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In the background will be Zermelo–Fraenkel set theory, in
the first-order logic of signature {∈}:

Equality:

• Equal sets are those having the same elements;
• Equal sets are elements of the same sets.

Comprehension: Every formula ϕ(x) defines the class

{x : ϕ(x)}.

Certain classes are sets, namely: • the empty class, • a
pair of sets, • the union of a set, • the image of a set
under a function, • the power class of a set, • ω.

We do not assume the Axiom of Choice (AC), which is
equivalent to the Well Ordering Theorem.
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Theorem  (s?). The Maximal Ideal Theorem (for
nontrivial, commutative, unital rings) follows from AC.

Proof. A ring R with R = {aξ : ξ < κ} has maximal ideal⋃
ξ<κ

Iξ, where Iξ =

{
(aξ) +

⋃
η<ξ Iη, if this is proper,⋃

η<ξ Iη, otherwise.

This is a proper ideal because the class of commutative
R-algebras without identity is ∀∃-axiomatizable, as by e.g.

∀x ∃y xy 6= y.

Theorem  (Hodges, ). The Maximal Ideal Theorem
implies the Axiom of Choice.

Theorem  (Halpern & Levy, ). The Maximal Ideal
Theorem does not follow from the Prime Ideal Theorem.
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The signature Sring of a ring R is {0, 1,−,+,×}. Let
diag(R) = {quantifier-free sentences of Sring(R) true in R};

its models are just the structures in which R embeds.
Theorem  (Henkin, ). The Prime Ideal Theorem
follows from the Compactness Theorem of first-order logic
(a theory whose every finite subset has a model has a model).

Proof. In the signature Sring ∪ {P}, let
K = {rings with prime ideal P}, T = Th(K).

Then Mod(T ) = K: every model of the theory of K is in K.

Every finitely generated sub-ring of a ring R has a prime ideal,
by Theorem .

Hence every finite subset of T ∪ diag(R) has a model.
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A proper class X can be topologized by

a relation |= (“turnstile”) from X to a set B.

If x ∈X and σ ∈ B and x |= σ, say x is a model of σ. So we
define

Mod(σ) = {x ∈X : x |= σ}.
If Γ ⊆ B, we let

Mod(Γ) =
⋂
σ∈Γ

Mod(σ).

These are the closed classes of a topology on X , assuming
(as we do) that for some 0 in B and binary operation ∨ on B,

∅ = Mod(0), Mod(σ) ∪Mod(τ ) = Mod(σ ∨ τ ).





Call a subset Γ of B consistent if

Mod(Γ0) 6= ∅, that is,
⋂
σ∈Γ0

Mod(σ) 6= ∅,

for all finite subsets Γ0 of Γ. If it always follows that
Mod(Γ) 6= ∅, then the topology on X is compact.

In any case, we may assume B also has an element 1 and a
binary operation ∧ such that

X = Mod(1), Mod(σ) ∩Mod(τ ) = Mod(σ ∧ τ ).

Now define logical equivalence in B by

σ ∼ τ ⇐⇒ Mod(σ) = Mod(τ ).

Then (B, 0, 1,∨,∧)/∼ is a well-defined distributive lattice.
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If x ∈X , let
Th(x) = {σ ∈ B : x |= σ},

X

x 7→Th(x)

����

|=
//B

σ 7→σ∼

����

{Th(x) : x ∈X} //B/∼

the theory of x. The set of
these theories is naturally a
Kolmogorov (T0) quotient
of X . Since 0 /∈ Th(x) and
1 ∈ Th(x), while

σ ∨ τ ∈ Th(x) ⇐⇒ σ ∈ Th(x) or τ ∈ Th(x),

Th(x)/∼ is a prime filter of B/∼. Let

Sto(B/∼) = {prime filters of B/∼},

and if σ ∈ B, let [σ] = {F ∈ Sto(B/∼) : σ∼ ∈ F}. Thus

x ∈Mod(σ) ⇐⇒ Th(x)/∼ ∈ [σ].
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X

x 7→Th(x)

����

|=
//B

σ 7→σ∼

����

{Th(x) : x ∈X}
��

Th(x) 7→Th(x)/∼

��

//B/∼
��

σ∼ 7→[σ]

����

Sto(B/∼) ∈ //{[σ] : σ ∈ B}

Theorem .

• If the Prime Ideal
Theorem holds, then
Sto(B/∼) is compact
and Kolmogorov (T0)
when topologized by
{[σ] : σ ∈ B} under ∈.

