
MODEL THEORY AND LINEAR ALGEBRA

DAVID PIERCE

These are notes were written originally in preparation for a talk to be
given on Friday, March 26, 2010, in the Department of Mathematics and
Computer Science at Çankaya University, Ankara. The talk itself is just a
selection. What is said here about vector spaces is based mainly on [10].
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1. History of algebra

¶ 1. In the Elements [4] of Euclid (fl. 300 b.c.e.), Proposition II.5 is,

If a straight line be cut into equal and unequal segments, the
rectangle contained by the unequal segments of the whole
together with the square on the straight line between the
points of section is equal to the square on the half.

In other words, if a straight line be divided unequally, the rectangle bounded
by the unequal pieces falls short of the square on the half by the square on
the segment between the midpoint and the point of unequal section. See
Figure 1, where

rect. AD, DB = sq. AC − sq. DC.
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Figure 1
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¶ 2. Consequently, Muhammad ibn Mūsā al-Khwārizmı̄ (c. 780–850) [7,
pp. 525, 544] asks,

what must be the amount of a square, which, when twenty-
one dirhams are added to it, becomes equal to the equivalent
of ten roots of that square? Solution: . . . nine. Or. . . forty-
nine.

See Figure 2. In our terms, if

x2 + 21 = 10x,

then

x =
10

2
±

√
(10

2

)2

− 21 = 5 ±
√

4 = 5 ± 2 = 3 or 7,

so x2 = 9 or 49.
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Figure 2

¶ 3. Descartes observes in the Geometry (1637) [2, pp. 4, 5]: lines can be
multiplied to make lines, not rectangles. So, in Figure 3, if

AB = 1, BD = a, BC = b,

then

BE = ab.

Descartes’s purpose is apparently to use geometry as a model for field theory.
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C

Figure 3

He implicitly shows that the scalar field of a vector space (of dimension 2
or more) can be found in the space.
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2. Vector spaces

¶ 4. A vector space is a triple (V, K, ∗), where

(1) V is an abelian group of vectors,

(V,0, −,+);

(2) K is a field of scalars,

(K, 0, 1,−, +, · );
(3) ∗ is an action of K on V, that is, a function from K × V to V such

that
(a) each operation

v 7→ x ∗ v

on V is an endomorphism of V, and
(b) the function

x 7→ (v 7→ x ∗ v)

is a ring-homorphism from K to (End(V), ◦).
So a vector space is a kind of 2-sorted structure, with the signature

{0, −,+; 0, 1,−, +, ·; ∗}.

¶ 5. Descartes’s example suggests how, given a vector space (V, K, ∗), where

dimK(V) > 2,

we can interpret K and its action on V in V. To do this, we introduce a
new symbol ‖ for the binary relation of parallelism on V ; this relation is
defined by

u ‖ v ⇔ ∃x ∃y (x ∗ u + y ∗ v = 0 & (x 6= 0 ∨ y 6= 0)).

Now let

M = {(u, v) ∈ V × V : u 6= 0 & u ‖ v}.
If (u, v) ∈ M , then we can define the element [u : v] of K by the rule

v = [u : v] ∗ u.

So we have a surjection (u, v) 7→ [u : v] from M onto K. This induces an
equivalence-relation ∼ on M :

(u0, u1) ∼ (v0, v1) ⇐⇒ [u0, u1] = [v0, v1].

We now give M/∼ the structure of K. We shall use the formula

s ∦ u & s ‖ t & u ‖ v & s − u ‖ t − v,

which we denote by

∆(s, t, u, v).

See Figure 4. To interpret the field K in V, we have to express the formulas

x = y, x + y = z, x · y = z, x ∗ u = v

wholly in terms of vectors. We do this as follows:
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Figure 4. ∆(s, t, u, v)
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Figure 5. [s : t] = [u : v] (one case)
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Figure 6. [u0 : u1] + [v0 : v1] = [w0 : w1]

(1) Equality in K, or

[s : t] = [u : v], (∗)
is expressed in V by

∆(s, t, u, v) ∨ ∃w ∃z (∆(s, t, w, z) & ∆(w, z, u, v)), (†)
where the latter condition is shown in Figure 5; now we can use (∗)
to stand for (†).

