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This is work with Özcan Kasal. There is some parallel work by Alice
Medvedev (presented in Oléron, June, ) concerning ACFA.

Suppose
T0 ⊆ T1 ⊆ T2 ⊆ · · · ,

all theories, closed under entailment, so their signatures also form a
chain:

S0 ⊆ S1 ⊆ S2 ⊆ · · ·

In one example of interest, Tm is m-DF, the theory of fields with m
commuting derivations ∂0, . . . , ∂m−1; their union is ω-DF.

In general, what properties are preserved in
⋃
k∈ω Tk? Compare:

Theorem (Chang, Łoś–Suszko). For a fixed theory T , the following
are equivalent:





. T is ∀∃-axiomatizable.
. Mod(T ) is closed under taking unions of chains

A0 ⊆ A1 ⊆ A2 ⊆ · · · .

Again, if T0 ⊆ T1 ⊆ T2 ⊆ · · · , then among possible properties of the
theories Tk,

) Preserved by
⋃
k∈ω Tk are: (a) consistency, (b) completeness,

(c) quantifier elimination, (d) model-completeness, (e) stabil-
ity, (f) . . . ;

) not preserved (but this is not obvious) are: companionability,
ω-stability, superstability, . . .

(a) Consistency is preserved, by compactness.

(b) Completeness is preserved, because every sentence of the union⋃
k∈ω Sk is a sentence of some Sk.

(c) Likewise for quantifier-elimination.

(d) Model-completeness of a theory T may be usually remem-
bered as

A ⊆ B =⇒ A 4 B

within Mod(T ). Equivalently (the theory axiomatized by)

T ∪ diag(A)

is always complete when A |= T , where

diag(A) = {σ ∈ Th(AA) : σ is quanfifier-free}

the theory of the structures in which A embeds. A sufficient (and
obviously necessary) condition is (Abraham) Robinson’s Condi-
tion,

A ⊆ B =⇒ A 41 B





where the conclusion means every quantifier-free formula over A sol-
uble in B is soluble in A. Robinson’s Condition is, equivalently,

A |=ec T

—every model of T is an existentially closed model. For this it is
sufficient (and in fact necessary) that T admit quantifier-elimination
down to ∃ formulas. Therefore model-completeness is preserved in
unions of chains.

(e) A complete theory T is

• κ-stable, if κ > |T | and

|A| 6 κ =⇒ |S(A)| 6 κ

for all parameter-sets A of models of T ;
• superstable, if κ-stable for κ large enough;
• stable, if κ-stable for some κ.

When |T | = ω, then

• superstability implies κ-stability when κ > 2ω;
• stability implies κ-stability when κ = κω.

(Note that if cof(κ) = ω, as when κ = ℵω, then κ < κω.)

In fact instability of T is equivalent to the presence of a formula
ϕ(~x, ~y) defining an infinite linear order in some model of T , so that,
for all n in ω,

T ` ∃(~x0, . . . , ~xn)

( ∧
06i6j6n

ϕ(~xi, ~xj) ∧
∧

06j<i6n

¬ϕ(~xi, ~xj)

)
.

If T =
⋃
k∈ω Tk, then these sentences are all in some Sk, and then

(assuming Tk is complete) Tk will be instable.

An arbitrary theory T is companionable if, for some theory T ∗ of
its signature,





• T∀ = T ∗∀,
• T is model-complete.

In this case, T ∗ is the model-companion of T . If

T0 ⊆ T1 ⊆ T2 ⊆ · · · ,

and each Tk has the model-companion Tk∗, and

T0
∗ ⊆ T1∗ ⊆ T2∗ ⊆ · · · , (∗)

then
⋃
k∈ω Tk

∗ is the model-companion of
⋃
k∈ω Tk. However (∗)

may fail.

Theorem (McGrail). m-DF0 (in characteristic 0) has a model-
companion, m-DCF0, which admits quantifier-elimination and is ω-
stable.

Theorem (P.). m-DF has a model-companion, m-DCF. Neverthe-
less,

⋃
m∈ωm-DF is not companionable.

For the last part (non-companionability), if j ∈ ω, let Kj be an e.c.
(existentially closed) model of ω-DF (that is,

⋃
m∈ωm-DF), with

Fp(α) ⊆ Kj , α /∈ Fpalg, ∂iα = δij =

{
1, if i = j,

0, if i 6= j.

