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Model-theory:

• is ‘foundational’, like category theory or set theory;

• is a kind of mathematics done self-consciously;

• pays attention to the language of mathematics;

• is a study of structures as models of theories;

• is a study of the relation of truth between structures and
sentences.

The truth-relation is usually symbolized by a double ‘turnstile’,

� ()

(which is \models in LATEX).





Examples of the truth-relation.

C � ∃x x2 = −1, ()

but
R 2 ∃x x2 = −1, (a)

that is,
R � ¬∃x x2 = −1, (b)

or equivalently
R � ∀x x2 6= 1. (c)

Also,
Q � ∀x ∀y

(
x < y → ∃z (x < z ∧ z < y)

)
, ()

but
Z � ∃x ∃y

(
x < y ∧ ∀z (x 6< z ∨ z 6< y)

)
. ()





In general, if A is a structure, and σ is a sentence, and it is
meaningful to write

A � σ ()

(that is, if it is true or false that σ is true in A), then the
signature of σ must be included in the signature of A.

Examples. The signature of

• groups is { · , −1, 1};

• orders, {6};

• ordered fields, {+,−, · , 0, 1,6}.

The signature of the sentence σ is the set of non-logical symbols
occurring in σ.
The signature of the structure A is the set of non-logical symbols
for which A has an interpretation.





Non-logical symbols can be:

• operation-symbols (or function-symbols, as +, −, and ·),

• constants (or constant-symbols, as 0 and 1),

• predicates (or relation-symbols, as 6).

Logical symbols are:

• the predicate = (always interpreted as equality),

• variables, as x and y, standing for individuals (not sets as
such);

• Boolean connectives, as ¬, ∧, ∨, →, and ↔;

• quantification symbols, as ∃ and ∀;

• brackets (parentheses), as needed.

Such symbols are combined into formulas, according to a
recursive definition. The formulas in which every variable is
bound—the formulas without free variables—are sentences.





For example, the formula

∃y x · y = 1 ()

defining the group of units of a commutative ring has the free
variable x; so it is not a sentence.
Our formulas and sentences are in first-order logic.

Non-examples.

. The induction axiom for N,

∀X (1 ∈ X ∧ ∀y (y ∈ X → y + 1 ∈ X) → ∀y y ∈ X) ()

(here X ranges over subsets of N, not individual elements of N).

. The axiom distinguishing torsion groups among abelian groups,

∀x (x = 0 ∨ 2x = 0 ∨ 3x = 0 ∨ · · · ) ()

(sentences must be finite).





Let S be a signature. The set of sentences with non-logical
symbols from this signature can be denoted by

Sn(S ). ()

There is also a class, denoted by

Mod(S ), ()

of ‘models’ of S , that is, structures with signature S . Such a
structure can be written as A, and then A consists of:

• a set A, called the universe of the structure (or there may be
several ‘universes’, as in a vector-space; these are sorts);

• an interpretation of S : a function s 7→ sA on S assigning to
each operation-symbol in S an operation on A, and so on.

This is just a formalization of the idea that, for example, the same
symbol + denotes a different operation in different abelian groups.





Then � is a relation between Mod(S ) and Sn(S ), namely

{(A, σ) ∈ Mod(S )× Sn(S ) : σ is true in A}. ()

Therefore we obtain a Galois correspondence as follows.

• If K ⊆ Mod(S ), we define the theory of K:

Th(K) =
⋂

A∈K

{σ ∈ Sn(S ) : A � σ}, ()

the set of sentences true in every structure in K.

• If Γ ⊆ Sn(S ), we define the class of models of Γ:

Mod(Γ) =
⋂

σ∈Γ

{A ∈ Mod(S ) : A � σ}, ()

the class of structures in which every sentence in Γ is true. Such
a class is called an elementary class.

So there is a one-to-one correspondence between theories and
elementary classes.





We restrict our attention to first-order logic so that we have the

Compactness Theorem. For all subsets Γ of Sn(S ), if every
finite subset of Γ has a model, then so does Γ itself.

By this, the theory of finite fields has an infinite model. In fact we
can construct such a model as a quotient

∏

p prime

Fp/M,

where M is a maximal ideal of the product. Moreover, the
Compactness Theorem can be proved by a generalization of this
method.





The Compactness Theorem fails in second-order logic. For
example, the Peano axioms

∀X (1 ∈ X ∧ ∀y (y ∈ X → y + 1 ∈ X) → ∀y y ∈ X), (a)

∀x x + 1 6= 1, (b)

∀x ∀y (x + 1 = y + 1 → x = y), (c)

along with

c 6= 1, c 6= 1 + 1, c 6= 1 + 1 + 1, · · · , ()

say there is an infinite natural number (denoted by c). These
sentences have no model, but every finite subset of them does.
Also by Compactness, the class of torsion groups is not elementary.