(2) Addition in K, or

[u0 : u1] + [v0 : v1] = [w0 : w1],

is expressed in V, as in Figure 6, by

∃z ([u0 : z] = [v0 : v1] & [u0 : u1 + z] = [w0 : w1].

(3) Multiplication in K, or

[u0 : u1] · [v0 : v1] = [w0 : w1],
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is expressed in V, as in Figure 7, by

∃z ([u1 : z] = [v0 : v1] & [u0 : z] = [w0 : w1].

0
u0u1

v1

v0

z

w1

w0

Figure 7. [u0 : u1] · [v0 : v1] = [w0 : w1]

(4) Finally, scalar multiplication, or

[u0 : u1] ∗ v0 = v1,

is expressed in V by

[u0 : u1] = [v0 : v1] ∨ (v0 = 0 & v1 = 0).

¶ 6. So one can define a vector space as a pair (V, ‖K), where

(1) V is an abelian group (V,0, −,+), and
(2) the binary relation ‖ respects axioms ensuring that V is acted on by

a field, K.

In this sense, a vector space is a 1-sorted structure in the signature

{0, −,+, ‖}.
However, the two notions of a vector space are not entirely equivalent, and
not just because spaces in the latter sense are at least 2-dimensional. The
substructure relation differs also. For example, we have

(H, R, ∗) ⊆ (H, C, ∗),
but

(H, ‖R) * (H, ‖C),

since the relations ‖R and ‖C do not agree, even on C (much less on H):

1 ∦R i, 1 ‖C i.

(However, (C, ‖R) ⊆ (H, ‖C).)

¶ 7. Let VS be the theory of vector spaces in the original sense, in the
signature

{0, −,+; 0, 1,−, +·; ∗}.
That is, VS is the set of sentences of first-order logic in the given sig-
nature that are true in all vector spaces. (A logic is first order when all
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variables stand for individuals, not sets as such.) Every model (V, K, ∗) of
VS embeds in a 1-dimensional model

(L, L, ∗);
just let L be a field-extension of K such that

[L : K] > dimK V,

and embed a basis of (V, K, ∗) in a basis of (L, K, ∗).
¶ 8. Let VS2 be the theory of vector spaces of dimension at least 2 in the
signature

{0, −,+, ‖}.
Every model embeds in a 2-dimensional model. Indeed, suppose L/K is a
field-extension, and a, b ∈ L, and (a, b, 1) is linearly independent over K.
Then (K3, ‖K) embeds in (L2, ‖L) under

(x, y, z) 7→ (x − az, y − bz),

that is,

(
x y z

)
7→

(
x y z

)





1 0
0 1
−a −b



 .

For, the following are equivalent:

(x, y, z) ‖K (u, v, w),

0 = det





x y z
u v w
a b 1





= det

((
x y
u v

)

−
(

z
w

)
(
a b

)
)

= det





(
x y z
u v w

)




1 0
0 1
−a −b







 ,

(x − az, y − zb) ‖L (u − aw, v − bw).

We used here the identity

det

(
U v

t

a 1

)

= det(U − v
t · a),

which follows from
(

U v
t

a 1

)

·
(

I 0t

−a 1

)

=

(
U − v

t · a v
t

0 1

)

.

3. Model theory (outline)

¶ 9. We have entered model theory, which I define as

the study of structures quâ models of theories.

Examples of structures include

(V, K, ∗), (V, ‖K), (Q, <), (Q, +, ·), (R, +, ·, <), (C, +, ·).
Model theory has also been called
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the geography of tame mathematics.

Tameness has no one definition. However, one measure of tameness is the
effective axiomatizability of the (first-order) theory,

Th(A),

of a structure A.

