

INTERACTING Rings

David Pierce

July,

Lyon

Piet Mondrian, Tableau No. IV; Lozenge Composition with Red, Gray, Blue, Yellow, and Black

The interacting rings in question arise from **differential fields:**

$$
(K,\partial_0,\ldots,\partial_{m-1}),
$$

where

- . K is a field—in particular, a **commutative ring;**
- 2. each ∂_i is a **derivation** of K: an endomorphism D of the abelian group of K that obeys the Leibniz rule,

$$
D(x \cdot y) = D(x) \cdot y + x \cdot D(y);
$$

3.
$$
[\partial_i, \partial_j] = 0
$$
 in each case, where $[\cdot, \cdot]$ is the **Lie bracket**, so $[x, y] = x \circ y - y \circ x$.

A standard example is $(\mathbb{C}(x_0,\ldots,x_{m-1}),\frac{\partial}{\partial x})$ $\overline{\partial x_0}$, \cdots , ∂ $\frac{\partial}{\partial x_{m-1}}\Big).$ In general, let

$$
V = \operatorname{span}_K(\partial_i : i < m) \subseteq \operatorname{Der}(K);
$$

then V is also a $\mathbf{Lie}\ \mathbf{ring}.$

Recall some notions due to Abraham Robinson: The *quantifier-free* theory of \mathfrak{A}_A is denoted by

 $\mathrm{diag}(\mathfrak{A}).$

A theory T is **model complete** under any of three equivalent conditions:

1. whenever $\mathfrak A$ is a **model** of T, the theory

 $T\cup\mathrm{diag}(\mathfrak{A})$

is complete;

2. whenever
$$
\mathfrak{A} \models T
$$
,

 $T \cup \text{diag}(\mathfrak{A}) \vdash \text{Th}(\mathfrak{A}_A);$

3. whenever $\mathfrak{A}, \mathfrak{B} \models T$,

$$
\mathfrak{A}\subseteq\mathfrak{B}\implies\mathfrak{A}\preccurlyeq\mathfrak{B}.
$$

Then T is complete if all models have ^a common submodel.

Robinson's examples of model complete theories include the theories of

- . torsion-free divisible abelian groups (*i.e.* vector spaces over Q),
- . algebraically closed fields,
- . real-closed fields.

Theorem (Robinson). ^T is model complete, provided

 $T\cup\mathrm{diag}(\mathfrak{A})\vdash \mathrm{Th}(\mathfrak{A}_A)_\forall$

whenever $\mathfrak{A} \models T$, that is,

$$
\mathfrak{A}\subseteq\mathfrak{B}\implies\mathfrak{A}\preccurlyeq_1\mathfrak{B}
$$

whenever $\mathfrak{A}, \mathfrak{B} \models T$. *Proof.* If $\mathfrak{A} \preccurlyeq_1 \mathfrak{B}$, then $\mathfrak{A} \preccurlyeq \mathfrak{C}$ for some \mathfrak{C} , where $\mathfrak{B} \subseteq \mathfrak{C}$; then \preceq \preccurlyeq $\qquad \qquad \ast$ \preceq $\mathfrak{B} \preccurlyeq_1 \mathfrak{C}$, so continue: \mathfrak{A} \Box $\mathfrak{C}% _{k}^{X\text{}}(\theta)=\mathfrak{C}_{k}^{X\text{}}(\theta)$ \diagdown ? ÄÄ Ä \diagdown \mathbb{R}^2 ?ÄÄÄ \preccurlyeq_1 $\widetilde{\nearrow}^1$ \preccurlyeq_1 $\widetilde{\nearrow}^1$ \preccurlyeq_1 Â ?? ? Â ?? ? Â ? ? ? \mathfrak{B} $\overrightarrow{\Leftrightarrow}$ D $\overrightarrow{\mathrm{S}}\longrightarrow\overrightarrow{\mathrm{S}}\longrightarrow$

Let

 $DF^m = Th({fields with m commuting derivations}),$ $DF_0^m = DF^m \cup \{p \neq 0: p \text{ prime}\}.$

Theorem (McGrail, 2000). DF_0^m has a **model companion**, DCF $_0^m$: that is,

$$
(\text{DF}_0^m)_{\forall} = (\text{DCF}_0^m)_{\forall}
$$

and DCF_0^m is model complete.