In the following table, K and K∗ are subclasses of Mod(S ), and
K∗ is the class of existentially closed members of K:

S K K∗

∅ sets infinite sets

{<} linear orders dense linear orders w/o endpoints

{+,−, 0} ∪ Fp vector-spaces/Fp infinite vector-spaces/Fp

{+,−, ·, 0, 1} fields algebraically closed fields

In general, A ∈ K∗ means that if

A ⊆ B, B ∈ K, ()

then every existential sentence with parameters from A that is true
in B is already true in A: for example, every system of equations
and inequations over A with a solution in B already has a solution
in A.





For another example, let

S = {+,−, ·, 0, 1, F},

and let K be the class of fields with an algebraically closed subfield
called F . Then K∗ is the class of (G,F ) or G/F in K such that

• G is algebraically closed, and

• tr-deg(G/F ) = 1.

Indeed, say F0 = F0
alg, and α, β, and γ are algebraically

independent over F , but δ = α · γ + β. Let F1 = F0(γ, δ)
alg. Then

F0(α, β) ∩ F1 = F0. ()

Therefore (F0(α, β), F0) ⊆ (F1(α, β), F1). The sentence

∃x ∃y (x ∈ F ∧ y ∈ F ∧ α · x + β = y)

is true in (F1(α, β), F1), so that

tr-deg(F1(α, β)/F1) = 1. ()





For yet another example, let

S = {+,−,0} ∪ {+,−, ·, 0, 1} ∪ {∗},

and let K be the class of vector-spaces, considered as two-sorted
structures. (There is a sort of vectors and a sort of scalars.) Then
K∗ is the class of (V, F ) in K such that

• F is algebraically closed, and

• dimF (V ) = 1.

Again as F grows, dimF (V ) = 1, if positive, can only go down.





If T = Th(Mod(Γ)), then T is the theory axiomatized by Γ.

Example. The classes of groups, rings, and fields are axiomatized
by sets of ∀∃ sentences, such as the field axiom

∀x ∃y (x = 0 ∨ xy = 1).

The classes in the example are also closed under unions of
chains. In fact we have the following (example of) a
preservation theorem:

Theorem (Chang, Łoś–Suszko, s). Let T be a theory. TFAE:

. Mod(T ) is closed under unions of chains.

. T is axiomatized by a set of ∀∃ sentences.

We may define

T∀∃ = Th(Mod({σ ∈ T : σ is ∀∃})). ()

Then the second condition of the theorem is T = T∀∃. In this case,
we may say T is inductive.





Suppose T is inductive, that is T = T∀∃, so that T is preserved
under unions of chains. If T has models at all, then it has
existentially closed models: these are unions of the appropriate
chains.
If, further, the class of existentially closed models of T is
elementary, then its theory is called the model-companion of T .
This is what we shall be interested in.

Non-example. The theory of fields with an algebraically closed
subfield has no model-companion: having transcendence-degree 1
is not an ‘elementary’ or first-order property.





If a model A of T is existentially closed, this means for all
quantifier-free formulas ϕ(~x, ~y), for all ~a from A, if

A ⊆ B, B ∈ Mod(T ), B � ∃~y ϕ(~a, ~y) ()

then A � ∃~y ϕ(~a, ~y).
Stronger than being a model-companion is being a
model-completion.

Theorem (Robinson, 6). Let T be a theory. TFAE:

• T has a model-completion.

• T = T∀∃, and there is a function ∃~y ϕ(~x, ~y) 7→ ϕ̂(~x), where ϕ
and ϕ̂ are quantifier-free, such that, if A � T and ~a is from A,
then

A � ϕ̂(~a) ⇐⇒ for some B, A ⊆ B � T ∪ {∃~y ϕ(~a, ~y)}.

• the model-completion of T is axiomatized by

T ∪
{
∀~x

(
ϕ̂(~x) → ∃~y ϕ(~x, ~y)

)
: ϕ quantifier-free

}
.





Examples.

