INDUCTION AND RECURSION DAVID PIERCE Bern, 2008 Why do we learn and teach foundations wrongly?

According to Spivak's *Calculus* (2d ed., 1980):

- Ch. **1 Numbers** have twelve "simple and obvious properties".
- Ch. 27 These are the defining properties of an **ordered field.**
- Ch. 1 Without ordering, one cannot prove $1 + 1 \neq 0$: consider \mathbf{F}_2 .
- Ch. 8 **R** has the **least upper bound property.**
- Ch. $28 \mathbf{R}$ is constructed from **Q**.
- Ch. 2 The **natural numbers** are $1, 2, 3, \ldots$; these compose **N**.

"Basic assumptions" about the natural numbers are the

- principle of **mathematical induction**,
- well-ordering principle, and
- principle of "complete" induction, namely $A = N$ if $1 \in A$ and

$$
\{1,\ldots,k\} \subseteq A \implies k+1 \in A.
$$

From each "basic assumption," the others can be proved. No!

The "basic assumptions" are *not* equivalent.

- 1. Induction is about $(N, 1, x \mapsto x + 1)$.
- 2. Well-ordering is about (N, \leqslant) .

3. "Complete" induction (à la Spivak) is about $(\mathbf{N}, \leq, 1, x \mapsto x + 1)$. Each is logically distinguishable from the others by appropriate models (as \mathbf{F}_2 shows the field-axioms do not imply $1 + 1 \neq 0$):

- Only induction works in $\mathbf{Z}/(2)$: the transitive closure of $x \mapsto x+1$ is not an ordering.
- The proper subset ω of $\omega + \omega$ is closed under 0 and $x \mapsto x \cup \{x\},$ but the transitive closure of the latter is ^a well-ordering.

Induction involves quantification over all subsets of N.

Why not *define* N by quantification over all supersets of N ? That is,

$$
\mathbf{N} = \bigcap \{ X \subseteq \mathbf{R} \colon 1 \in X \& \forall y \ (y \in X \Rightarrow y + 1 \in X) \}.
$$

Then induction, well-ordering, and complete induction follow from *this*.

Dedekind gets things straight in The Nature and Meaning of Numbers $(1887, 1893)$:

 \degree 59. Theorem of **complete induction.** In order to show that the chain A_o [that is, $\bigcap \{X : A \subseteq X \otimes \phi[X] \subseteq X\}$] is part of any system Σ ... it is sufficient to show,

 ρ **.** that $A \mathcal{Z} \Sigma$, and $[A \subseteq \Sigma]$ **σ.** that the transform of every common element of A_0 and Σ is likewise element of Σ ." $\left[\phi[A_o \cap \Sigma] \subseteq \Sigma\right]$

" 71 ... the essence of a simply infinite system N consists in the existence of a transformation ϕ of N and an element 1 which satisfy the following conditions α , β , γ , δ :

 α . N' \mathfrak{Z} N. $\left[\phi\right[N]\subseteq N\right]$ β . $N = 1_o$. $[N = \bigcap \{X \subseteq N : 1 \in X \otimes \phi[X] \subseteq X\}]$ γ. The element 1 is not contained in N'. $[1 \notin \phi[N]]$ **δ.** The transformation ϕ is similar." ϕ is injective

These are the 'Peano axioms' before Peano.

" 126 . Theorem of the **definition by induction.** If there is given a...transformation θ of a system Ω into itself, and besides a determinate element ω in Ω , then there exists one and only one transformation ψ of the number-series N , which satisfies the conditions

I. $\psi(N)$ 3 Ω [$\psi[N] \subseteq \Omega$] II. $\psi(1) = \omega$ III. $\psi(n') = \theta \psi(n)$, where *n* represents every number."

That is, from $(\mathbf{N}, \phi, 1)$ to (Ω, θ, ω) there is a unique homomorphism.

"130. Remark... it is worth while to call attention to a circumstance in which $\left[$ **definition by induction** (126) $\left|$ is essentially distinguished from the theorem of **demonstration by induction** $[(59)]$, however close may seem the relation between the former and the latter. . . "

In particular,

- $\mathbf{Z}/(2)$ allows demonstration by induction; but
- there is no homomorphism from $\mathbf{Z}/(2)$ into $\mathbf{Z}/(3)$.

Peano (1889) acknowledges Dedekind.

For every a in $\mathbf N$, there is a successor $a + 1 \in \mathbf N$. Then Peano defines

$$
a + (b + 1) = (a + b) + 1.
$$
 (*)

This defines *instances* of $a + (b + 1)$; assuming:

- 1. that $b + 1$ uniquely determines b;
- 2. that $a + b$ is already defined;
- 3. that $a + (b + 1)$ is not already defined.

By induction, all $a + b$ can be defined. But it is not immediate that $(*)$ holds for all a and b in $\mathbf N$, because of (3).

Dedekind's (126) gives addition satisfying $(*)$ immediately.