Theorem (Yaffe, 2001). The theory of fields of characteristic 0 with m derivations D_i , where

$$
[D_i, D_j] = \sum a_{ij}^k D_k,
$$

has ^a model companion.

Theorem $(P, 2003;$ Singer, 2007). The latter follows readily from the former.

Theorem (P, submitted March, 2008). DF^m has a model companion, DCF^m , given in terms of varieties.

What is the model theory of V ?

First consider rings in general.

Piet Mondrian, Broadway Boogie Woogie

In the most general sense, a ring is a structure

$$
(E,\cdot),
$$

where

- 1. E is an abelian group in $\{0, -, +\}$, and
- 2. the binary operation \cdot distributes over $+$ in both senses: it is a multiplication.

Beyond this, there are axioms for:

By itself, $(xy)z = x(yz)$ defines **associative rings;** and $(xy)z = x(yz) - y(xz)$ is the **Jacobi identity.** For rings, are there representation theorems like the following? **Theorem** (Cayley). Every abstract group $(G, 1, -1, \cdot)$ embeds in the symmetry group

$$
(\mathrm{Sym}(G),\mathrm{id}_G,{}^{-1},\,\circ\,)
$$

under $x \mapsto \lambda_x$, where

$$
\lambda_g(y)=g\cdot y.
$$

A ring is **Boolean** if it satisfies $x^2 = x$.

Theorem (Stone). Every abstract Boolean ring $(R, 0, +, \cdot)$ or \Re embeds in ^a Boolean ring of sets

$$
(\mathscr{P}(\Omega), \varnothing, \vartriangle, \cap).
$$

(Here $\Omega = \{\text{prime ideals of } \Re\}$, and the embedding is $x \mapsto {\mathfrak{p}}: x \notin {\mathfrak{p}}.$

For associative rings and Lie rings *only,* there are such theorems.

I know no representation theorem for abelian groups. There are just '**prototypical**' abelian groups, like \mathbb{Z} . One might mention *Pontryagin duality:* Every (topological) abelian group G embeds in G^{**} , where $G^* = \text{Hom}(G,\mathbb{R}/\mathbb{Z})$. Prototypical associative rings include

- . Z, Q, R, C, and H;
- . matrix rings.

But there are non-associative rings:

- 1. (\mathbb{R}^3, \times) is a **Lie ring** (in fact, the *Lie algebra* of SO(3, R));
- 2. the Cayley–Dickson algebras $\mathbb{R}, \, \mathbb{R}', \, \ldots$ become non-associative after $\mathbb{R}^{\prime\prime}$ (which is \mathbb{H}):

Let (E, \cdot) be a ring with an *involutive* anti-automorphism or conjugation $x \mapsto \bar{x}$. The abelian group $M_2(E)$ is a ring under

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} ax + zb & ya + bw \\ xc + dz & cy + wd \end{pmatrix},
$$

with conjugation

$$
\begin{pmatrix} x & y \\ z & w \end{pmatrix} \mapsto \begin{pmatrix} \bar{x} & \bar{z} \\ \bar{y} & \bar{w} \end{pmatrix}.
$$

Let E' comprise the matrices

$$
\begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix}.
$$

Then E' is closed under the operations, and E embeds under

$$
x \mapsto \begin{pmatrix} x & 0 \\ 0 & \bar{x} \end{pmatrix}.
$$

If E is an abelian group, then its multiplications compose an abelian group that has an involutory automorphism,

$$
m\mapsto \overset{\bullet}{m},
$$

where $\mathring{\mathsf{m}}$ is the opposite of m :

$$
\mathbf{\dot{m}}(x,y) = \mathbf{m}(y,x).
$$

Let $\text{End}(E)$ be the *abelian group* of endomorphisms of E . Then

- 1. $(End(E), \circ)$ is an associative ring;
- 2. $(\text{End}(E), \circ -\stackrel{\bullet}{\circ})$ is a Lie ring;
- 3. $(\text{End}(E), \circ + \stackrel{\bullet}{\circ})$ is a **Jordan ring:**¹ a ring satisfying

$$
xy = yx, \qquad \qquad (xy)x^2 = x(yx^2).
$$

 $\overline{Pascual Jordan,$ 1902–80.

