Chains of theories

David Pierce

February 28 , 2013 Mathematics Department Mimar Sinan Fine Arts University Istanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu.tr/~dpierce/

This is work with Özcan Kasal. There is some parallel work by Alice Medvedev (presented in Oléron, June, 2011) concerning ACFA.

Suppose

$$
T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots,
$$

all theories, closed under entailment, so their signatures also form a chain:

 $\mathscr{S}_0 \subset \mathscr{S}_1 \subset \mathscr{S}_2 \subset \cdots$

In one example of interest, T_m is m-DF, the theory of fields with m commuting derivations $\partial_0, \ldots, \partial_{m-1}$; their union is ω -DF.

In general, what properties are preserved in $\bigcup_{k\in\omega}T_k$? Compare:

Theorem (Chang, Łoś–Suszko). For a fixed theory T , the following are equivalent:

- 1. T is $\forall \exists$ -axiomatizable.
- 2. $Mod(T)$ is closed under taking unions of chains

$$
\mathfrak{A}_0\subseteq \mathfrak{A}_1\subseteq \mathfrak{A}_2\subseteq \cdots.
$$

Again, if $T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots$, then among possible properties of the theories T_k ,

- 1) Preserved by $\bigcup_{k\in\omega}T_k$ are: (a) consistency, (b) completeness, (c) quantifier elimination, (d) model-completeness, (e) stability, (f) ...;
-) not preserved (but this is not obvious) are: companionability, ω -stability, superstability, ...
- (a) Consistency is preserved, by compactness.

(b) Completeness is preserved, because every sentence of the union $\bigcup_{k\in\omega}\mathscr{S}_k$ is a sentence of some \mathscr{S}_k .

(c) Likewise for quantifier-elimination.

(d) **Model-completeness** of a theory T may be usually remembered as

 $A \subseteq \mathfrak{B} \implies A \preccurlyeq \mathfrak{B}$

within $Mod(T)$. Equivalently (the theory axiomatized by)

T ∪ diag(A)

is always complete when $\mathfrak{A} \models T$, where

diag(\mathfrak{A}) = { $\sigma \in \text{Th}(\mathfrak{A}_A)$: σ is quanfifier-free}

the theory of the structures in which A embeds. A sufficient (and obviously necessary) condition is (Abraham) Robinson's Condition,

 $\mathfrak{A} \subseteq \mathfrak{B} \implies \mathfrak{A} \preccurlyeq_1 \mathfrak{B}$

where the conclusion means every quantifier-free formula over $\mathfrak A$ soluble in \mathfrak{B} is soluble in \mathfrak{A} . Robinson's Condition is, equivalently,

$$
\mathfrak{A} \models_{\mathrm{ec}} T
$$

—every model of T is an existentially closed model. For this it is sufficient (and in fact necessary) that T admit quantifier-elimination down to ∃ formulas. Therefore model-completeness is preserved in unions of chains.

- (e) A *complete* theory T is
	- κ -stable, if $\kappa \geq |T|$ and

$$
|A| \leq \kappa \implies |\mathcal{S}(A)| \leq \kappa
$$

for all parameter-sets A of models of T;

- superstable, if κ -stable for κ large enough:
- stable, if κ -stable for some κ .

When $|T| = \omega$, then

- superstability implies κ -stability when $\kappa \geq 2^{\omega}$;
- stability implies κ -stability when $\kappa = \kappa^{\omega}$.

(Note that if $\text{cof}(\kappa) = \omega$, as when $\kappa = \aleph_{\omega}$, then $\kappa < \kappa^{\omega}$.)

In fact *instability* of T is equivalent to the presence of a formula $\varphi(\vec{x}, \vec{y})$ defining an infinite linear order in some model of T, so that, for all n in ω ,

$$
T \vdash \exists (\vec{x}_0,\ldots,\vec{x}_n) \left(\bigwedge_{0 \leq i \leq j \leq n} \varphi(\vec{x}_i,\vec{x}_j) \land \bigwedge_{0 \leq j < i \leq n} \neg \varphi(\vec{x}_i,\vec{x}_j) \right).
$$

If $T = \bigcup_{k \in \omega} T_k$, then these sentences are all in some \mathscr{S}_k , and then (assuming T_k is complete) T_k will be instable.

An arbitrary theory T is **companionable** if, for some theory T^* of its signature,

- $T_{\forall} = T^*_{\forall}$
- T is model-complete.