¶ 10. In the following,

N = {1, 2, 3, . . . },
and S stands for x 7→ x + 1. Outer universal quantifiers of sentences are
suppressed. The structure (N, 1, S, +) is “tame”, because of:

Theorem (Presburger, 1929). Th(N, 1, S, +) is axiomatized by:

(1) 1 6= Sx;
(2) Sx = Sy ⇒ x = y;
(3) x + 1 = Sx;
(4) x + (y + 1) = (x + y) + 1;
(5) the first-order induction axioms: for each formula ϕ(x),

ϕ(1) & ∀x (ϕ(x) ⇒ ϕ(Sx)) ⇒ ∀ϕ (x).

¶ 11. An arbitrary theory T is complete if

T ⊢ σ or T ⊢ ¬σ

for all sentences σ of the signature of T . The theory of a structure is
automatically complete. Then Presburger’s theorem is that a particular
theory given by axioms is complete.

¶ 12. By contrast, (N, 1, S, +, ·) is “wild”, by Gödel’s Incompleteness

Theorem:

Theorem (Gödel, 1931 [5]). Th(N, 1, S, +, ·) cannot be effectively axioma-
tized.

¶ 13. Even though Th(N, 1, S, +) can be (effectively) completely axioma-
tized in first-order logic, the axioms do not determine (N, 1, S, +) (up to
isomorphism), as we shall see. However, (N, 1, S) is characterized (up to iso-
morphism) by its satisfaction of the axioms identified by Dedekind (1888)
[1] and Peano (1889) [9], namely Presburger’s (1) and (2)—

1 6= Sx, Sx = Sy ⇒ x = y,

—along with the second-order induction axiom: the sentence

1 ∈ X & ∀t (t ∈ X ⇒ St ∈ X) ⇒ ∀t t ∈ X.

¶ 14. That (N, 1, S) satisfies (second-order) induction means N is the small-
est set that contains 1 and is closed under S. Another way to say this is
that N has a recursive definition:

(1) 1 ∈ N,
(2) if x ∈ N, then Sx ∈ N.
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This, together with the other two axioms (1) and (2), is logically equivalent
to the validity of recursive definitions of operations on N: operations such
as addition, given by Presburger’s (3) and (4)—

x + 1 = Sx, x + (y + 1) = (x + y) + 1

—, or multiplication, given by

x · 1 = x, x · (y + 1) = x · y + x,

or exponentiation, given by

x1 = x, xy+1 = xy · x. (‡)
In particular, despite Gödel’s Incompleteness Theorem, (N, 1, S, +, ·) can be
completely characterized, in a sense, in second-order logic.

¶ 15. From Peano on, some people have not recognized that the possibility
of defining a set recursively does not, by itself, allow functions on the set to
be defined recursively. Addition and multiplication are justified by induction
alone, as is shown implicitly in Landau’s Foundations of Analysis (1929) [8];
but exponentiation is not:

Theorem (Dyer-Bennet, 1940 [3]; P., 2009). If n ∈ N, then (Z/(n), 1, S)
satisfies (second-order) induction; but it admits exponentiation defined as
in (‡) if and only if n ∈ {1, 2, 6, 42, 1806}.

4. Model theory (detail)

¶ 16. That induction does not always imply recursion can be seen in the
development of logic itself. I now review this development in detail. To be
precise then, a structure is one or more disjoint sets called sorts, together
with some (or no) distinguished

(1) operations: functions from finite products of sorts to one sort;
(2) constants: operations taking no arguments;
(3) relations: subsets of finite products of the sorts.

If G is a group, and f is the function X 7→ 〈X〉 that converts a subset of G
into the subgroup that it generates, then the pair

(G, f)

is not a structure, although the quadruple

(G, P(G),∈, f)

is a (two-sorted) structure.

