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By an iterative algebra, I mean an ordered triple (A, 1, S), or A, where

() A is a set; () 1 ∈ A; () S : A → A.

Example.A = N = {1, 2, 3, . . . } and S(n) = n + 1.

An iterative algebra A can be conceived as a directed graph, where

() A is the set of nodes, () 1 is a particular node, and
() each pair (x, S(x)) is an arrow from x to S(x).

The iterative algebra A admits induction if it has no proper subalgebra, so
it does not look like:

1 2 3

Then A is arithmetic if

() it admits induction,
() 1 6= S(x), so A does not look like:

1 2

k

() S(x) = S(y) ⇒ x = y, so A does not look like:

1 2

n n + 1

n + k − 1

In particular, (N, 1, S) is arithmetic.

In general, A admits recursion if, for every iterative algebra B, there is a
unique homomorphism h from A to B:

1A A A

1B B B

∈ SA

∈ SB

h h h

Theorem (Dedekind). An iterative algebra admits recursion if and only if

it is arithmetic; in particular, all such iterative algebras are isomorphic.

Also N is well-ordered by the relation <, defined recursively by

x 6< 1, x < n + 1 ⇔ x 6 n.

Functions can be defined on N by well-ordered recursion: the simplest
example is h, given by

h(n) = {h(x) : x < n}.

Then h is a bijection from N onto ω , the set of von Neumann natural

numbers. The first five of these—0, 1, 2, 3, and 4—are illustrated above.

The class ON of von Neumann ordinals comprises each set that

() is well-ordered by membership (∈),
() is transitive (its members are also subsets).
Then ON itself is well-ordered by membership and is transitive; it is an
iterative algebra with respect to ∅ and x 7→ x ∪ {x}; and ω is a subalgebra
of ON and is a free algebra.

All of the foregoing generalizes to an arbitrary algebraic signature, S .

One free algebra in S is the term algebra: the smallest set of strings that,

for each n in ω, for each n-ary symbol F in S , is closed under the

concatenation

(t0, . . . , tn−1) 7−→ Ft0 · · · tn−1.

Terms can be written as labelled trees or (refinements of) Hasse diagrams:

In {a, b,−,+, ·}, the term + · + a b a− + ab, or more conventionally

((a + b) · a) +−(a + b), (∗)

corresponds to either of
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and so on; then (∗) is as depicted below. If F is n-ary in S as before, Xk is a

set when k < n, and X = (X0, . . . , Xn−1, F ), define

predk(X) = Xk, pred(X) = X0 ∪ · · · ∪Xn−1,

Y ∈′ X ⇔ Y ∈ pred(X)

(here ‘pred’ is for predecessor ); say that X is k-transitive if

Y ∈ predk(X) ⇒ pred(Y ) ⊆ predk(X).

Let ONS comprise those X such that

()X = (X0, . . . , Xn−1, F ) for some n-ary F in S , for some n in ω; and
each Xk is nonempty;

() each element Y of pred(X) is (Y0, . . . , Ym−1, G) for some m-ary G in S ,
for some m in ω; and each Yℓ is nonempty;

()X is k-transitive for each k;
() each element of pred(X) is ℓ-transitive for each ℓ;
() ∈′ directs each set predk(X) (finite subsets have upper bounds);
() ∈′ directs each set predℓ(Y ) for each Y in pred(X);
() ∈′ is well-founded on pred(X) (nonempty subsets have minimal

elements).
Call an element X of ONS a limit if some predk(X) has no maximal

element with respect to ∈′. Let ωS consist of those X in ONS such that

neither X nor any element of pred(X) is a limit.

Theorem. The relation ∈′ is well-founded on ONS , and

X ∈ ONS ⇒ pred(X) ⊆ ONS .

The class ONS is an S -algebra with respect to the operations

F (X0, . . . , Xn−1) = (pred(X0) ∪ {X0}, . . . , pred(Xn−1) ∪ {Xn−1}, F );

and ωS is a free subalgebra.
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