. The theory ACF of algebraically closed fields is the
model-completion of field-theory. If ϕ(~x, y) is

xn · y
n + · · · + x1 · y + x0 = 0, ()

then ϕ̂(~x) can be

(xn = 0 ∧ · · · ∧ x1 = 0) → x0 = 0. ()

. The theory RCF of real-closed fields is the model-completion of
the theory of ordered fields. If ϕ(~x, y) is

x2 · y
2 + x1 · y + x0 = 0, ()

then ϕ̂(~x) can be

(x2 = 0 ∧ x1 = 0 → x0 = 0) ∧

∧ (x2 6= 0 → x1
2 − 4x2 · x0 > 0). ()





Another example is:

Theorem (P.). The theory of vector-spaces of dimension 1 over an
algebraically closed field is:

) the model-companion of the theory of vector-spaces,

) not the model-completion of the theory of vector-spaces,

) the model-completion of the theory of vector-spaces of
dimension at most 1.

Here if ϕ(x0,x1, y0, y1) is

x0 · y0 + x1 · y1 = 0 ∧ (y0 6= 0 ∨ y1 6= 0),

then ϕ̂(x0,x1) can be just x0 = x0 ∧ x1 = x1. But if
ψ(x0,x1, y0, y1) is

ϕ(x0,x1, y0, y1) ∧ f (y0, y1) = 0

for some nonzero polynomial f , then ψ̂(x0,x1) cannot be found.









A differential field is a pair (K,D), where

• K is a field (for simplicity, of characteristic 0 here),

• D is a derivation of K, that is,

D(x + y) = Dx +Dy, D(xy) = Dx · y + x ·Dy. ()

Example. (C(X), f 7→ f ′).

The theory of differential fields will be denoted by

DF . ()

Theorem (Seidenberg). ∃~y ϕ(~x, ~y) 7→ ϕ̂(~x) as in Robinson’s
Theorem exists when T is DF.

Corollary (Robinson). DF has a model-completion.

The model-completion of DF is called

DCF ()

for (theory of) differentially closed fields.





For more comprehensible axioms for DCF, we can use another
preservation theorem. If T is a theory, we define

T∀ = Th(Mod({σ ∈ T : σ is universal})). ()

Theorem. The class of substructures of models of T is elementary,
and its theory is T∀.

For example, if T is field-theory, then T∀ is the theory of integral
domains.

Corollary. TFAE:

. Mod(T ) is closed under substructures.

. T = T∀.

Theorem (Blum, 6). Suppose T = T∀. For T to have a
model-completion, the function ∃~y ϕ(x, ~y) 7→ ϕ̂(x) as in
Robinson’s Theorem need only be well-defined on existential
formulas with only one free variable x.





Since DF∀ is ‘close enough’ to DF (because a derivation on an
integral domain extends uniquely to the quotient field), Blum gets
nice axioms for DCF:

Theorem (Blum, 6). (K,D) ∈ Mod(DCF) if and only if:

• (K,D) ∈ Mod(DF),

• for all ordinary polynomials f and g over K, where

f ∈ K[X0, . . . , Xn], g ∈ K[X0, . . . , Xn−1], ()

if g 6= 0 and ∂f/∂Xn 6= 0, then the sentence

∃x
(
f (x,Dx, . . . , Dnx) = 0 ∧ g(x,Dx, . . . , Dn−1x) 6= 0

)
()

is true in (K,D). (In particular, K = Kalg.)

So Blum’s approach to DCF is to consider only systems of
equations and inequations in one variable; and this suffices (as it
does in the axiomatization of the theory of algebraically closed
fields).





There is an alternative, ‘geometric’ approach to simplifying the
axioms of DCF. We use the following observations (found for
example in Lang’s Algebra).
Suppose (K,D) ∈ Mod(DF).

. If a ∈ Kalg, then D extends uniquely to D̃ on Kalg so that
(K, D̃) ∈ Mod(DF). Indeed, f (a) = 0 for some irreducible f in
K[X ]; and then we obtain D̃a by formal differentiation:

0 = D
(
f (a)

)
= f ′(a) · D̃a + fD(a), ()

where fD is the result of differentiating (by D) the coefficients
of f .

. If a /∈ Kalg, then D extends uniquely to D̃ on K(a) so that
(K(a), D̃) ∈ Mod(DF), once D̃a is chosen in K(a) (and this
can be done arbitrarily).





We want to understand when systems of differential polynomial
equations and inequations have solutions in some extension.
We can eliminate inequalities by adding variables:

x 6= 0 ⇐⇒ ∃y xy = 1. ()

Then we can eliminate all higher-order derivatives. Indeed, over a
model (K,D) of DF, TFAE:

∃~x
∧

f

f (~x,D~x, . . . , Dn~x) = 0, ()

∃(~x0, . . . , ~xn)
(∧

f

f (~x0, . . . , ~xn) = 0 ∧
∧

i<n

D~xi = ~xi+1

)
. ()

The latter is an instance of

∃~x
(∧

f

f (~x) = 0 ∧
∧

i<k

Dxi = gi(~x)
)
, ()

where ~x = (x0, . . . , xn−1) and k 6 n.