¶ 17. A structure has a signature, namely a set of symbols for the dis-
tinguished operations (including constants) and relations. So the signature
of (V, K, ∗) is

{0, −,+, 0, 1,−, +, ·, ∗}.
The symbols ‘know’ which sorts their arguments are from. The symbols are
called non-logical, to distinguish them from logical symbols, namely,

(1) Boolean connectives: ¬, &, ∨, ⇒, ⇔, . . . ;
(2) quantifiers: ∃ and ∀;
(3) punctuation: ( and );
(4) the sign of equality, =;
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(5) variables.

In first-order logic, each variable is required to range only over the ele-
ments of a particular sort, and not (for example) over the subsets of a sort.
In talking about (V, K, ∗), we let boldface variables like u range over V ; and
plainface variables like x, over K.

¶ 18. From logical and non-logical symbols, one builds up formulas that
refer to structures of a particular signature. The construction will be dis-
cussed later. All formulas here will be first-order, unless otherwise specified.
A formula may have free variables; if it does not, then the formula is a
sentence. A sentence is either true or false in a structure (with a suitable
signature); if the sentence σ is true in the structure A, we write

A ² σ;

we may say also that A satisfies σ. For example,

Q ² ∀x ∃y (x = 0 ∨ x · y = 1),

Z 2 ∀x ∃y (x = 0 ∨ x · y = 1).

A set of sentences of some signature is a theory. If T is a theory, and all of
its elements are true in A, then A is a model of T . If σ is a sentence that
is true in every model of T , then σ is a logical consequence of T , and we
may write

T ² σ.

¶ 19. A (first-order) theory T is complete if, for every sentence σ of its
signature, either T ² σ or T ² ¬σ. The set of sentences that are true in A

is the theory of A, denoted by

Th(A);

it is automatically complete. If Σ ⊆ T , and every sentence of T is a logical
consequence of Σ, then Σ is a set of axioms for T .

¶ 20. Given a signature L and a set C of parameters, we recursively
define the set

FmL (C)

of first-order formulas of L in C. For each formula, there is a finite tree, as
in Figure 8, proving that the formula is a formula. Moreover, such trees are
unique; so we can also recursively define functions on FmL (C). For example,
given an L -structure A that includes C, and given a function v that assigns
values from A to the variables used in formulas, we can determine recursively
whether

A ² ϕ[v],

that is, whether ϕ true in A under v.

¶ 21. We distinguish some sentences as logical axioms. Then the set of
theorems is the closure of the set of axioms under detachment (or modus

ponens,
(σ, (σ ⇒ τ)) 7→ τ.

Again, for each theorem, there is a finite tree, as in Figure 9, proving that the
theorem is a theorem. But now the tree is not unique; so we cannot define
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∃x ∃y (x ∗ u + y ∗ v = 0 & (x 6= 0 ∨ y 6= 0))

∃y (x ∗ u + y ∗ v = 0 & (x 6= 0 ∨ y 6= 0))

(x ∗ u + y ∗ v = 0 & (x 6= 0 ∨ y 6= 0))

x ∗ u + y ∗ v = 0 (x 6= 0 ∨ y 6= 0)

x 6= 0 y 6= 0

Figure 8

¬∃x ϕ

¬ϕ(a) (¬ϕ(a) ⇒ ¬∃x ϕ)

(¬ϕ(a) ⇒ ¬ϕ(b)) ((¬ϕ(a) ⇒ ¬ϕ(b)) ⇒ (¬ϕ(a) ⇒ ¬∃x ϕ))

Figure 9. Proof of ¬∃x ϕ, where ϕ is ¬(x = x ⇒ x = x)

functions recursively on the set of theorems. These points are elaborated in
the following paragraphs.

¶ 22. Let PV be a set of propositional variables, perhaps

{Pn : n ∈ N}.
The set of propositional formulas, say PF, is the smallest set that in-
cludes PV and is closed under the operations

F 7→ ¬F, (F, G) 7→ (F & G).

This just means PF satisfies induction (with respect to PV and these oper-
ations).

