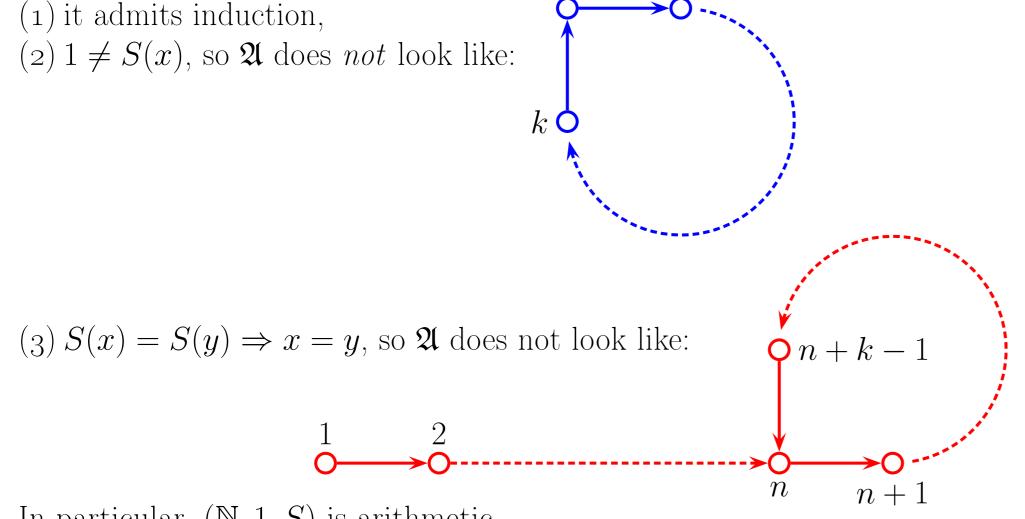
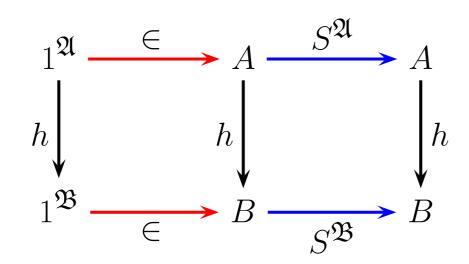
Numbers and sets David Pierce May, 2010 • () •) In $\{a, b, -, +, \cdot\}$, the term $+ \cdot + a b a - + ab$, or more conventionally By an **iterative algebra**, I mean an ordered triple (A, 1, S), or \mathfrak{A} , where (1) A is a set; $(2) \ 1 \in A;$ (3) $S: A \to A$. $((a+b)\cdot a) + -(a+b).$ **Example.** $A = \mathbb{N} = \{1, 2, 3, ...\}$ and S(n) = n + 1. An iterative algebra \mathfrak{A} can be conceived as a **directed graph**, where (1) A is the set of nodes, (2) 1 is a particular node, and (3) each pair (x, S(x)) is an **arrow** from x to S(x). $\begin{array}{c|c|c|c|c|c|} & \text{and} & \\ + & & + \\ \end{array}$ corresponds to either of . Now let The iterative algebra \mathfrak{A} admits induction if it has no proper subalgebra, so it does *not* look like:

Then **A** is **arithmetic** if



In particular, $(\mathbb{N}, 1, S)$ is arithmetic.

In general, \mathfrak{A} admits recursion if, for every iterative algebra \mathfrak{B} , there is a unique homomorphism h from \mathfrak{A} to \mathfrak{B} :