Theorem (P.–Pillay , P. ). (K,D) ∈ Mod(DCF) if and
only if:

• (K,D) ∈ Mod(DF),

• K = Kalg,

• for all f and gi in K[X0, . . . , Xn−1],

∃~x
(∧

f

f (~x) = 0 ∧
∧

i<k

Dxi = gi(~x)
)
, ()

provided the f impose no algebraic condition on (x0, . . . , xk−1).

In the last condition, it is enough that the f define an irreducible
variety with generic point ~a such that (a0, . . . , ak−1) is a
transcendence-basis of K(~a)/K.

How do these ideas work in case of several derivations?





Let DFm be the theory of fields (of characteristic zero) with m
commuting derivations: these are ‘partial’ differential fields
(with m derivations).

Example. (C(X0, . . . , Xm−1), ∂/∂X0, . . . , ∂/∂Xm−1).

So DFm is the theory of (m + 1)-tuples (K, ∂0, . . . , ∂m−1), where

• ∂i ∈ Der(K), that is, (D, ∂i) ∈ Mod(DF);

• [∂i, ∂j] = 0.

Theorem (McGrail, ). DFm has a model-completion, called
DCFm.

The proof uses complicated differential algebra of Kolchin and
others. The aim here is to make this more ‘geometric’.
We can use Blum’s theorem, considering only systems in one
variable.
Let

ω = {0, 1, 2, . . . }. ()





If σ ∈ ω
m, this means

σ = (σ(0), . . . , σ(m− 1)). ()

We then write
∂σx = ∂0

σ(0) · · · ∂m−1
σ(m−1)x. ()

We define a differential polynomial ring:

K{X} = K[∂σX : σ ∈ ω
m]. ()

Suppose
(K, ∂0, . . . , ∂m−1) ⊆ (L, ∂̃0, . . . , ∂̃m−1), ()

both being models of DF, and a ∈ L. Then we can define

I(a) = {f ∈ K{X} : f (a) = 0};

this is a prime differential ideal. Kolchin identifies a kind of finite
subset Λ of this ideal, called a characteristic set of the ideal,
that determines the ideal in the following sense.





Again if σ ∈ ω
m, define the height of σ by

|σ| = σ(0) + · · · + σ(m− 1). ()

Since the characteristic set Λ of I(a) is finite, for some n in ω,

Λ ⊆ K[∂σX : |σ| 6 n].

For each f in this ring there is an ordinary polynomial f̂ in
K[Xσ : |σ| 6 n] such that

f = f̂ (∂σX : |σ| 6 n).

A zero (aσ : |σ| 6 n) of f̂ from some field-extension of K can be
called an algebraic zero of f , as opposed to a (true) zero,
which will be an element (like a) of some
differential-field-extension of (K, ∂0, . . . , ∂m−1).
Then a generic algebraic zero of (the elements of) Λ does consist
of the derivatives of a true zero of Λ. This is the sense in which the
characteristic set Λ determines I(a).





Now McGrail’s axioms for DCFm are as follows.
Again Λ is a characteristic set of I(a). Suppose g ∈ K{X}r I(a).
The formula ∧

f∈Λ

f (y) = 0 ∧ g(y) 6= 0 ()

is a formula ϕ(~a, y) for some list ~a of parameters from K. McGrail
shows there is ϕ̂(~x) such that

(K, ∂0, . . . , ∂m−1) � ϕ(~a), ()

and also, whenever (L, ∂0, . . . , ∂m−1) ∈ Mod(DF) and

(L, ∂0, . . . , ∂m−1) � ϕ(~b), then the differential system

ϕ(~b, y)

is soluble in some extension of (L, ∂0, . . . , ∂m−1). Then one of the
axioms of DCF is

∀~x
(
ϕ̂(~x) → ∃x ϕ(~x, y)

)
. ()





We can see what is going on as follows. In case m = 2, we may ask
whether the set of differential polynomials

∂(2,2)X −X, ∂(1,1)X − ∂(0,2)X ()

has a zero. These polynomials belong to K[∂σX : |σ| 6 4]. We
depict a potential zero as

∂(0,0)x ∂(0,1)x ∂(0,2)x ∂(0,3)x ∂(0,4)x
∂(1,0)x ∂(1,1)x ∂(1,2)x ∂(1,3)x
∂(2,0)x ∂(2,1)x ∂(2,2)x
∂(3,0)x ∂(3,1)x
∂(4,0)x

()