If (E, \cdot) is a ring, let

$$
x \mapsto \lambda_x \colon E \to \text{End}(E),
$$

where (as in the Cayley Theorem)

$$
\lambda_a(y)=a\cdot y.
$$

If p and q are in \mathbb{Z} , let (E, \cdot) be called a (p, q) -ring if

$$
x \mapsto \lambda_x \colon (E, \cdot) \to (\text{End}(E), p \circ -q \overset{\bullet}{\circ}).
$$

Theorem. All associative rings are $(1, 0)$ -rings; all Lie rings are (1, 1)-rings. In particular, $(\text{End}(E), p \circ -q \cdot \bullet)$ is a (p, q) -ring if

$$
(p,q) \in \{(0,0), (1,0), (1,1)\}.
$$

Theorem (P). The converse holds.

Proof. We have

 $x \mapsto \lambda_x : (\text{End}(E), p \circ -q \cdot \bullet) \to (\text{End}(\text{End}(E)), p \circ -q \cdot \bullet)$ if and only if

$$
\lambda_{xy}=\lambda_x\lambda_y,
$$

that is,

$$
\lambda_{px\circ y-qy\circ x}(z)=(p\lambda_x\circ\lambda_y-q\lambda_y\circ\lambda_x)(z),
$$

that is,

$$
p(px \circ y - qy \circ x) \circ z - qz \circ (px \circ y - qy \circ x)
$$

=
$$
p(px \circ (py \circ z - qz \circ y) - q(py \circ z - qz \circ y) \circ x)
$$

-
$$
q(py \circ (px \circ z - qz \circ x) - q(px \circ z - qz \circ x) \circ y),
$$

that is,

$$
p^2 = p^3
$$
, $pq = p^2q$, $qp = q^3$, $p^2q = pq^2$, $pq = pq^2$
—assuming the 6 compositions $x \circ y \circ z$ etc. are independent in some example; and they are when $E = \mathbb{Z}^4$.

If (V, \cdot) is a Lie ring, then each λ_x is a **derivation** of it: Write the Jacobi identity as

$$
x(yz) = (xy)z + y(xz);
$$

this means

$$
\lambda_x(yz) = \lambda_x(y) \cdot z + y \cdot \lambda_x(z).
$$

Thus λ factors:

For any abelian group V, the Lie ring $(End(V), \circ -\bullet)$ acts as a ring of derivations of the **associative** ring $(End(V), \circ)$:

$$
[z, x \circ y] = z \circ x \circ y
$$

= z \circ x \circ y - x \circ z \circ y + x \circ z \circ y - x \circ y \circ z
= [z, x] \circ y + x \circ [z, y].

Combine the diagrams—again, (V, \cdot) is a Lie ring:

$$
(V, \cdot) \longrightarrow (\text{Der}(V, \cdot), \circ -\circ)
$$

\n
$$
(\text{End}(V), \circ -\circ) \longrightarrow (\text{Der}(\text{End}(V), \circ), \circ -\circ)
$$

\n
$$
\longleftarrow (\text{End}(\text{End}(V)), \circ, \circ)
$$

\n
$$
(\text{End}(\text{End}(V)), \circ -\circ)
$$

Each D in V determines the derivation

$$
f\mapsto Df
$$

of $(\text{End}(V), \circ),$ where

$$
Df = \lambda_{\lambda_D}(f) = [\lambda_D, f],
$$

so that

$$
Df(x) = D \cdot (f(x)) - f(D \cdot x).
$$

If $(K, \partial_0, \ldots, \partial_{m-1}) \models \mathrm{DF}^m$, and $V = \mathrm{span}_K(\partial_i : i < m)$, and t in K is not constant, then

$$
K = \{Dt \colon D \in V\}.
$$

Indeed, if $Dt = a \neq 0$, then

$$
x = \frac{x}{a}(Dt) = \left(\frac{x}{a}D\right)t.
$$

There is an *elementary* class consisting of all (V, \cdot, t) such that

- 1. (V, \cdot) is a Lie ring,
- 2. $t \in End(V)$,
- 3. $({\{Dt: D \in V\}, \circ})$ is a field K,
- 4. for all f and g in K and D in V ,

$$
f \circ (Dg) = (f(D))g,
$$

5. dim $_K(V) \leq m$.

