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In the background will be Zermelo—Fraenkel set theory, in
the first-order logic of signature {€}:

Equality:

e [qual sets are those having the same elements;
e [iqual sets are elements of the same sets.

Comprehension: Every formula ¢(z) defines the class

{z: p(z)}.

Certain classes are sets, namely: e the empty class, e a
pair of sets, e the union of a set, e the image of a set
under a function, e the power class of a set, e w.

We do not assume the Axiom of Choice (AC), which is
equivalent to the Well Ordering Theorem.
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Theorem 1 (1930s7?). The Maximal Ideal Theorem (for
nontrivial, commutative, unital rings) follows from AC.

Proof. A ring R with R = {a¢: £ < k} has maximal ideal

(ag) + U, Iy, if this is proper,
U _. 1 otherwise.

n<& T

U ]g, where Ig —

E<k
This 7s a proper ideal because the class of commutative
R-algebras without identity is Vd-axiomatizable, as by e.qg.

Ve dy zy # v.

Theorem 2 (Hodges, 1979). The Maximal Ideal Theorem
implies the Axiom of Choice.

Theorem 3 (Halpern & Levy, 1971). The Maximal Ideal
Theorem does not follow from the Prime Ideal Theorem.



The signature Fine of a ring R is {0,1, —, +, x }. Let
diag(R) = {quantifier-free sentences of Ao (R) true in R};

its models are just the structures in which R embeds.

Theorem 4 (Henkin, 1954). The Prime Ideal Theorem
follows from the Compactness Theorem of first-order logic
(a theory whose every finite subset has a model has a model).

Proof. In the signature .#i, U { P}, let
K = {rings with prime ideal P}, T =Th(K).
Then Mod(T) = K: every model of the theory of K isin K.

Every finitely generated sub-ring of a ring R has a prime ideal,
by Theorem 1.

Hence every finite subset of T'U diag(2R) has a model. (]



A proper class X can be topologized by
a relation = (“turnstile”) from X to a set B.

[fz € X and 0 € B and x = o, say x is a model of 0. So we
define

Mod(o)={r e X: z Eo}.
IfI'C B, we let
Mod(I') = (] Mod(c).
oel’

These are the closed classes of a topology on X, assuming
(as we do) that for some 0 in B and binary operation V on B,

@ =Mod(0), Mod(c)UMod(7)=Mod(cV 7).



Call a subset ' of B consistent if
Mod(Iy) # @, thatis, ()| Mod(o) # @,

for all finite subsets I'y of I'. If it always follows that
Mod(I') # &, then the topology on X is compact.

In any case, we may assume B also has an element 1 and a
binary operation A such that

X =Mod(1l), Mod(c)NMod(7)=Mod(c A T).
Now define logical equivalence in B by
o~7T <= Mod(c)=Mod(7).

Then (B,0,1,V,A)/~ is a well-defined distributive lattice.



Ifre X, let
Th(zx) ={oc € B: x =0},

X e B the theory of x. The set of
these theories is naturally a
r—Th(z) o0~ Kolmogorov (7)) quotient
of X. Since 0 ¢ Th(x) and
{Th(z): v € X}~DB/~ | € Th(z), while

oV T1éeTh(x) <= o€ Th(x) OR 7 € Th(x),
Th(zx)/~ is a prime filter of B/~. Let
Sto(B/~) = {prime filters of B/~},
and if 0 € B, let (o] ={F &€ Sto(B/~): 0~ € F'}. Thus
r € Mod(o) <= Th(z)/~ € |o].



r—Th(x)

{Th(z): x € X}

Th(z)—Th(z)/~

Sto( B /~) S

Theorem 5.

e [f the Prime Ideal

Theorem  holds,  then
Sto(B/~) is compact
and  Kolmogorov  (T)
when  topologized by

{lo]: 0 € B} under €.

The map
x +— Th(z)/~

from X to Sto(B/~) is
continuous, and its image
1s dense and is a Kol-
mogorov quotient of X.