¶ 23. More is true: Functions can be defined recursively on PF, because
there is only one way to construct a given formula. For example, suppose
h : PV → F2 (where F2 is a two-element field). Then h extends uniquely to
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a function H on PF such that

H(¬F ) = 1 + H(F ), H(F & G) = H(F ) · H(G).

A propositional formula F is a tautology if H(F ) = 1 for all choices of h.

¶ 24. In practice, one uses abbreviations in formulas, as

(F ∨ G) for ¬(¬F & ¬G),

(F ⇒ G) for ¬F ∨ G,

(F ⇔ G) for ((F ⇒ G) & (G ⇒ F )).

¶ 25. Let us now develop first-order logic in a signature L . For simplicity,
we assume L is the signature of a one-sorted structure; for definiteness, we
assume

L = {0,−, +, ‖}.
Fix a set X of individual variables. Let C be a set of parameters—
individuals from some L -structure V. The set of terms over C is the
smallest set that includes X and is closed under

c, 0, t 7→ −t, (t, u) 7→ (t + u),

where c ranges over C. Call this set

TmL (C);

by definition, it satisfies induction with respect to X and the given opera-
tions.

¶ 26. Also, functions can be defined recursively on TmL (C), because there
is only one way to construct a given term. For example, if v : X → V ,
then there is a unique function ṽ from TmL (C) into V that extends v and
satisfies

ṽ(c) = c, ṽ(0) = 0, ṽ(−t) = −ṽ(t), ṽ(t + u) = ṽ(t) + ṽ(u).

Here, for example, t + u is a string of symbols; but ṽ(t) + ṽ(u) is the image
of (ṽ(t), ṽ(u)) under the operation of + on V.

¶ 27. We now define simultaneously the set FmL (C) of formulas over C
and the function assigning to each formula ϕ its set FV (ϕ) of free vari-

ables.

(1) If t, u ∈ TmL (C), then the strings

t = u, t ‖ u

are in FmL (C), and both FV (t = u) and FV (t ‖ u) consist of the
variables actually appearing in t or u.

(2) FmL (C) is closed under ϕ 7→ ¬ϕ, and

FV (¬ϕ) = FV (ϕ).

(3) If ϕ is in FmL (C), and x ∈ FV (ϕ), then ∃x ϕ is in FmL (C), and

FV (∃x ϕ) = FV (ϕ) r {x}.
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(4) If ϕ and ψ are in FmL (C), and no variable occurring non-freely in
one of them occurs (freely or non-freely) in the other, then (ϕ & ψ)
is in FmL (C), and

FV (ϕ & ψ) = FV (ϕ) ∪ FV (ψ).

Then FmL (C) satisfies a kind of induction. Moreover functions can be
defined recursively on FmL (C). Indeed, if v : X → V as above, and ϕ is a
formula, let ϕ[v] be the result of replacing each instance of each free variable
x in ϕ with v(x). Then ϕ[v] is true in V, and we write

V ² ϕ[v],

according to the following recursive definition.

(1) V ² (t = u)[v] if and only if

ṽ(t) = ṽ(u).

(2) V ² (t ‖ u)[v] if and only if

ṽ(t) ‖ ṽ(u)

(3) V ² ¬ϕ[v] if and only if

V 6² ϕ[v].

(4) V ² ∃x ϕ[v] if and only if

V ² ϕ[v′]

for some v′ that agrees with v on FV (∃x ϕ).

A formula σ is a sentence if FV (σ) = ∅. In this case, σ[v] is just σ. If σ is
true in all L -structures that include C, then σ is logically valid, and we
may write simply

² σ.