Let VL^m be the theory of this class. Then VL^m has $\forall \exists$ axioms.

Theorem (P). The theory VL^m has a model companion, whose models are precisely those models (V, \cdot, t) of VL^m such that, when we let

 $K = (\{Dt: D \in V\}, \circ),$

then V has a commuting basis $(\partial_i : i < m)$ over K, and

 $(K, \partial_0, \ldots, \partial_{m-1}) \models DCF^m$.

Here $\dim_C(V) = \infty$, where C is the constant field.

However, for an infinite field K , the theory of Lie algebras over K apparently has no model-companion (Macintyre, announced 1973). Is there ^a model-complete theory of infinite-dimensional Lie algebras with no extra structure?

Adolph Gottlieb, Centrifugal

We can also consider (V, K) as a two-sorted structure.

Suppose first (V, K) is just a vector space, in the signature comprising

- . the signature of abelian groups, for the vectors;
- . the signature of rings, for the scalars;
- 3. a symbol $*$ for the (right) action $(v, x) \mapsto v * x$ of K on V.

Let the theory of such structures of dimension n be

$$
T_n,
$$

where $n \in \{1, 2, 3, ..., \infty\}$.

Theorem (Kuzichev, 1992). T_n admits elimination of quantified vector-variables.

A theory is inductive if unions of chains of models are models.

Theorem (Łoś & Suszko 1957, Chang 1959). A theory T is inductive if and only if

 $T=T_{\forall\exists}$.

Hence all model complete theories have ∀∃ axioms. Of an arbitrary T , a model $\mathfrak A$ is existentially closed if

$$
\mathfrak{A}\subseteq\mathfrak{B}\implies\mathfrak{A}\preccurlyeq_1\mathfrak{B}
$$

for all models \mathfrak{B} of T.

Theorem (Eklof & Sabbagh, 1970). Suppose T is inductive. Then T has ^a model companion if and only if the class of its existentially closed models is elementary. In this case, the theory of this class is the model companion.

Again, T_n is the theory of vector spaces of dimension n. If $n > 1$, then no completion T_n^* of T_n can be model complete, because it cannot be ∀∃ axiomatizable:

There is ^a chain

$$
(V, K) \subseteq (V', K') \subseteq \cdots \subseteq (V^{(s)}, K^{(s)}) \subseteq \cdots
$$

of models of T_n^* , where

1.
$$
(V^{(s)}, K^{(s)})
$$
 has basis (v_s, \ldots, v_{s+n-1}) , but

2.
$$
v_s = v_{s+1} * x_s
$$
 for some x_s in $K^{(s+1)} \setminus K^{(s)}$, so

. the union of the chain has dimension 1.

The situation changes if there are *predicates* for linear dependence.

Let VS_n (where *n* is a positive integer) be the theory of vector spaces with a new *n*-ary predicate P^n for linear dependence. So P^n is defined by

$$
\exists x^0 \cdots \exists x^{n-1} \left(\sum_{i < n} v_i * x^i = 0 \otimes \bigvee_{i < n} x^i \neq 0 \right).
$$

Let VS_{∞} be the union of the VS_{n} .

Theorem (P).

- 1. VS_n has a model companion, the theory of *n*-dimensional spaces over algebraically closed fields.
- 2. VS_{∞} has a model companion (even, model *completion*), the theory if infinite-dimensional spaces over algebraically closed fields.

The key is lowering dimension to n . Given a field-extension L/K , where where

$$
[L:K] \geqslant n+1,
$$

we can embed (K^{n+1}, K) in (L^n, L) , *as models of* VS_n , under

$$
\begin{pmatrix} x^0 \\ \vdots \\ x^{n-1} \\ x^n \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & -a^0 \\ \cdot & \cdot & \cdot \\ 0 & 1 & -a^{n-1} \end{pmatrix} \begin{pmatrix} x^0 \\ \vdots \\ x^{n-1} \\ x^n \end{pmatrix},
$$

that is,

$$
\boldsymbol{x} \mapsto \big(\ I \big| \!-\! \boldsymbol{a} \,\big) \, \boldsymbol{x},
$$

where the a^i are chosen from L so that the tuple

$$
(a^0,\ldots,a^{n-1},1)
$$

is linearly independent over K .