Then α has no p-th root in Kj , since

∂jα = 1, ∂j(x
p) = p · xp−1 · ∂jx = 0.

Therefore α has no p-th root in a nonprincipal ultraproduct∏
j∈ω

Kj/p,

even though, in this, ∂iα = 0 for all i in ω, so α has a p-th root
in some extension. Thus the ultraproduct is not e.c.. Therefore the
class of e.c. models of ω-DF is not elementary.





Theorem (P.).

m-DCF0 ⊆ (m+ 1)-DCF0,

and therefore ω-DF0 has a model-companion, ω-DCF0, which is
stable, but not superstable.

This is established by means of:

Theorem (folklore, P.). Assuming T0 ⊆ T1, each Tk having signa-
ture Sk, consider:

A. If

A |= T1, B |= T0, A � S0 ⊆ B,

then there is C such that

C |= T1, A ⊆ C, B ⊆ C � S0.

B. For all A,
A |=ec T1 =⇒ A � S0 |=ec T0.

C. T0 has the Amalgamation Property: if one model embeds in
two others, then those two in turn embed in a fourth model,
compatibly with the original embeddings.

D. T1 is ∀∃ (so that every model embeds in an e.c. model).

We have the two implications

A =⇒ B, B & C & D =⇒ A,

but there is no implication among the four conditions that does not
follow from these. This is true, even if T1 is required to be a conser-
vative extension of T0, so that T1 � S0 = T0.

Proof. (Can be left as exercise.) Suppose A holds. Let

A |=ec T1, B |= T0, A � S0 ⊆ B.





We show
A � S0 41 B

(i.e. every existential formula over A � S0 soluble in B is soluble in
A � S0). By hypothesis, there is a model C of T1 such that

A ⊆ C, B ⊆ C � S0.

Then

A 41 C,

A � S0 41 C � S0,

A � S0 41 B.

Therefore A � S0 must be an e.c. model of T0. Thus B holds.

Suppose conversely B & C & D holds. Let

A |= T1, B |= T0, A � S0 ⊆ B.

We establish the consistency of

T1 ∪ diag(A) ∪ diag(B).

It is enough to show the consistency of

T1 ∪ diag(A) ∪ {∃~x ϕ(~x)},

where ϕ is an arbitrary quantifier-free formula of S0(A) such that

B |= ∃~x ϕ(~x).

By D, there is C such that

C |=ec T1, A ⊆ C.

By B then,

C � S0 |=ec T0, A � S0 ⊆ C � S0.





By C, both B and C � S0 embed over A � S0 in a model D of T0.
In particular,

D |= ∃~x ϕ(~x).

Therefore ϕ is already soluble in C � S0 itself. Thus

C |= T1 ∪ diag(A) ∪ {∃~x ϕ(~x)}.

Therefore A holds.

For the rest,  (counter-)examples are found. . .

Now suppose

(L, ∂0, . . . , ∂m−1) |= m-DF0,

K ⊆ L,
(K, ∂0 � K, . . . , ∂m−1 � K, ∂m) |= (m+ 1)-DF0,

a ∈ LrK.

We shall define a differential field

(K〈a〉, ∂̃0, . . . , ∂̃m),

where a ∈ K〈a〉, and for each i in m,

∂̃i � K〈a〉 ∩ L = ∂i � K〈a〉 ∩ L, (†)

and ∂̃m � K = ∂m.

Considering ωm+1 as the set of (m+ 1)-tuples of natural numbers,
we shall have

K〈a〉 = K(aσ : σ ∈ ωm+1),

where
aσ = ∂̃0

σ(0) · · · ∂̃mσ(m)a. (‡)

In particular then, by (†), we must have

σ(m) = 0 =⇒ aσ = ∂0
σ(0) · · · ∂m−1σ(m−1)a. (§)





Using this rule, we make the definition

K1 = K(aσ : σ(m) = 0).

Recursively, we can define

Kj = K(aσ : σ(m) < j)

as desired. If LrK〈a〉 6= ∅, we can repeat, as necessary.

It may not be possible to make L itself closed under ∂̃m.