In this case, T^* is the **model-companion** of T . If

$$
T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots,
$$

and each T_k has the model-companion T_k^* , and

$$
T_0^* \subseteq T_1^* \subseteq T_2^* \subseteq \cdots,
$$
\n^(*)

then $\bigcup_{k\in\omega}T_k^*$ is the model-companion of $\bigcup_{k\in\omega}T_k$. However $(*)$ may fail.

Theorem (McGrail). m -DF₀ (in characteristic 0) has a modelcompanion, m- DCF_0 , which admits quantifier-elimination and is ω stable.

Theorem (P.). m-DF has a model-companion, m-DCF. Nevertheless, $\bigcup_{m\in\omega}$ m-DF is not companionable.

For the last part (non-companionability), if $j \in \omega$, let K_j be an e.c. (*existentially closed*) model of ω -DF (that is, $\bigcup_{m\in\omega} m$ -DF), with

$$
\mathbb{F}_p(\alpha) \subseteq K_j, \qquad \alpha \notin \mathbb{F}_p^{\text{alg}}, \qquad \partial_i \alpha = \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}
$$

Then α has no p-th root in K_i , since

$$
\partial_j \alpha = 1, \qquad \qquad \partial_j (x^p) = p \cdot x^{p-1} \cdot \partial_j x = 0.
$$

Therefore α has no p-th root in a nonprincipal ultraproduct

$$
\prod_{j\in\omega}K_j/\mathfrak{p},
$$

even though, in this, $\partial_i \alpha = 0$ for all i in ω , so α has a p-th root in some extension. Thus the ultraproduct is not e.c.. Therefore the class of e.c. models of ω -DF is not elementary.

Theorem (P.).

$$
m\text{-DCF}_0 \subseteq (m+1)\text{-DCF}_0,
$$

and therefore ω -DF₀ has a model-companion, ω -DCF₀, which is stable, but not superstable.

This is established by means of:

Theorem (folklore, P.). Assuming $T_0 \subseteq T_1$, each T_k having signature \mathscr{S}_k , consider:

A. If

$$
\mathfrak{A}\models T_1,\qquad \qquad \mathfrak{B}\models T_0,\qquad \qquad \mathfrak{A}\restriction \mathscr{S}_0\subseteq \mathfrak{B},
$$

then there is \mathfrak{C} such that

$$
\mathfrak{C} \models T_1, \qquad \mathfrak{A} \subseteq \mathfrak{C}, \qquad \mathfrak{B} \subseteq \mathfrak{C} \upharpoonright \mathscr{S}_0.
$$

B. For all \mathfrak{A} ,

$$
\mathfrak{A}\models_{\mathrm{ec}} T_1 \implies \mathfrak{A}\upharpoonright \mathscr{S}_0 \models_{\mathrm{ec}} T_0.
$$

- $C.$ T_0 has the Amalgamation Property: *if one model embeds in* two others, then those two in turn embed in a fourth model, compatibly with the original embeddings.
- D. T_1 is $\forall \exists$ (so that every model embeds in an e.c. model).

We have the two implications

$$
A \implies B, \qquad B \& C \& D \implies A,
$$

but there is no implication among the four conditions that does not follow from these. This is true, even if T_1 is required to be a conservative extension of T_0 , so that $T_1 \restriction \mathscr{S}_0 = T_0$.

Proof. (Can be left as exercise.) Suppose A holds. Let

$$
\mathfrak{A} \models_{\rm ec} T_1, \qquad \mathfrak{B} \models T_0, \qquad \mathfrak{A} \upharpoonright \mathscr{S}_0 \subseteq \mathfrak{B}.
$$

We show

$$
\mathfrak{A}\restriction \mathscr{S}_0 \preccurlyeq_1 \mathfrak{B}
$$

(*i.e.* every existential formula over $\mathfrak{A} \restriction \mathscr{S}_0$ soluble in \mathfrak{B} is soluble in $\mathfrak{A} \restriction \mathscr{S}_0$. By hypothesis, there is a model \mathfrak{C} of T_1 such that

$$
\mathfrak{A}\subseteq \mathfrak{C}, \qquad \qquad \mathfrak{B}\subseteq \mathfrak{C}\restriction \mathscr{S}_0.
$$

Then

$$
\mathfrak{A} \preccurlyeq_1 \mathfrak{C},
$$

$$
\mathfrak{A} \upharpoonright \mathscr{S}_0 \preccurlyeq_1 \mathfrak{C} \upharpoonright \mathscr{S}_0,
$$

$$
\mathfrak{A} \upharpoonright \mathscr{S}_0 \preccurlyeq_1 \mathfrak{B}.
$$

Therefore $\mathfrak{A} \restriction \mathscr{S}_0$ must be an e.c. model of T_0 . Thus B holds.