Why? Given an $(n + 1) \times n$ matrix U over K, we want to show

rank
$$
(U) = n \iff
$$
det $((I - a)U) \neq 0$.
Write U as $(\frac{X}{y^t})$. Then

$$
rank(U) = n \iff
$$
det $(\frac{X | a}{y^t | 1}) \neq 0$.

Moreover,

$$
\det\left(\frac{X|\mathbf{a}}{\mathbf{y}^{\mathsf{t}}|1}\right) = \det(X - \mathbf{a}\mathbf{y}^{\mathsf{t}}),
$$

$$
X - \mathbf{a}\mathbf{y}^{\mathsf{t}} = (|I| - \mathbf{a})\left(\frac{X}{\mathbf{y}^{\mathsf{t}}}\right) = (|I| - \mathbf{a})|U.
$$

That does it.

Compare:

Let T be the theory of fields with an algebraically closed subfield. The existentially closed models of T have transcendence-degree 1, because of

Theorem (Robinson). We have an inclusion

 $K(x,y) \subseteq L(y)$

of pure transcendental extensions, where

 $K(x, y) \cap L = K,$

provided

 $L=K(\alpha,\beta),$

where

$$
\alpha \notin K(x, y)^{\text{alg}}, \qquad \beta = \alpha x + y.
$$

(Hence T has no model companion.)

A Lie–Rinehart pair can be defined as any (V, K) , where: . ^V and ^K are abelian groups, *each* acting on the other, from the left and right respectively, by

$$
(x, y) \mapsto x D y, \qquad x * y \leftarrow (x, y).
$$

. The actions are faithful:

$$
\exists y \ (x \ D \ y = 0 \Rightarrow x = 0), \qquad \exists x \ (x * y = 0 \Rightarrow y = 0).
$$

- . Multiplications are induced,
	- (i) on V , by the bracket;
- (ii) on K , by (opposite) composition:

$$
[x, y] D z = x D(y D z) - y D(x D z), x * (y \cdot z) = (x * y) * z.
$$

. These multiplications are compatible with the actions:

$$
(x * y) D z = (x D z) \cdot y, \quad x * (y D z) = [y, x * z] - [y, x] * z.
$$

Then V does act on K as a Lie ring of derivations; that is,

$$
x D(y \cdot z) = (x D y) \cdot z + y \cdot (x D z).
$$

Indeed,

$$
w * (x D(y \cdot z))
$$

= [x, w * (y \cdot z)] - [x, w] * (y \cdot z)
= [x, (w * y) * z] - ([x, w] * y) * z
= (w * y) * (x D z) + [x, w * y] * z
- [x, w * y] * z + (w * (x D y)) * z
= (w * y) * (x D z) + (w * (x D y)) * z
= w * (y \cdot (x D z)) + w * ((x D y) \cdot z)
= w * (y \cdot (x D z) + (x D y) \cdot z).

We may (asymmetrically!) make K commutative, and make V torsion-free as a K -module, so K is an integral domain.

The multiplications are definable.

Indeed, let V and K act mutually as abelian groups, as before. Then K becomes a sub-ring of $(End(V), \circ)$ and an integral domain when we require

$$
\exists w \ (x * y) * z = x * w,
$$

$$
x * y = 0 \Rightarrow x = 0 \lor y = 0,
$$

$$
(x * y) * z = x * w \Rightarrow x = 0 \lor (u * y) * z = u * w,
$$

$$
(x * y) * z = (x * z) * y
$$

Then we can require V to act on K as a **module** (over K) of derivations:

$$
(x * y) * z = x * w
$$

\n
$$
\Rightarrow x * (v D w) = (x * y) * (v D z) + (x * (v D y)) * z
$$

\n
$$
x * ((y * z) D w) = (x * (y D w)) * z.
$$

However, with no symbol for the bracket on V , the theory of Lie–Rinehart pairs is not inductive. Indeed, the union of the chain

