LOGICAL CLASSIFICATION OF CURVES

DAVID PIERCE

CONTENTS

. Ellipses and elliptic curves

An ellipse is given by an equation

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.
$$

In general, length along a curve from P to Q is given by $\int_P^Q \sqrt{d x^2 + d y^2}$. For the ellipse, we compute

$$
\frac{2x \, dx}{a^2} + \frac{2y \, dy}{b^2} = 0, \qquad dy^2 = \frac{b^4 x^2}{a^4 y^2} \, dx^2 = \frac{b^2 x^2}{a^2 (a^2 - x^2)} \, dx^2,
$$

so

$$
\int \sqrt{dx^2 + dy^2} = \int \sqrt{\frac{a^2(a^2 - x^2) + b^2x^2}{a^2(a^2 - x^2)}} dx
$$

= $\frac{1}{a} \int \sqrt{\frac{a^4 - c^2x^2}{a^2 - x^2}} dx = \frac{1}{a} \int \frac{y}{a^2 - x^2} dx$,

where $b^2 + c^2 = a^2$ and

$$
y^2 = (a^2 - x^2)(a^4 - c^2x^2).
$$

Assuming $c \neq 0$, the last equation defines an elliptic curve and is equivalent to:

$$
y^{2} = (x^{2} - a^{2})(c^{2}x^{2} - a^{4}),
$$

$$
\left(\frac{y}{(x+a)^{2}}\right)^{2} = \left(\frac{x-a}{x+a}\right)\left(\frac{cx+a^{2}}{x+a}\right)\left(\frac{cx-a^{2}}{x+a}\right).
$$

We rewrite this as

$$
v^2 = \beta u(u - \mu)(u - \rho),
$$

 $\mathbf{1}$

 $Date: December 9, 2009.$

Notes prepared for the algebra seminar, November 20, 2009.

where

$$
v = \frac{y}{(x+a)^2},
$$

$$
u = \frac{x-a}{x+a},
$$

and β , μ , and ρ are such that

$$
\left(\frac{cx+a^2}{x+a}\right)\left(\frac{cx-a^2}{x+a}\right) = \beta(u-\mu)(u-\rho),
$$

$$
c^2\left(x-\frac{a^2}{c}\right)\left(x+\frac{a^2}{c}\right) = \beta(x-a-\mu(x+a))(x-a-\rho(x+a))
$$

$$
= \beta((1-\mu)x-(1+\mu))\left((1-\rho)x-(1+\rho)a\right)
$$

$$
= \beta(1-\mu)(1-\rho)\left(x-\frac{1+\mu}{1-\mu}\right)\left(x-\frac{1+\rho}{1-\rho}\right).
$$

So it suffices if

$$
c^2 = \beta(1 - \mu)(1 - \rho),
$$
 $\frac{a^2}{c} = \frac{1 + \mu}{1 - \mu},$ $-\frac{a^2}{c} = \frac{1 + \rho}{1 - \rho},$

that is,

$$
\mu = \frac{a^2 - c}{a^2 + c}
$$
, $\rho = \frac{1}{\mu}$, $\beta = -\frac{c^2 \mu}{(1 + \mu)^2}$.

After another change of variables, the equation becomes

$$
y^2 = x(x-1)(x-\lambda)
$$

(where $\lambda = \rho/\mu$). On this curve, the differential form $d x/y$ is holomorphic. But

$$
Q \mapsto \int_P^Q \frac{\mathrm{d}x}{y}
$$

is well defined, not on $\mathbb{P}(\mathbb{C})$ (that is, $\mathbb{C} \cup {\infty}$), but rather on the Riemann surface got by cutting and gluing two copies of this along lines from 0 to ∞ and 1 to λ : the surface is then a torus. This then is the elliptic curve, and the function above is an analytic bijection onto \mathbb{C}/Λ for some lattice Λ .

. Curves and function fields

Let K and L be algebraically closed fields, with $K \subset L$ and $\text{tr-deg}(L/K) = \infty$. An irreducible f in $K[X, Y]$ defines a curve C over K, namely

$$
C = \{(x, y) \in L^2 : f(x, y) = 0\}.
$$

We define

$$
K[C] = K[X, Y]/(f),
$$

$$
K(C) =
$$
 fraction field of $K[C]$;

this is the field of **rational functions** on C over K . Then

$$
K[C] = K[a, b]
$$

$$
K(C) = K(a, b),
$$

where

$$
\begin{aligned}\na &= ((x, y) \mapsto x) \\
b &= ((x, y) \mapsto y)\n\end{aligned}\n\text{ on } C,
$$

so that $f(a, b) = 0$ and (a, b) is a **generic point** of C over K; we may assume $(a, b) \in L^2$. Say also

$$
D = \{(x, y) \in L^2 \colon g(x, y) = 0\},\
$$

and φ^* is an embedding of $K(C)$ in $K(D)$ over K. Then

$$
0 = \varphi^*(f(a,b)) = f(\varphi^*(a), \varphi^*(b)),
$$

so $(\varphi^*(a), \varphi^*(b))$ is a generic point of C and is also a **dominant rational map** φ from D onto C. We recover φ^* by

$$
\varphi^*(h)=h\circ\varphi.
$$

Indeed,

$$
\varphi^*(a) = a(\varphi^*(a), \varphi^*(b)) = a \circ (\varphi^*(a), \varphi^*(b)) = a \circ \varphi,
$$

and likewise for b.