Suppose conversely $B \& C \& D$ holds. Let

$$
\mathfrak{A}\models T_1,\qquad\qquad\mathfrak{B}\models T_0,\qquad\qquad\mathfrak{A}\restriction\mathscr{S}_0\subseteq\mathfrak{B}.
$$

We establish the consistency of

 $T_1 \cup \text{diag}(\mathfrak{A}) \cup \text{diag}(\mathfrak{B}).$

It is enough to show the consistency of

$$
T_1 \cup \text{diag}(\mathfrak{A}) \cup \{ \exists \vec{x} \ \varphi(\vec{x}) \},
$$

where φ is an arbitrary quantifier-free formula of $\mathscr{S}_0(A)$ such that

$$
\mathfrak{B} \models \exists \vec{x} \ \varphi(\vec{x}).
$$

By D , there is $\mathfrak C$ such that

$$
\mathfrak{C}\models_{\mathrm{ec}} T_1,\qquad \qquad \mathfrak{A}\subseteq \mathfrak{C}.
$$

By B then,

$$
\mathfrak{C} \upharpoonright \mathscr{S}_0 \models_{\mathrm{ec}} T_0, \qquad \qquad \mathfrak{A} \upharpoonright \mathscr{S}_0 \subseteq \mathfrak{C} \upharpoonright \mathscr{S}_0.
$$

By C, both \mathfrak{B} and $\mathfrak{C} \restriction \mathscr{S}_0$ embed over $\mathfrak{A} \restriction \mathscr{S}_0$ in a model \mathfrak{D} of T_0 . In particular,

$$
\mathfrak{D} \models \exists \vec{x} \ \varphi(\vec{x}).
$$

Therefore φ is already soluble in $\mathfrak{C} \restriction \mathscr{S}_0$ itself. Thus

$$
\mathfrak{C} \models T_1 \cup \text{diag}(\mathfrak{A}) \cup \{ \exists \vec{x} \ \varphi(\vec{x}) \}.
$$

Therefore A holds.

For the rest, 11 (counter-)examples are found...

Now suppose

$$
(L, \partial_0, \dots, \partial_{m-1}) \models m\text{-DF}_0,
$$

\n
$$
K \subseteq L,
$$

\n
$$
(K, \partial_0 \restriction K, \dots, \partial_{m-1} \restriction K, \partial_m) \models (m+1)\text{-DF}_0,
$$

\n
$$
a \in L \setminus K.
$$

We shall define a differential field

$$
(K\langle a\rangle, \tilde{\partial}_0,\ldots,\tilde{\partial}_m),
$$

where $a \in K\langle a \rangle$, and for each i in m,

$$
\tilde{\partial}_i \restriction K\langle a \rangle \cap L = \partial_i \restriction K\langle a \rangle \cap L,\tag{\dagger}
$$

and $\tilde{\partial}_m \restriction K = \partial_m$.

Considering ω^{m+1} as the set of $(m+1)$ -tuples of natural numbers, we shall have

$$
K\langle a\rangle = K(a^{\sigma} : \sigma \in \omega^{m+1}),
$$

where

$$
a^{\sigma} = \tilde{\partial}_0{}^{\sigma(0)} \cdots \tilde{\partial}_m{}^{\sigma(m)} a. \tag{\ddagger}
$$

In particular then, by (\dagger) , we must have

$$
\sigma(m) = 0 \implies a^{\sigma} = \partial_0^{\sigma(0)} \cdots \partial_{m-1}^{\sigma(m-1)} a. \tag{§}
$$

 $\,7$

 \Box

Using this rule, we make the definition

$$
K_1 = K(a^{\sigma} : \sigma(m) = 0).
$$

Recursively, we can define

$$
K_j = K(a^\sigma \colon \sigma(m) < j)
$$

as desired. If $L \setminus K\langle a \rangle \neq \emptyset$, we can repeat, as necessary. It may not be possible to make L itself closed under $\tilde{\partial}_m.$