Following Kalmár, Landau (1929) shows implicitly that addition can be defined with induction alone. Hence it can be defined on finite structures: Property alone. Hence it
 $\begin{array}{ccccccccc}\n1 & 2 & 3 & \cdots & n \\
\end{array}$

Likewise, the recursive definition of multiplication,

$$
a \times 1 = a, \qquad a \times (b+1) = a \times b + a,
$$

is justified by induction alone. However:

Theorem. The identities

$$
a^1 = a, \qquad a^{b+1} = a^b \times a \tag{\dagger}
$$

hold on $\mathbf{Z}/(n)$ if and only if $|n| \in \{0, 1, 2, 6\}$.

In ^Z/(6): ⁿ ⁿ² ⁿ³ ⁿ⁴ ⁿ⁵ ⁿ⁶ 2 4 2 4 2 4 3 3 3 3 3 3 4 4 4 4 4 4 5 1 5 1 5 1 In ^Z/(3): ⁿ ⁿ² ⁿ³ ⁿ³ [×] ⁿ ⁿ⁴ ² ¹ ² ¹ ²

ALEXANDRE BOROVIK: Detecting a failure of $(†)$ modulo pq gives a $1/4$ chance of factorizing pq . See A Dialogue on Infinity,

http://dialinf.wordpress.com/

Mac Lane & Birkhoff, $Algebra$ (1st ed. 1967):

- P. 35 **'Peano Postulates'** for $(\mathbf{N}, 0, \sigma)$: (i) σ is injective; (ii) $0 \notin \sigma_*(\mathbf{N});$ (iii) if $0 \in U$, and $n \in U \Rightarrow \sigma(n) \in U$, then $U = \mathbb{N}$.
- P. 36 Natural numbers index iterates of an operation f on a set X: $f^0 = 1_X$, $f^{\sigma n} = f \circ f^n$.
- P. 38 Any two of the Postulates have a model in which the third fails.
- P. 67 The possibility of recursive definitions is the **Peano–Lawvere** Axiom (or Dedekind–Peano Axiom in Lawvere & Rosebrugh); this is logically equivalent to the three 'Peano Postulates'.

See also Burris, *Logic for Mathematics and Computer Science* (1998).

A more general setting: SENTENTIAL LOGIC

Cf. Thomas Forster, *Logic, Induction, and Sets* (2003).

Let V be a set $\{P, P', P'', P''', \dots\}$ of sentential variables.

Let S be the set of **sentences** generated from $\mathcal V$ by closing under

$$
X \xrightarrow{N} \sim X
$$
 and $(X, Y) \xrightarrow{C} (X \Rightarrow Y)$.

Then S admits proof by induction, as e.g. in showing that parentheses come in pairs.

Moreover, N and C are injective, and

$$
\mathcal{S} = \mathcal{V} + C[\mathcal{S}] + C[\mathcal{S} \times \mathcal{S}]
$$

(disjoint union). Therefore S admits definition by recursion. For example, **truth assignments** are so defined: If $\phi: \mathcal{V} \to \mathbf{F}_2$, we extend to all of S by

$$
\phi(\sim X) = 1 + \phi(X), \qquad \phi((X \Rightarrow Y)) = 1 + \phi(X) + \phi(X)\phi(Y).
$$

Also Detachment is given recursively by

$$
D(X, U) = U, \quad \text{if } U \in \mathcal{V},
$$

\n
$$
D(X, \sim Y) = \sim Y,
$$

\n
$$
D(X, (Y \Rightarrow Z)) = \begin{cases} Z, & \text{if } X = Y, \\ (Y \Rightarrow Z), & \text{otherwise.} \end{cases}
$$

Let the set $\mathcal T$ of theorems be the subset of $\mathcal S$ generated by closure under D of some **axioms**, perhaps

$$
(X \Rightarrow (Y \Rightarrow X)),
$$

$$
((\sim X \Rightarrow \sim Y) \Rightarrow (Y \Rightarrow X)),
$$

$$
((X \Rightarrow (Y \Rightarrow Z)) \Rightarrow ((X \Rightarrow Y) \Rightarrow (X \Rightarrow Z))).
$$

Then $\mathcal T$ admits proof by induction, but not definition of functions by recursion.

Hence the non-triviality of decision problems.

ALGEBRAIC CHARACTERIZATIONS

Let Σ be a set, and $n: \Sigma \to \omega$.

An algebra with signature Σ is a pair

$$
(A,s\mapsto s^\mathfrak{A})
$$

or **2**, where A is a nonempty set, s ranges over Σ , and $s^{\mathfrak{A}}$: $A^{n(s)} \to A$.

The **term algebra** on B with signature Σ is the set of strings obtained by closing B under each function

$$
(t_1,\ldots,t_{n(s)})\mapsto st_1\cdots t_{n(s)}.
$$

Call this algebra $\text{Tm}_{\Sigma}(B)$.

An algebra $\mathfrak A$ with signature Σ admits

- proof by induction, if $\mathfrak{A} \cong \mathrm{Tm}_\Sigma(\varnothing)/\mathfrak{I}$ for some congruence $\mathfrak{I};$
- definition by recursion, if $\mathfrak{A} \cong \mathrm{Tm}_\Sigma(\varnothing)$.

Again, http://dialinf.wordpress.com/