Rule. The K-algebra $K(C)$ embeds in $K(D)$ if and only if C has a generic point with coordinates from $K(D)$.

We also have

$$
K(C) \cong K(D) \iff D
$$
 and C are birationally equivalent.

For example, the function

$$
(u,v)\mapsto \left(\frac{x-a}{x+a},\frac{y}{(x+a)^2}\right)
$$

determines a birational equivalence between the elliptic curves above.

Or let $f = X^2 + Y^2$ and $g = X$. See Figure 1. Then $\varphi: C \to D$, where

$$
\varphi(x,y) = \frac{y}{1+x}, \qquad \varphi^{-1}(t) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1-t^2}\right),
$$

so C and D are birationally equivalent, and

$$
K(D) \cong K(e) \cong K(a, b) \cong K(C)
$$

$$
e \mapsto \frac{b}{1+a}
$$

$$
\frac{1-e^2}{1+e^2} \leftarrow a
$$

$$
\frac{2e}{1-e^2} \leftarrow b
$$

Every curve C has a **genus** $\gamma(C)$ in N. If $K(C)$ embeds in $K(D)$ over K, then

$$
\gamma(C) \leqslant \gamma(D).
$$

If the embedding is *proper*, then either $\gamma(C) < \gamma(D)$ or

$$
0 \leqslant \gamma(C) \leqslant \gamma(D) \leqslant 1.
$$

If $\gamma(C) = 0$, then $K(C) \cong K(X)$.

FIGURE 1. Birational equivalence of circle and straight line

. Logic and elliptic curves

Suppose $K(C) \not\cong K(D)$. We may assume $\gamma(C) \leq \gamma(D) < \gamma(E)$ for some curve E. Then the formula

$$
\exists y \ (x, y) \in E
$$

defines K in $K(C)$ and $K(D)$. If $\gamma(C) < \gamma(D)$ or $1 < \gamma(C) = \gamma(D)$, then the sentence $\forall x \forall y \exists z ((x, y) \in D \Rightarrow (x, z) \in E)$

is true in $K(C)$, but not $K(D)$, so these algebras have different **theories**; we say they are not elementarily equivalent, and we write

$$
K(C) \not\equiv K(D).
$$

We cannot then have $0 = \gamma(C) = \gamma(D)$. The remaining possibility is $1 = \gamma(C) = \gamma(D)$, that is, C and D are elliptic curves.

An elliptic curve E is also an abelian group; the curve has **complex multiplication** if $\text{End}(E) \not\cong \mathbb{Z}$.

Theorem (Jean-Louis Duret (1992); D.P. (1998)). If C and D are curves over K, and C is not an elliptic curve with complex multiplication, then

$$
K(C) \ncong K(D) \implies K(C) \not\equiv K(D).
$$

In general, if $\varphi: D \to C$, then

$$
\deg(\varphi) = [K(D) : K(C)]
$$

Theorem (D.P. (1998)). Suppose C and D are elliptic curves over K with complex multiplication. The following are equivalent.

(1) There are φ and φ' from C onto D with

$$
\gcd(\deg(\varphi), \deg(\varphi')) = 1.
$$

(2) $K(C)$ and $K(D)$ agree on all sentences

$$
\forall (x_0,\ldots,x_{n-1})\ \exists y\ \psi(x_0,\ldots,x_{n-1},y),
$$

where ψ is quantifier-free.

If char(K) = 0, then the foregoing are equivalent to the following.

(3) End(C) \cong End(D).

Say E_0 and E_1 are elliptic curves over $\mathbb C$. For each i in $\{0,1\}$ there are A_i and B_i in $\mathbb C$ such that E_i is birationally equivalent to the curve defined by

$$
y^2 = 4x^3 - A_ix - B_i.
$$

So we may assume E_i is this curve. There is a lattice Λ_i , namely $\langle 1, \tau_i \rangle$, where $\Im(\tau_i) > 0$, and there is a function \wp_i , namely

$$
z \mapsto \frac{1}{z^2} + \sum_{\omega \in \Lambda_i \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right),
$$

such that (φ_i, φ_i') is a generic point of E_i and is a bijection from \mathbb{C}/Λ_i to E_i . Say $\varphi: E_0 \to E_1$. There are α and ω in $\mathbb C$ such that the following commutes.

$$
\mathbb{C}/\Lambda_0 \xrightarrow{(\wp_0, \wp_0')} E_0
$$
\n
$$
\begin{array}{c}\n\text{and} \\
\downarrow E_0 \\
\text{and} \\
\text{and} \\
\downarrow E_1 \\
\downarrow E_2 \\
\downarrow E_1 \\
\downarrow E_2 \\
\downarrow E_1 \\
\downarrow E_2 \\
\downarrow E_1\n\end{array}
$$

