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The interacting rings in question arise from differential fields:

(K, ∂0, . . . , ∂m−1),

where

. K is a field—in particular, a commutative ring;

. each ∂i is a derivation of K: an endomorphism D of the
abelian group of K that obeys the Leibniz rule,

D(x · y) = D(x) · y + x · D(y);

. [∂i, ∂j] = 0 in each case, where [ · , · ] is the Lie bracket, so

[x, y] = x ◦ y − y ◦ x.

A standard example is (C(x0, . . . , xm−1),
∂

∂x0
, . . . , ∂

∂xm−1
).

In general, let

V = spanK(∂i : i < m) ⊆ Der(K);

then V is also a Lie ring.





Recall some notions due to Abraham Robinson:
The quantifier-free theory of AA is denoted by

diag(A).

A theory T is model complete under any of three equivalent
conditions:

. whenever A is a model of T , the theory

T ∪ diag(A)

is complete;

. whenever A |= T ,

T ∪ diag(A) ⊢ Th(AA);

. whenever A, B |= T ,

A ⊆ B =⇒ A 4 B.

Then T is complete if all models have a common submodel.





Robinson’s examples of model complete theories include the
theories of

. torsion-free divisible abelian groups (i.e. vector spaces over Q),

. algebraically closed fields,

. real-closed fields.

Theorem (Robinson). T is model complete, provided

T ∪ diag(A) ⊢ Th(AA)∀

whenever A |= T , that is,

A ⊆ B =⇒ A 41 B

whenever A, B |= T .

Proof. If A 41 B, then A 4 C for some C, where B ⊆ C; then
B 41 C, so continue: A

4
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Let

DFm = Th({fields with m commuting derivations}),
DFm

0 = DFm ∪{p 6= 0: p prime}.

Theorem (McGrail, ). DFm
0 has a model companion,

DCFm
0 : that is,

(DFm
0 )∀ = (DCFm

0 )∀
and DCFm

0 is model complete.

Theorem (Yaffe, ). The theory of fields of characteristic 0
with m derivations Di, where

[Di, Dj] =
∑

ak
i jDk,

has a model companion.

Theorem (P, ; Singer, ). The latter follows readily from
the former.

Theorem (P, submitted March, ). DFm has a model
companion, DCFm, given in terms of varieties.





What is the model
theory of V ?

First consider rings
in general.
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In the most general sense, a ring is a structure

(E, ·),

where

. E is an abelian group in {0,−, +}, and

. the binary operation · distributes over + in both senses: it is a
multiplication.

Beyond this, there are axioms for:

commutative rings

xy − yx = 0

(xy)z = x(yz)

Lie rings

x2 = 0

(xy)z = x(yz) − y(xz)

By itself, (xy)z = x(yz) defines associative rings;

and (xy)z = x(yz) − y(xz) is the Jacobi identity.





For rings, are there representation theorems like the following?

Theorem (Cayley). Every abstract group (G, 1, −1, · ) embeds in
the symmetry group

(Sym(G), idG, −1, ◦ )

under x 7→ λx, where
λg(y) = g · y.

A ring is Boolean if it satisfies x2 = x.

Theorem (Stone). Every abstract Boolean ring (R, 0, +, ·) or R

embeds in a Boolean ring of sets

(P(Ω), ∅, △,∩).

(Here Ω = {prime ideals of R}, and the embedding is
x 7→ {p : x /∈ p}.)

For associative rings and Lie rings only, there are such theorems.





I know no representation theorem for abelian groups. There are
just ‘prototypical’ abelian groups, like Z. One might mention
Pontryagin duality: Every (topological) abelian group G embeds
in G∗∗, where G∗ = Hom(G, R/Z).

Prototypical associative rings include

. Z, Q, R, C, and H;

. matrix rings.

But there are non-associative rings:

. (R3,×) is a Lie ring (in fact, the Lie algebra of SO(3, R));

. the Cayley–Dickson algebras R, R′, . . . become
non-associative after R′′ (which is H):





Let (E, ·) be a ring with an involutive anti-automorphism or
conjugation x 7→ x. The abelian group M2(E) is a ring under

(

a b
c d

) (

x y
z w

)

=

(

ax + zb ya + bw
xc + dz cy + wd

)

,

with conjugation
(

x y
z w

)

7→

(

x z
y w

)

.

Let E ′ comprise the matrices
(

x y
−y x

)

.

Then E ′ is closed under the operations, and E embeds under

x 7→

(

x 0
0 x

)

.





