
Numbers and sets

David Pierce

May, 

By an iterative algebra, I mean an ordered triple (A, 1, S), or A, where

() A is a set; () 1 ∈ A; () S : A → A.

Example.A = N = {1, 2, 3, . . . } and S(n) = n + 1.

An iterative algebra A can be conceived as a directed graph, where

() A is the set of nodes, () 1 is a particular node, and
() each pair (x, S(x)) is an arrow from x to S(x).

The iterative algebra A admits induction if it has no proper subalgebra, so
it does not look like:

1 2 3

Then A is arithmetic if

() it admits induction,
() 1 6= S(x), so A does not look like:

1 2

k

() S(x) = S(y) ⇒ x = y, so A does not look like:

1 2

n n + 1

n + k − 1

In particular, (N, 1, S) is arithmetic.

In general, A admits recursion if, for every iterative algebra B, there is a
unique homomorphism h from A to B:

1A A A

1B B B

∈ SA

∈ SB

h h h

Theorem (Dedekind). An iterative algebra admits recursion if and only if

it is arithmetic; in particular, all such iterative algebras are isomorphic.

Also N is well-ordered by the relation <, defined recursively by

x 6< 1, x < n + 1 ⇔ x 6 n.

Functions can be defined on N by well-ordered recursion: the simplest
example is h, given by

h(n) = {h(x) : x < n}.

Then h is a bijection from N onto ω , the set of von Neumann natural

numbers. The first five of these—0, 1, 2, 3, and 4—are illustrated above.

The class ON of von Neumann ordinals comprises each set that

() is well-ordered by membership (∈),
() is transitive (its members are also subsets).
Then ON itself is well-ordered by membership and is transitive; it is an
iterative algebra with respect to ∅ and x 7→ x ∪ {x}; and ω is a subalgebra
of ON and is a free algebra.

All of the foregoing generalizes to an arbitrary algebraic signature, S .

One free algebra in S is the term algebra: the smallest set of strings that,

for each n in ω, for each n-ary symbol F in S , is closed under the

concatenation

(t0, . . . , tn−1) 7−→ Ft0 · · · tn−1.

Terms can be written as labelled trees or (refinements of) Hasse diagrams:

In {a, b,−,+, ·}, the term + · + a b a− + ab, or more conventionally

((a + b) · a) +−(a + b), (∗)

corresponds to either of
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and so on; then (∗) is as depicted below. If F is n-ary in S as before, Xk is a

set when k < n, and X = (X0, . . . , Xn−1, F ), define

predk(X) = Xk, pred(X) = X0 ∪ · · · ∪Xn−1,

Y ∈′ X ⇔ Y ∈ pred(X)

(here ‘pred’ is for predecessor ); say that X is k-transitive if

Y ∈ predk(X) ⇒ pred(Y ) ⊆ predk(X).

Let ONS comprise those X such that

()X = (X0, . . . , Xn−1, F ) for some n-ary F in S , for some n in ω; and
each Xk is nonempty;

() each element Y of pred(X) is (Y0, . . . , Ym−1, G) for some m-ary G in S ,
for some m in ω; and each Yℓ is nonempty;

()X is k-transitive for each k;
() each element of pred(X) is ℓ-transitive for each ℓ;
() ∈′ directs each set predk(X) (finite subsets have upper bounds);
() ∈′ directs each set predℓ(Y ) for each Y in pred(X);
() ∈′ is well-founded on pred(X) (nonempty subsets have minimal

elements).
Call an element X of ONS a limit if some predk(X) has no maximal

element with respect to ∈′. Let ωS consist of those X in ONS such that

neither X nor any element of pred(X) is a limit.

Theorem. The relation ∈′ is well-founded on ONS , and

X ∈ ONS ⇒ pred(X) ⊆ ONS .

The class ONS is an S -algebra with respect to the operations

F (X0, . . . , Xn−1) = (pred(X0) ∪ {X0}, . . . , pred(Xn−1) ∪ {Xn−1}, F );

and ωS is a free subalgebra.

+

−

+

a b

a b +

a b

a
b

·
+

a b

a b

a

+

a b

a
b