We may assume $\omega = 0$, so φ is an **isogeny** and, in particular, a homomorphism. We must have

$$
\alpha\Lambda_0\subseteq\Lambda_1,
$$

and then

$$
\deg(\varphi) = [\Lambda_1 : \alpha \Lambda_0].
$$

Also, if $\alpha \neq 0$, there is a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or M in $\mathcal{M}_n(\mathbb{Z})$ such that

$$
\alpha \begin{pmatrix} 1 \\ \tau_0 \end{pmatrix} = \begin{pmatrix} a + b\tau_1 \\ c + d\tau_1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ \tau_1 \end{pmatrix} = M \begin{pmatrix} 1 \\ \tau_1 \end{pmatrix},
$$

and then

$$
\deg(\varphi) = \det(M).
$$

Also

$$
\begin{pmatrix} d & -b \ -c & a \end{pmatrix} \begin{pmatrix} 1 \ \tau_0 \end{pmatrix} = \alpha^{-1} \det(M) \begin{pmatrix} 1 \ \tau_1 \end{pmatrix} = \alpha^{-1} \deg(\varphi) \begin{pmatrix} 1 \ \tau_1 \end{pmatrix},
$$

$$
z \mapsto \alpha^{-1} \deg(\varphi) z : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_0
$$

so

FIGURE 2. A lattice and its endomorphisms

corresponding to an isogeny $\hat{\varphi}$ from E_1 to E_0 . Then

$$
\deg(\hat{\varphi}) = \deg(\varphi),
$$

$$
\hat{\varphi}\varphi = [\deg(\varphi)]
$$

where $[n]$ is multiplication by n.

If E corresponds to \mathbb{C}/Λ , then

$$
End(E) \cong \{ z \in \mathbb{C} \colon z\Lambda \subseteq \Lambda \}.
$$

For example, if

$$
\tau = \frac{-1 + \sqrt{-7}}{4}.
$$

then (see Figure 2)

$$
End(E)=\langle 1, 2\tau \rangle.
$$

In general, if E has complex multiplication, this means, for some α in $\mathbb{C} \setminus \mathbb{R}$, we have

$$
\alpha \begin{pmatrix} 1 \\ \tau \end{pmatrix} = \begin{pmatrix} a + b\tau \\ c + d\tau \end{pmatrix},
$$

so

$$
\alpha = a + b\tau,
$$

\n
$$
c + d\tau = \alpha \tau = (a + b\tau)\tau,
$$

\n
$$
b\tau^2 + (a - d)\tau - c = 0.
$$

So E has complex multiplication if and only if τ is quadratic. If indeed

$$
b\tau^2 + a\tau - c = 0
$$

in lowest terms, then one shows

$$
End(E) \cong \langle 1, b\bar{\tau} \rangle;
$$

in any case, $End(E)$ embeds in Λ .

In general, since End(E) embeds in \mathbb{C} , it is commutative. Suppose φ and ψ are isogenies from E_0 to E_1 of relatively prime degrees. There are integers m and n such that

$$
m \deg(\varphi) + n \deg(\psi) = 1.
$$

Then $\text{End}(E_1) \cong \text{End}(E_0)$ by

$$
\alpha \mapsto m\hat{\varphi}\alpha\varphi + n\hat{\psi}\alpha\psi.
$$

Now suppose conversely $\text{End}(E_1) \cong \text{End}(E_0)$, and each curve has complex multiplication. Then Λ_0 and Λ_1 have a common sublattice, so by linear algebra we may assume $\tau_1 = n\tau_0$ for some *n*.

Theorem (D.P.). Say End(E₁) \cong End(E₀) $\ncong \mathbb{Z}$, and $b\tau_0^2 + a\tau_0 - c = 0$

in lowest terms, and $\tau_1 = n\tau_0$. Then

$$
\mathrm{Hom}(E_0,E_1)\cong \langle n,b\bar{\tau}\rangle.
$$

If this takes φ to $nx + by\overline{\tau}$, then

$$
\deg(\varphi) = nx^2 - axy - \frac{bc}{n}y^2,
$$

a quadratic form with relatively prime coefficients, so it represents coprime numbers.

Suppose now p divides the degree of every isogeny from E_0 to E_1 . Then there is a finite set $\mathcal L$ of lattices, each having index p in Λ_1 , such that, if

$$
\alpha\Lambda_0\subseteq\Lambda_1,
$$

then, for some Λ in \mathcal{L} ,

 $\alpha\Lambda_0\subseteq\Lambda\subset\Lambda_1.$

Hence

$$
K(E_0)\ncong K(E_1),
$$

because $K(E_0)$ but not $K(E_1)$ is a field L such that, if

$$
\varphi^*[K(E_1)] \subseteq L,
$$

then

$$
\varphi^*[K(E_1)] \subset F \subseteq L,
$$

where the isomorphism-class of F over $\varphi^*[K(E_1)]$ has finitely many possibilities.

MATHEMATICS DEPT, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA 06531, TURKEY E-mail address: dpierce@metu.edu.tr

URL: http://metu.edu.tr/~dpierce/