Now consider the polynomials

X(2,2) −X(0,0), X(1,1) −X(0,2). ()





A generic zero of the polynomials

X(2,2) −X(0,0), X(1,1) −X(0,2) ()

in K[Xσ : |σ| 6 4] can be depicted as:

a ∗ b ∗ ∗
∗ b ∗ ∗
∗ ∗ a
∗ ∗
∗

()

Closing under differentiation imposes further conditions:

a ∗ b c a
∗ b c a
∗ c a
∗ a
∗

()





But the underlined entries should have a common derivative—say
d—outside the triangle:

a ∗ b c a
∗ b c a
∗ c a
∗ a
∗

leads to

a ∗ b c a
∗ b c a d
∗ c a
∗ a
∗

()

This imposes further conditions inside the triangle:

a ∗ b c a
∗ b c a d
∗ c a
∗ a
∗

leads to

a d b c a
d b c a d
b c a
c a
a

()

That’s fine, we can extend this diagram indefinitely; so the original
differential polynomials have a zero.





But suppose we started instead with

∂(2,2)X −X, ∂(1,1)X − ∂(0,2)X − 1. ()

This gives us (writing b′ for b + 1):

a ∗ b ∗ ∗
∗ b′ ∗ ∗
∗ ∗ a
∗ ∗
∗

a ∗ b c a
∗ b′ c a
∗ c a
∗ a
∗

a d b c a
d b′ c a d
∗ c a
∗ a
∗

()

so ∂1d must be both b and b′, which is absurd.
This test works generally as follows.





We define a strict partial ordering ⋖ on ω
2 by

σ ⋖ τ ⇐⇒ (|σ|, σ(0)) <ℓ (|τ |, τ (0)) ()

where <ℓ is the left lexicographic ordering on ω
2. So ⋖ is thus:

(0, 0) (0, 1)

(1, 0)

(0, 2)

(1, 1)

(2, 0)

If σ ⋖ τ , let us say σ is a predecessor of τ .
Now let 6 be the product ordering of ω2, so

σ 6 τ ⇐⇒ σ(0) 6 τ (0) ∧ σ(1) 6 τ (1). ()

Then
σ 6 τ ⇐⇒ for some ρ in ω

2, σ + ρ = τ. ()

In this case, let us say τ is above σ.





Suppose
(K, ∂0, ∂1) ⊆ (L, ∂̃0, ∂̃1), ()

both being models of DF, and a ∈ L. Let

A = {σ ∈ ω
2 : ∂̃σa ∈ K(∂̃ρa : ρ⋖ σ)alg}, ()

the set of σ such that ∂̃σa is algebraic over its predecessors (so to
speak).
This set A is closed under >, that is,

σ ∈ A & σ 6 τ =⇒ τ ∈ A.

Then I(a) is ‘determined’ by those ∂σa such that σ is 6-minimal
in A.
This is the idea behind characteristic subsets of I(a).





A tuple (aσ : |σ| 6 n) of elements of some field-extension of K will
be called soluble if the aσ belong to some L as above so that

∂̃ρaσ = aσ+ρ ()

whenever |σ + ρ| 6 n. For solubility, it is necessary that, for all f
in K[∂σX : |σ| < n],

f̂ (aσ : |σ| < n) = 0 =⇒ ∂̂if (aσ : |σ| 6 n) = 0. ()

Call this the differential condition.
The last example shows the differential condition is not sufficient

for solubility: The tuple depicted as

a ∗ b c a
∗ b′ c a
∗ c a
∗ a
∗

()

meets the condition, but is not soluble.





Again given a tuple (aσ : |σ| 6 n) of elements of some
field-extension of K, we call σ a leader if it is 6-minimal among
those τ such that

aτ ∈ K(aρ : ρ⋖ τ )alg.

In the last example, there are two leaders, with corresponding
terms underlined:

a ∗ b c a
∗ b′ c a
∗ c a
∗ a
∗

()

For solubility, it is necessary that equating the common derivatives
of two leaders must not introduce new conditions. This (with the
differential condition) is also sufficient:





Theorem (P.). For (aσ : |σ| 6 n) to be soluble, it is sufficient that

) it meet the differential condition, and

) for every leader aσ, we have |σ| 6 n/2.

Moreover, if (aσ : |σ| 6 n) is soluble, then n can be chosen large
enough so that the foregoing conditions are met; and the new n
depends only on the original n.

We can make adjustments to allow each aσ to be a tuple

(ajσ : j < k) and to allow K to have arbitrary characteristic.
This leads to a model-companion of the theory of fields (of
unspecified characteristic) with m commuting derivations.

END