¶ 28. If we use sentences as propositional variables, then a propositional
formula is also a sentence: if the propositional formula is a tautology, then
we may refer also to the sentence as a tautology. If FV (ϕ) = {x}, and
c ∈ C, then ϕ(c) is the result of replacing each instance of x in ϕ with c.
Now we define a sentence to be a logical axiom if it is:

(1) a tautology;
(2) a sentence of one of the forms

t = t,

(t = u ⇒ u = t),

((t = u & u = s) ⇒ t = s),

(c = d ⇒ (ϕ(c) ⇒ ϕ(d)));

(3) a sentence

(σ ⇒ σ′),

where σ and σ′ are sentences, and we get σ′ from σ by replacing each
occurrence of x with y;

(4) a sentence

(ϕ(c) ⇒ ∃x ϕ(x));
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(5) a sentence

((σ ⇒ ¬ϕ(c)) ⇒ (σ ⇒ ¬∃x ϕ(x))),

where c does not occur in σ.

The set of theorems is the smallest set that contains the logical axioms
and that contains τ if it contains σ and (σ ⇒ τ).

¶ 29. If σ is a theorem, we may write

⊢ σ.

Every theorem is valid: if ⊢ σ, then ² σ. The converse is Gödel’s Com-

pleteness Theorem:

Theorem (Gödel, 1930). If ² σ, then ⊢ σ.

A sentence σ is provable from a collection S of sentences, and we may
write

S ⊢ σ,

if some sentence
τ0 & · · · & τn−1 ⇒ σ

is a theorem, where τ0, . . . , τn−1 are in S.

Theorem (Malcev, 1936). If S ² σ, then S ⊢ σ.

Corollary (Compactness Theorem). If every finite subset of S has a model,
then S has a model.

Proof. If S has no model, then

S ² 0 6= 0, S ⊢ 0 6= 0, S0 ⊢ 0 6= 0

for some finite subset S0 of S; but then S0 has no model. ¤

Compactness fails in second-order logic: The Dedekind–Peano Axioms,
together with

{c 6= 1, c 6= S1, c 6= SS1, c 6= SSS1, . . . },
have no model, although every finite subset does.

5. Model theory of fields

¶ 30. Henceforth the logic is first-order. If A is a structure (of one sort, for
simplicity,) in a signature L , and ϕ ∈ FmL (A) with free variables from the
list (x1, . . . , xn), and (c1, . . . , cn) ∈ An, then the result of replacing each free
variable xk in ϕ with ck is denoted by

ϕ(c1, . . . , cn).

Then ϕ defines in A the n-ary relation

{(c1, . . . , cn) ∈ An : A ² ϕ(c1, . . . , cn)},
which can be denoted by

ϕA.

A definable set is a singulary definable relation. If FV (ψ) = {x1, . . . , xn, y},
then

(∃y ψ)A = π(ψA),
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An

A

b b

ψA

(∃y ψ)A

π

Figure 10

where π is the projection given by

π(c1, . . . , cn, d) = (c1, . . . , cn).

See Figure 10. A theory T admits quantifier-elimination (QE) if, for
every model A of T , the collection of relations definable by quantifier-free
formulas is closed under projection. Having a theory with QE is a further
measure of tameness.

¶ 31. Let ACF be the theory of algebraically closed fields: field theory,
together with, for each n in N,

∀t1 · · · ∀tn ∃x xn + t1x
n−1 + · · · + tn−1x + tn = 0. (§)

Let ACF0 be the theory of algebraically closed fields of characteristic 0,
namely ACF together with, for each prime p,

1 + · · · + 1
︸ ︷︷ ︸

p

6= 0.

Let RCF be the theory of real-closed ordered fields: the theory of ordered
fields, together with (§) for each odd n in N, and also

∀y ∃x (y > 0 ⇒ y = x2).

Theorem (Tarski1). ACF and RCF admit QE. In particular, the definable
sets:

(1) in an algebraically closed field, are the finite and co-finite sets;
(2) in a real-closed field, are the finite unions of intervals and singletons.

¶ 32. A structure A has a diagram, denoted by

diag(A);

this is the set of quantifier-free sentences with parameters from A that are
true in A.