Given a signature . (such as Ai,,), we can let
e X be the class Stro of structures having signature .#,
e B be the set Sen & of first-order sentences in &,
e | be the relation of truth from Stry to Sen.o.

In addition to V and A, Sen .« has the operation —, where
Str» ~. Mod(c) = Mod(—0).

Then Sen o /~ is a Boolean algebra, called a Lindenbaum
algebra, so

e its prime filters are ultrafilters,

e Sto(Seny /~) is Hausdorff.

[s the image of Str» in Sto(Seny /~) compact?



A subset T' of Sen & is complete if it is consistent and always
contains o or —o.

Equivalently, I' = | J % for an ultrafilter % of Seny /~.
Let Fm o (x) = {formulas of . with free variable x}.
Theorem 6 (Henkin, 1949). Suppose

e 1" is a complete subset of Sen &, and

e I has witnesses: for every ¢ in Fm g (x), for some
constant ¢ in .&,

T contains 3z ¢ — ¢(c).

Then 7" has a canonical model, whose universe consists of its
interpretations of the constants in .#.



Corollary 6.1 (Mal'cev, 1941). The Prime Ideal Theorem
implies the Compactness Theorem.

Proof. Suppose I' is a consistent subset of Sen . We can find
e a set A of constants not in ., together with
e a bijection ¢ > ¢, from Fm g4y () to A.

Let " =T U{3dz ¢ = ¢(c,): ¢ € Fmg(4)(x)}. Then
e [ has witnesses and is consistent;

e the same Is true of any complete subset of Sen g (4) that
includes I'*;

e such complete sets exist, by Lindenbaum’s Lemma (1930,
following from the Prime Ideal Theorem). (]



Corollary 6.2 (Tarski-Vaught Test, 1957). If A C B, that is,
B E diag(RA), and if for all ¢ in Fm g (x), for some a in A,

B = dr o — p(a),

then
A < B

(2 is an elementary substructure of 28), that is,
B = Th(™A4), where A4 is the obvious expansion of 2 to
S (A).

Proof. A4 is a canonical model of Th(®8 4). (]

For example,

{0,1}, 1) ¢ (Z,+), ZCQ, Z£Q, Q"<xC.



Corollary 6.3 (Lowenheim—Skolem—Tarski Theorem). Every
structure of at least the (infinite) cardinality of its signature
has an elementary substructure of exactly that cardinality,
assuming AC.

Proof. There is a substructure of that size to which the
Tarski—Vaught Test applies. ]

The Lowenheim—Skolem Theorem is the case of countable
signatures (this does not need AC).

Hence the Skolem Paradox: It is a theorem of ZF that R is
uncountable; but if ZF has a well-ordered model, it has a
countable model.

(By Godel’s Second Incompleteness Theorem, it is not a
theorem of ZF that ZF has a model at all.)



Corollary 6.4 (Lo§’s Theorem, 1955). Assume AC. Suppose
o (A;:i€ Q)€ Stryt, and % is an ultrafilter of 22(Q):

o A=1]],cqAi and A is the expansion of 2; to S (A) so

that
QA

a” = a;
when a is (a;: ¢ € §2) in A;
o |lof| =1{i € Q: A = o} when o € Sen g (4);
e T={0€Seny: ||o|| €} (which is consistent).

Then T has a canonical model: an ultraproduct of the I;.

Proof. If T contains 3z ¢, then it contains ¢(a), where
A = Fr o = A = o). N



Theorem 7 (Lindstrom, 1966). There is no proper “uniform”
compact refinement of the topology on Str o that retains the
Lowenheim—Skolem Theorem.

The Compactness Theorem may be so called because:
1) {Th(A)/~:2A € Str»} is a Stone space, and
2) Stone spaces are compact.

But the work lies in proving, not (2), but (1): In some logics,

(1) fails.

Some formulations of the Compactness Theorem are equivalent
to the Maximal Ideal Theorem; but it is desirable to recognize
the basic form above, equivalent to the Prime Ideal Theorem.
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