$$
(V_0, K_0) \subseteq (V_1, K_1) \subseteq \cdots
$$

of Lie–Rinehart pairs is not ^a Lie–Rinehart pair when

$$
K_n = \mathbb{Q}(t^i : i < n), \qquad V_n = \text{span}_{K_n}(D_i \upharpoonright K_n : i < n),
$$

where

here
\n
$$
D_0 = \sum_{i < \omega} \partial_i, \quad D_1 = \sum_{i < \omega} (i+1)t^i \partial_{i+1}, \quad D_n = \partial_n \text{ if } 1 < n < \omega,
$$

where

$$
\partial_i t^j = \delta_i^j.
$$

For,

$$
[D_0, D_1] = \sum_{i < \omega} (i+1)\partial_{i+1} \notin V.
$$

Let T be the theory of pairs (V, K) , where K is a field of characteristic 0, and V acts on K as a vector space of derivations. Let $DCF_0^{(m)}$ be the model-companion of the theory of fields of characteristic ⁰ with ^m derivations with no required interaction.

Theorem (Özcan Kasal). The existentially closed models of T are just those such that

- 1. tr-deg(K/\mathbb{Q}) = ∞ ;
- 2. $(K, v_0, \ldots, v_{m-1}) \models DCF_0^{(m)}$ whenever (v_0, \ldots, v_{m-1}) is linearly independent over K ;
- 3. if (x^0, \ldots, x^{n-1}) is algebraically independent, and (y^0, \ldots, y^{n-1}) is arbitrary, then for some v in $V,$

$$
\bigwedge_{i
$$

These are not first-order conditions: they require the constant field to be Qalg.

The picture changes when (for each $n)$ a predicate Q_n is introduced for the *n*-ary relation on scalars defined by

$$
\bigvee_{i
$$

Let the new theory be

 T^{\prime} ,

so

$$
T' \vdash \forall \boldsymbol{x} \left(\neg Q_n \boldsymbol{x} \Leftrightarrow \exists \boldsymbol{v} \bigwedge_{\substack{i < n \\ j < n}} v_i D x^j = \delta_i^j \right).
$$

Say (a^0,\ldots,a^{n-1}) from K is $D\text{-dependent}$ if $(V,K) \models Q_n a^0 \cdots a^{n-1}$.

So algebraic dependence implies D -dependence. Also, D-dependence also makes K a pregeometry.

Theorem (Özcan Kasal). The existentially closed models of T' are those (V, K) such that D -dim $(K) = \infty$ and whenever

1. $(v_0, \ldots, v_{k+\ell-1})$ is linearly independent, and
 $\bigwedge v_i D a^j = \delta_i^j$,

$$
\bigwedge_{\substack{i < k+\ell \\ j < k}} v_i \, D \, a^j = \delta_i^j,
$$

2. *U* is a quasi-affine variety over
$$
\mathbb{Q}(\boldsymbol{a}, \boldsymbol{b})
$$
 with a generic point $(x^0, \ldots, x^{\ell-1}, y^0, \ldots, y^{m-1}, \boldsymbol{z}),$

where $(\boldsymbol{x}, \boldsymbol{y})$ is algebraically independent over $\mathbb{Q}(\boldsymbol{a}, \boldsymbol{b})$,

3. $g_i^j \in \mathbb{Q}(\mathbf{a}, \mathbf{b})[U]$, where $i \leq k + \ell$ and $j \leq m$; then U contains $(a^k, \ldots, a^{k+\ell-1}, c, d)$ such that

1. each c^j and d^j is D-dependent on $(a^0, \ldots, a^{k+\ell-1}),$

\n- 1. each
$$
c^j
$$
 and a^j is *D*-dependent on (a^s, \ldots, a^{s+i-1}) ,
\n- 2. $\bigwedge_{\substack{i < k+l \\ j < k+l}} v_i D a^j = \delta_i^j \otimes \bigwedge_{\substack{i < k+l \\ j < m}} v_i D c^j = g_i^j(a^k, \ldots, a^{k+\ell-1}, c, d).$
\n

Franz Kline, Palladio