Theorem. For a theory T , the following are equivalent:

(1) T admits QE;

1According to Hodges [6, p. 85], Tarski announced these results in 1949, publishing the
proof the result on RCF in [11].
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(2) whenever A ⊆ M for some model M of T , and A is finitely generated,
the theory

T ∪ diag(A)

is complete.

¶ 33. By considering prime fields, we can now conclude:

Theorem.

(1) Th(C, +, ·) is axiomatized by ACF0.
(2) Th(R, +, ·, <) is axiomatized by RCF.

¶ 34. If T ∪ diag(M) is complete whenever M ² T , then T is called model

complete.2 So ACF and RCF and all other theories with QE are model
complete.

¶ 35. A theory T ∗ is a model companion of a theory T (in the same
signature if

(1) a model of one embeds in a model of the other, that is,

T∀ = T ∗
∀;

(2) T ∗ is model complete.

So ACF and RCF are model companions of the theories of fields and ordered
fields, respectively.

¶ 36. model companions are useful for the following reason. Suppose T ∗ is
a model companion of T , and

M ² T ∗, N ² T, M ⊆ N.

Say ϕ is quantifier-free, with parameters from M , and

N ² ∃x ϕ.

Then

M ² ∃x ϕ.

Indeed, we have N ⊆ M
′ for some model M

′ of T ∗. Then M
′ ² ∃x ϕ, so

T ∗ ∪ diag(M) ² ∃x ϕ.

6. Model theory of vector spaces

¶ 37. Let VSK be the theory of vector spaces over the field K, in the
signature

{0,−, +} ∪ {a∗ : a ∈ K}.
This theory admits QE.

¶ 38. Let VS be the theory of vector spaces over an arbitrary field, in the
signature

{0, −,+, 0,−, +, ∗}.
This has a model companion, namely the theory of one-dimensional vector
spaces over an algebraically closed field. In particular, every space embeds
in a one-dimensional space.

2The definition is due to Abraham Robinson.
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¶ 39. Let VS2 be the theory of vector-spaces of dimension at least 2:

VS2 = VS∪{∃u ∃v ∀x ∀y (x ∗ u + y ∗ v = 0 ⇒ x = 0 & y = 0)}.
This has the same model companion as VS, but is not included in a model
complete theory, because the union of a chain of models of VS2 need not
be a model. For example, let

Kn = Q(π1/2n

), L =
⋃

n∈N

Kn = Q(π, π1/2, π1/4, . . . ).

Then (Kn+1, Kn) ² VS2, and

(Kn+1, Kn) ⊆ (Kn+2, Kn+1),

but ⋃

n∈N

(Kn+1, Kn) = (L, L),

a model of VS, but not VS2.

¶ 40. As before, let VS2 be the theory of vector spaces of dimension at least
2 in the signature

{0, −,+, ‖}.
This has a model companion, namely the theory of 2-dimensional vector
spaces over an algebraically closed field.

¶ 41. More generally, if n ∈ N, let VSn be the theory of vector spaces of
dimension at least n in the signature

{0, −,+, ‖n},
where ‖n stands for the n-ary relation of linear dependence. (If we in-
clude the signature of the scalar field, then the space can have any dimen-
sion.) This has a model companion, namely the theory of n-dimensional
vector spaces over an algebraically closed field. For, if again K ⊆ L, and
(a1, . . . , an, 1), that is, (a, 1), is an (n + 1)-tuple from L that is linearly
independent over K, then (Kn+1, ‖n

K) embeds in (Ln, ‖n
L) under

x 7→ x ·
(

In

−a

)

.

¶ 42. There is an analogy with fields. Let

M = K(a0, . . . , an),

where (a0, . . . , an) is algebraically independent over K. Then there is a field
L such that K ⊆ L, and

tr-deg(ML/L) = n,

but if (b1, . . . , bn) from M is algebraically independent over K, then it re-
mains so over L. Indeed, we can take

L = K(x, y),

where x is transcendental over M , but

y =
n∑

k=0

akx
k.
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