If E is an abelian group, then its multiplications compose an
abelian group that has an involutory automorphism,

m 7→
•
m,

where •
m is the opposite of m:

•
m(x, y) = m(y, x).

Let End(E) be the abelian group of endomorphisms of E. Then

. (End(E), ◦) is an associative ring;

. (End(E), ◦ −
•
◦) is a Lie ring;

. (End(E), ◦ +
•
◦) is a Jordan ring: a ring satisfying

xy = yx, (xy)x2 = x(yx2).

Pascual Jordan, –.





If (E, ·) is a ring, let

x 7→ λx : E → End(E),

where (as in the Cayley Theorem)

λa(y) = a · y.

If p and q are in Z, let (E, ·) be called a (p, q)-ring if

x 7→ λx : (E, ·) → (End(E), p◦ − q
•
◦).

Theorem. All associative rings are (1, 0)-rings; all Lie rings are
(1, 1)-rings. In particular, (End(E), p◦ − q

•
◦) is a (p, q)-ring if

(p, q) ∈ {(0, 0), (1, 0), (1, 1)}.

Theorem (P). The converse holds.





Proof. We have

x 7→ λx : (End(E), p◦ − q
•
◦) → (End(End(E)), p◦ − q

•
◦)

if and only if
λxy = λxλy,

that is,
λpx◦y−qy◦x(z) = (pλx ◦ λy − qλy ◦ λx)(z),

that is,

p(px ◦ y − qy ◦ x) ◦ z − qz ◦ (px ◦ y − qy ◦ x)

= p
(

px ◦ (py ◦ z − qz ◦ y) − q(py ◦ z − qz ◦ y) ◦ x
)

− q
(

py ◦ (px ◦ z − qz ◦ x) − q(px ◦ z − qz ◦ x) ◦ y
)

,

that is,

p2 = p3, pq = p2q, qp = q3, p2q = pq2, pq = pq2

—assuming the  compositions x ◦ y ◦ z etc. are independent in
some example; and they are when E = Z4.





If (V, ·) is a Lie ring, then each λx is a derivation of it: Write the
Jacobi identity as

x(yz) = (xy)z + y(xz);

this means
λx(yz) = λx(y) · z + y · λx(z).

Thus λ factors:

(V, ·) λ //

λ
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(Der(V, ·), ◦ −
•
◦)

⊆

²²

(End(V ), ◦ −
•
◦)





For any abelian group V , the Lie ring (End(V ), ◦ −
•
◦) acts as a

ring of derivations of the associative ring (End(V ), ◦):

[z, x ◦ y] = z ◦ x ◦ y − x ◦ y ◦ z

= z ◦ x ◦ y − x ◦ z ◦ y + x ◦ z ◦ y − x ◦ y ◦ z

= [z, x] ◦ y + x ◦ [z, y].

(End(V ), ◦ −
•
◦) λ //

λ
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??
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??
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??
(Der(End(V ), ◦), ◦ −

•
◦)

⊆

²²

(End(End(V )), ◦ −
•
◦)





Combine the diagrams—again, (V, ·) is a Lie ring:

(V, ·) λ //

λ
))SSSSSSSSSSSSSSSSSSSS (Der(V, ·), ◦ −

•
◦)

⊆
²²

(End(V ), ◦ −
•
◦) λ //

λ
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(Der(End(V ), ◦), ◦ −
•
◦)

⊆
²²

(End(End(V )), ◦ −
•
◦)

Each D in V determines the derivation

f 7→ Df

of (End(V ), ◦), where

Df = λλD
(f ) = [λD, f ],

so that
Df (x) = D · (f (x)) − f (D · x).





If (K, ∂0, . . . , ∂m−1) |= DFm, and V = spanK(∂i : i < m), and t in
K is not constant, then

K = {Dt : D ∈ V }.

Indeed, if Dt = a 6= 0, then

x =
x

a
(Dt) =

(x

a
D

)

t.

There is an elementary class consisting of all (V, ·, t) such that

. (V, ·) is a Lie ring,

. t ∈ End(V ),

. ({Dt : D ∈ V }, ◦) is a field K,

. for all f and g in K and D in V ,

f ◦ (Dg) = (f (D))g,

. dimK(V ) 6 m.

Let VLm be the theory of this class. Then VLm has ∀∃ axioms.





Theorem (P). The theory VLm has a model companion, whose
models are precisely those models (V, ·, t) of VLm such that, when
we let

K = ({Dt : D ∈ V }, ◦),

then V has a commuting basis (∂i : i < m) over K, and

(K, ∂0, . . . , ∂m−1) |= DCFm .

Here dimC(V ) = ∞, where C is the constant field.

