a part of b.
b) If not, let c be the greatest common measure of a and b.

Then for some k and m,

a = c · k, b = c ·m.

This is not really a proof. Euclid’s “proof” of Proposition  follows the
pattern of Propositions  and , in which the so-called “Euclidean

Algorithm” is shown to produce the greatest common measure

of two numbers. (In Proposition , the greatest common measure of
three numbers is found.)

Euclid never promised it would be. We learned the “statement-proof” style of
presenting mathematics from Euclid. We cannot complain if he does not always
use the style in the way we expect.

Let A1 and A2 be numbers or magnitudes, where A1 > A2. By the so-called
Euclidean Algorithm, we obtain sequences
• A1, A2, A3, . . . , of numbers or magnitudes,
• n1, n2, . . . , of multipliers,

such that
Ak = Ak+1 + · · ·+Ak+1

︸ ︷︷ ︸

nk

+Ak+2, Ak+1 > Ak+2.

In case A1 and A2 are numbers, the sequence ends with some Am.





Then the “proof” of Proposition  shows that a : b :: c : d means the
Euclidean Algorithm has the same steps, whether applied to a and b

or c and d. For example,

57 = 21 · 2 + 15 38 = 14 · 2 + 10

21 = 15 · 1 + 6 14 = 10 · 1 + 4

15 = 6 · 2 + 3 10 = 4 · 2 + 2

6 = 3 · 2 4 = 2 · 2

and therefore
57 : 21 :: 38 : 14.

The Euclidean Algorithm involves “alternate subtraction”: in Greek,
anthyphaeresis. By the anthyphaeretic definition, it is clear that a
straight line dividing a parallelogram into two parallelograms divides

Figure : Parallelograms in the same parallels are as their bases

the base in the same ratio. In the Topics, Aristotle uses this result

Thus a : b :: c : d means for some k and m,

a = gcm(a, b) · k, c = gcm(c, d) · k,
b = gcm(a, b) ·m, d = gcm(c, d) ·m,

where gcm means greatest common measure.
Strictly, Euclid uses only the verb ἀνθυφαιρέ-ω “alternately subtract”; the related

noun is ἀνθυφαίρεσις.
According to Proposition vi. of the Elements, “Triangles and parallelograms that

are under the same height are to one another as their bases”—that is, they have
the same ratio as their bases.





as an example of something that is immediately clear, once one has the
correct definition; and the definition of “same ratio” is “having the same
antanaeresis (ἀνταναίρεσις).” In a comment on the passage, Alexan-
der of Aphrodisias observes that Aristotle uses the word “antanaeresis”
for anthyphaeresis. In , Oskar Becker observed that Aristotle and
Alexander could be alluding to the Euclidean Algorithm.

By the earliest definition, it seems, A : B :: C : D means, that,
whether applied to A and B or to C and D, the Euclidean Algorithm
gives us the same pattern of subtractions.

However, when applied to arbitrary magnitudes, the Euclidean Al-
gorithm may never end. 

A

BC

D

E

F
G

H

Figure : Incommensurability of side and diagonal

My source is Ivor Thomas, at the end of the first of the two Loeb Classical Library
volumes, Selections Illustrating the History of Greek Mathematics.

In this case, the magnitudes are incommensurable, as Euclid shows in Propo-
sition x.. For example, in the square in Figure ,

AB = AC · 1 +AD,

AC = AD · 2 +AF,

AD = AF · 2 +AH,





In any case, it is difficult to prove general geometric results with.
Thus Euclid prefers the Book-v definition of proportion for arbitrary
magnitudes.

But the anthyphaeretic definition of proportion is still behind the
scenes in the arithmetical books. By this definition,

1 : a :: b : b · a

(since 1 is a parts of a, and b is a parts of b · a). Also, if a : b :: c : d,
then

a : b :: a+ c : b+ d.

In particular, since 1 : a :: 1 : a, we obtain

1 : a :: 1 + · · ·+ 1
︸ ︷︷ ︸

b

: a+ · · ·+ a
︸ ︷︷ ︸

b

,

that is,
1 : a :: b : a · b.

Therefore
b · a = a · b

and so on. In modern terms, we start with
√
2 = 1 + (

√
2− 1), 0 6

√
2− 1 < 1,

that is, 1 measures
√
2, one time, with

√
2− 1 remaining. Then

1√
2− 1

=
√
2 + 1 = 2 + (

√
2− 1),

so
√
2−1 measures 1 twice, with (

√
2−1)2 remaining, and so on. Thus, formally,

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

· · ·





—a result not normally proved, but only assumed, in number-theory
courses today.

The commutativity result can be understood as being that, in any well-ordered
set that is closed under ordinal addition and multiplication, if addition is com-
mutative, then so is multiplication. We may assume that that well-ordered set
is an ordinal itself. Every nonzero ordinal has a Cantor normal form

ω
α0 · b0 + · · ·+ω

αn · bn,

where

ω = {0, 1, 2, . . . }, α0 > . . . > αn, {b0, . . . , bn} ⊆ ω r {0}.

The usual rules of arithmetic apply, except that
• addition is not commutative:

1 +ω = ω < ω+ 1.

• multiplication is not commutative, and distributes over addition only from
the left, not the right:

(1 + 1) ·ω = 2 ·ω = 2 + 2 + · · · = ω < ω+ω = ω · 2.

Then the ordinals that are closed under addition and multiplication are precisely
the ordinals of the form

ω
ω

α

.

The only one of these where addition is commutative is ω, that is, ω
ω

0

; and
here multiplication is commutative as well. Since every ordinal equation

α+ ξ = β

has a unique solution, provided α 6 β, we can extend the operations of addition
and multiplication to

ω
ω

α ∪ {−ξ : 0 < ξ < ω
ω

α},

just as we extend them from N to Z in school. In general, multiplication will
not distribute over addition in either sense. Again though, if addition is com-
mutative, then so will multiplication be.
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