Theorem (Dedekind). An iterative algebra admits recursion if and only if it is arithmetic; in particular, all such iterative algebras are isomorphic. Also \mathbb{N} is well-ordered by the relation <, defined recursively by

$$x \not< 1,$$
 $x < n+1 \Leftrightarrow x \leqslant n.$

Functions can be defined on \mathbb{N} by well-ordered recursion: the simplest example is h, given by

$$\begin{vmatrix} + \\ \cdot \\ \cdot \\ b \end{vmatrix} = (\{a\}, \{b\}, +), \qquad \begin{vmatrix} + \\ + \\ \cdot \\ a \end{pmatrix} = \left(\left\{ a, b, (\{a\}, \{b\}, +) \right\}, \{a\}, \cdot \right),$$

and so on; then (*) is as depicted below. If F is n-ary in \mathscr{S} as before, X_k is a set when k < n, and $X = (X_0, \ldots, X_{n-1}, F)$, define

$$\operatorname{pred}_k(X) = X_k,$$
 $\operatorname{pred}(X) = X_0 \cup \cdots \cup X_{n-1},$
 $Y \in X \Leftrightarrow Y \in \operatorname{pred}(X)$

(here 'pred' is for *predecessor*); say that X is *k*-transitive if

 $Y \in \operatorname{pred}_k(X) \Rightarrow \operatorname{pred}(Y) \subseteq \operatorname{pred}_k(X).$

Let $\mathbf{ON}_{\mathscr{S}}$ comprise those X such that

 $= (\{a\}, \{b\}, +),$

a

(1) $\overline{X} = (\overline{X}_0, \dots, \overline{X}_{n-1}, F)$ for some *n*-ary *F* in \mathscr{S} , for some *n* in $\boldsymbol{\omega}$; and each X_k is nonempty;

(2) each element Y of $\operatorname{pred}(X)$ is $(Y_0, \ldots, Y_{m-1}, G)$ for some *m*-ary G in \mathscr{S} , for some m in ω ; and each Y_{ℓ} is nonempty;

(3) X is k-transitive for each k;

(4) each element of $\operatorname{pred}(X)$ is ℓ -transitive for each ℓ ;

 $(5) \in'$ directs each set $\operatorname{pred}_k(X)$ (finite subsets have upper bounds);

(6) \in' directs each set $\operatorname{pred}_{\ell}(Y)$ for each Y in $\operatorname{pred}(X)$;

 $(7) \in '$ is well-founded on pred(X) (nonempty subsets have minimal

elements).

(*)

Call an element X of $\mathbf{ON}_{\mathscr{S}}$ a **limit** if some $\operatorname{pred}_k(X)$ has no maximal element with respect to \in' . Let $\omega_{\mathscr{S}}$ consist of those X in $ON_{\mathscr{S}}$ such that neither X nor any element of $\operatorname{pred}(X)$ is a limit.

Theorem. The relation \in' is well-founded on $ON_{\mathscr{S}}$, and

 $X \in \mathbf{ON}_{\mathscr{S}} \Rightarrow \operatorname{pred}(X) \subseteq \mathbf{ON}_{\mathscr{S}}.$

 $h(n) = \{h(x) \colon x < n\}.$

Then h is a bijection from N onto ω , the set of **von Neumann** natural numbers. The first five of these -0, 1, 2, 3, and 4 are illustrated above.

The class **ON** of von Neumann **ordinals** comprises each set that

(1) is well-ordered by membership (\in) ,

(2) is **transitive** (its members are also subsets).

Then **ON** itself is well-ordered by membership and is transitive; it is an iterative algebra with respect to \emptyset and $x \mapsto x \cup \{x\}$; and ω is a subalgebra of **ON** and is a **free algebra**.

All of the foregoing generalizes to an arbitrary algebraic signature, \mathscr{S} . One free algebra in \mathscr{S} is the **term algebra:** the smallest set of strings that, for each n in ω , for each n-ary symbol F in \mathscr{S} , is closed under the concatenation

$$(t_0,\ldots,t_{n-1})\longmapsto Ft_0\cdots t_{n-1}.$$

Terms can be written as **labelled trees** or (refinements of) **Hasse diagrams**:

The class $\mathbf{ON}_{\mathscr{S}}$ is an \mathscr{S} -algebra with respect to the operations

 $F(X_0, \ldots, X_{n-1}) = (\operatorname{pred}(X_0) \cup \{X_0\}, \ldots, \operatorname{pred}(X_{n-1}) \cup \{X_{n-1}\}, F);$

and $\omega_{\mathscr{S}}$ is a free subalgebra.