However, for an infinite field K, the theory of Lie algebras over K
apparently has no model-companion (Macintyre, announced ).

Is there a model-complete theory of infinite-dimensional Lie
algebras with no extra structure?





Adolph Gottlieb, Centrifugal

We can also consider (V,K) as a
two-sorted structure.





Suppose first (V, K) is just a vector space, in the signature
comprising

. the signature of abelian groups, for the vectors;

. the signature of rings, for the scalars;

. a symbol ∗ for the (right) action (v, x) 7→ v ∗ x of K on V .

Let the theory of such structures of dimension n be

Tn,

where n ∈ {1, 2, 3, . . . ,∞}.

Theorem (Kuzichev, ). Tn admits elimination of quantified
vector-variables.





A theory is inductive if unions of chains of models are models.

Theorem (Łoś & Suszko , Chang ). A theory T is
inductive if and only if

T = T∀∃.

Hence all model complete theories have ∀∃ axioms.

Of an arbitrary T , a model A is existentially closed if

A ⊆ B =⇒ A 41 B

for all models B of T .

Theorem (Eklof & Sabbagh, ). Suppose T is inductive. Then
T has a model companion if and only if the class of its existentially
closed models is elementary. In this case, the theory of this class is
the model companion.





Again, Tn is the theory of vector spaces of dimension n.

If n > 1, then no completion Tn
∗ of Tn can be model complete,

because it cannot be ∀∃ axiomatizable:

There is a chain

(V, K) ⊆ (V ′, K ′) ⊆ · · · ⊆ (V (s), K(s)) ⊆ · · ·

of models of Tn
∗, where

. (V (s), K(s)) has basis (vs, . . . , vs+n−1), but

. vs = vs+1 ∗ xs for some xs in K(s+1) r K(s), so

. the union of the chain has dimension 1.

The situation changes if there are predicates for linear dependence.





Let VSn (where n is a positive integer) be the theory of vector
spaces with a new n-ary predicate P n for linear dependence. So
P n is defined by

∃x0 · · · ∃xn−1
(

∑

i<n

vi ∗ xi = 0 N

∨

i<n

xi 6= 0
)

.

Let VS∞ be the union of the VSn.

Theorem (P).

. VSn has a model companion, the theory of n-dimensional
spaces over algebraically closed fields.

. V S∞ has a model companion (even, model completion), the
theory if infinite-dimensional spaces over algebraically closed
fields.





The key is lowering dimension to n.
Given a field-extension L/K, where where

[L : K] > n + 1,

we can embed (Kn+1, K) in (Ln, L), as models of VSn, under








x0

...
xn−1

xn









7→





1 0 −a0

. . . ...
0 1 −an−1













x0

...
xn−1

xn









,

that is,

x 7→
(

I −a
)

x,

where the ai are chosen from L so that the tuple

(a0, . . . , an−1, 1)

is linearly independent over K.





Why? Given an (n + 1) × n matrix U over K, we want to show

rank(U) = n ⇐⇒ det
((

I −a
)

U
)

6= 0.

Write U as

(

X
yt

)

. Then

rank(U) = n ⇐⇒ det

(

X a

yt 1

)

6= 0.

Moreover,

det

(

X a

yt 1

)

= det(X − ayt),

X − ayt =
(

I −a
)

(

X
yt

)

=
(

I −a
)

U.

That does it.





Compare:
Let T be the theory of fields with an algebraically closed subfield.
The existentially closed models of T have transcendence-degree 1,
because of

Theorem (Robinson). We have an inclusion

K(x, y) ⊆ L(y)

of pure transcendental extensions, where

K(x, y) ∩ L = K,

provided
L = K(α, β),

where

α /∈ K(x, y)alg, β = αx + y.

(Hence T has no model companion.)





A Lie–Rinehart pair can be defined as any (V,K), where:
. V and K are abelian groups, each acting on the other, from the
left and right respectively, by

(x, y) 7→ x D y, x ∗ y ←[ (x, y).

. The actions are faithful:

∃y (x D y = 0 ⇒ x = 0), ∃x (x ∗ y = 0 ⇒ y = 0).

. Multiplications are induced,
(i) on V , by the bracket;
(ii) on K, by (opposite) composition:

[x, y] D z = x D(y D z) − y D(x D z), x ∗ (y · z) = (x ∗ y) ∗ z.

. These multiplications are compatible with the actions:

(x ∗ y) D z = (x D z) · y, x ∗ (y D z) = [y, x ∗ z] − [y, x] ∗ z.





Then V does act on K as a Lie ring of derivations; that is,

x D(y · z) = (x D y) · z + y · (x D z).