• The map

x 7→ Th(x)/∼

from X to Sto(B/∼) is
continuous, and its image
is dense and is a Kol-
mogorov quotient of X .





Given a signature S (such as Sring), we can let

• X be the class StrS of structures having signature S ,

• B be the set SenS of first-order sentences in S ,

• |= be the relation of truth from StrS to SenS .

In addition to ∨ and ∧, SenS has the operation ¬, where

StrS rMod(σ) = Mod(¬σ).

Then SenS /∼ is a Boolean algebra, called a Lindenbaum
algebra, so

• its prime filters are ultrafilters,

• Sto(SenS /∼) is Hausdorff.

Is the image of StrS in Sto(SenS /∼) compact?
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A subset Γ of SenS is complete if it is consistent and always
contains σ or ¬σ.

Equivalently, Γ =
⋃

U for an ultrafilter U of SenS /∼.

Let FmS (x) = {formulas of S with free variable x}.

Theorem  (Henkin, ). Suppose

• T is a complete subset of SenS , and

• T has witnesses: for every ϕ in FmS (x), for some
constant c in S ,

T contains ∃x ϕ→ ϕ(c).

Then T has a canonical model, whose universe consists of its
interpretations of the constants in S .
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Corollary . (Mal’cev, ). The Prime Ideal Theorem
implies the Compactness Theorem.

Proof. Suppose Γ is a consistent subset of SenS . We can find

• a set A of constants not in S , together with

• a bijection ϕ 7→ cϕ from FmS (A)(x) to A.

Let Γ∗ = Γ ∪ {∃x ϕ→ ϕ(cϕ) : ϕ ∈ FmS (A)(x)}. Then

• Γ∗ has witnesses and is consistent;

• the same is true of any complete subset of SenS (A) that
includes Γ∗;

• such complete sets exist, by Lindenbaum’s Lemma (,
following from the Prime Ideal Theorem).
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Corollary . (Tarski–Vaught Test, ). If A ⊆ B, that is,
B |= diag(A), and if for all ϕ in FmS (x), for some a in A,

B |= ∃x ϕ→ ϕ(a),

then
A 4 B

(A is an elementary substructure of B), that is,
B |= Th(AA), where AA is the obvious expansion of A to
S (A).

Proof. AA is a canonical model of Th(BA).

For example,

({0, 1},+) * (Z,+), Z ⊆ Q, Z 64 Q, Qalg 4 C.
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Corollary . (Löwenheim–Skolem–Tarski Theorem). Every
structure of at least the (infinite) cardinality of its signature
has an elementary substructure of exactly that cardinality,
assuming AC.

Proof. There is a substructure of that size to which the
Tarski–Vaught Test applies.

The Löwenheim–Skolem Theorem is the case of countable
signatures (this does not need AC).

Hence the Skolem Paradox: It is a theorem of ZF that R is
uncountable; but if ZF has a well-ordered model, it has a
countable model.

(By Gödel’s Second Incompleteness Theorem, it is not a
theorem of ZF that ZF has a model at all.)
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Corollary . (Łoś’s Theorem, ).Assume AC. Suppose

• (Ai : i ∈ Ω) ∈ StrS
Ω, and U is an ultrafilter of P(Ω);

• A =
∏

i∈ΩAi, and A∗i is the expansion of Ai to S (A) so
that

aA
∗
i = ai

when a is (ai : i ∈ Ω) in A;

• ‖σ‖ = {i ∈ Ω: A∗i |= σ} when σ ∈ SenS (A);

• T =
{
σ ∈ SenS (A) : ‖σ‖ ∈ U

}
(which is consistent).

Then T has a canonical model: an ultraproduct of the Ai.

Proof. If T contains ∃x ϕ, then it contains ϕ(a), where

A∗i |= ∃x ϕ ⇐⇒ A∗i |= ϕ(ai).
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Theorem  (Lindström, ). There is no proper “uniform”
compact refinement of the topology on StrS that retains the
Löwenheim–Skolem Theorem.

The Compactness Theorem may be so called because:

) {Th(A)/∼ : A ∈ StrS } is a Stone space, and

) Stone spaces are compact.

But the work lies in proving, not (), but (): In some logics,
() fails.

Some formulations of the Compactness Theorem are equivalent
to the Maximal Ideal Theorem; but it is desirable to recognize
the basic form above, equivalent to the Prime Ideal Theorem.

Next June – in Istanbul: http://www.uni-log.org/
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