Indeed,

w ∗ (x D(y · z))

= [x, w ∗ (y · z)] − [x, w] ∗ (y · z)

= [x, (w ∗ y) ∗ z] − ([x, w] ∗ y) ∗ z

= (w ∗ y) ∗ (x D z) + [x, w ∗ y] ∗ z

− [x, w ∗ y] ∗ z + (w ∗ (x D y)) ∗ z

= (w ∗ y) ∗ (x D z) + (w ∗ (x D y)) ∗ z

= w ∗ (y · (x D z)) + w ∗ ((x D y) · z)

= w ∗ (y · (x D z) + (x D y) · z).

We may (asymmetrically!) make K commutative, and make V
torsion-free as a K-module, so K is an integral domain.





The multiplications are definable.

Indeed, let V and K act mutually as abelian groups, as before.
Then K becomes a sub-ring of (End(V ), ◦) and an integral domain
when we require

∃w (x ∗ y) ∗ z = x ∗ w,

x ∗ y = 0 ⇒ x = 0 ∨ y = 0,

(x ∗ y) ∗ z = x ∗ w ⇒ x = 0 ∨ (u ∗ y) ∗ z = u ∗ w,

(x ∗ y) ∗ z = (x ∗ z) ∗ y

Then we can require V to act on K as a module (over K) of
derivations:

(x ∗ y) ∗ z = x ∗ w

⇒ x ∗ (v D w) = (x ∗ y) ∗ (v D z) + (x ∗ (v D y)) ∗ z

x ∗ ((y ∗ z) D w) = (x ∗ (y D w)) ∗ z.





However, with no symbol for the bracket on V , the theory of
Lie–Rinehart pairs is not inductive.
Indeed, the union of the chain

(V0, K0) ⊆ (V1, K1) ⊆ · · ·

of Lie–Rinehart pairs is not a Lie–Rinehart pair when

Kn = Q(ti : i < n), Vn = spanKn
(Di ↾ Kn : i < n),

where

D0 =
∑

i<ω

∂i, D1 =
∑

i<ω

(i + 1)ti∂i+1, Dn = ∂n if 1 < n < ω,

where
∂it

j = δj
i .

For,
[D0, D1] =

∑

i<ω

(i + 1)∂i+1 /∈ V.





Let T be the theory of pairs (V,K), where K is a field of
characteristic 0, and V acts on K as a vector space of derivations.
Let DCF

(m)
0 be the model-companion of the theory of fields of

characteristic 0 with m derivations with no required interaction.

Theorem (Özcan Kasal). The existentially closed models of T are
just those such that

. tr-deg(K/Q) = ∞;

. (K, v0, . . . , vm−1) |= DCF
(m)
0 whenever (v0, . . . , vm−1) is

linearly independent over K;

. if (x0, . . . , xn−1) is algebraically independent, and
(y0, . . . , yn−1) is arbitrary, then for some v in V ,

∧

i<n

v D xi = yi.

These are not first-order conditions: they require the constant field
to be Qalg.





The picture changes when (for each n) a predicate Qn is
introduced for the n-ary relation on scalars defined by

∨

i<n

∀v
(

∧

j 6=i

v D xj = 0 ⇒ v D xi = 0
)

.

Let the new theory be

T ′,

so

T ′ ⊢ ∀x
(

¬Qnx ⇔ ∃v
∧

i<n
j<n

vi D xj = δj
i

)

.

Say (a0, . . . , an−1) from K is D-dependent if

(V,K) |= Qna
0 · · · an−1.

So algebraic dependence implies D-dependence.
Also, D-dependence also makes K a pregeometry.





Theorem (Özcan Kasal). The existentially closed models of T ′ are
those (V,K) such that D -dim(K) = ∞ and whenever

. (v0, . . . , vk+ℓ−1) is linearly independent, and
∧

i<k+ℓ
j<k

vi D aj = δj
i ,

. U is a quasi-affine variety over Q(a, b) with a generic point

(x0, . . . , xℓ−1, y0, . . . , ym−1, z),

where (x, y) is algebraically independent over Q(a, b),

. gj
i ∈ Q(a, b)[U ], where i < k + ℓ and j < m;

then U contains (ak, . . . , ak+ℓ−1, c, d) such that

. each cj and dj is D-dependent on (a0, . . . , ak+ℓ−1),

.
∧

i<k+ℓ
j<k+ℓ

vi D aj = δj
i N

∧

i<k+ℓ
j<m

vi D cj = gj
i (a

k, . . . , ak+ℓ−1, c, d).
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