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From Euclid of Alexandria, The Elements, Proposition II.5:
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‘For, let a straight [line] AB be cut into equal [segments] at Γ , and
unequal at ∆; I say that the rectangle bounded by A∆,∆B, with the
square on Γ∆, is equal to the square on ΓB.’

We might say
(x + y)(x− y) + y2 = x2,

where x, y are the lengths of AΓ , Γ∆ respectively; maybe Euclid too
(Descartes, Rules for the Direction of the Mind, 4).
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From René Descartes, second page of The Geometry:

D A B
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¿Soit par exemple
AB l’vnité, & qu’il faille
multiplier BD par BC, ie
n’ay qu’a ioindre les poins
A & C, puis tirer DE
parallele a CA, & BE est
le produit de cete Multipli-
cation.À

‘For example, suppose AB is unity, and that one must multiply BD by
BC; I need only join points A and C, then draw DE parallel to CA,
and BE is the product of this multiplication.’

Take B as an origin of vectors. Then D is the multiple of A by a
scalar, say [D : A]. Because E −D ‖ C − A, we have

[D : A] ∗ C = E & [D : A] = [E : C].
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Precisely, a vector-space is a two-sorted structure (V,K, ∗), where:

V is an abelian group; K is a field; ∗ : K × V → V ;

(t 7→ (x 7→ (t ∗ x))) ∈ Hom(K, (End(V ), ◦)).

So the signature of (V,K, ∗) is {+,−, 0} q {+,−, ·, 0, 1} q {∗}; there
are variables x for vectors, and t for scalars.

Abraham Robinson (Complete Theories, Amsterdam, 1956) showed
model-completeness of the theory of non-trivial vector-spaces over a fixed
scalar field: ‘partial’ model-completeness.

If n ∈ {1, 2, 3, . . . ,∞}, let Tn be the theory of n-dimensional vector-
spaces. Andrey Kuzichev (Z. Math. Logik Grundlag. Math., 1992)
showed elimination of quantified vector-variables in Tn. Hence, if U is
a complete field-theory, then Tn ∪ U is complete.

Tn has ∃∀ axioms for raising dimension. ‘Hence:’

Tn ∪U is not inductive (∀∃); much less model-complete (unless n = 1).

We can remedy this ‘problem’ with a predicate for parallelism.
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The vector-space (V,K, ∗) expands to (V,K, ∗, ‖), where

x ‖ y ⇐⇒ ∃s ∃t (s ∗ x + t ∗ y = 0 ∧ (s 6= 0 ∨ t 6= 0)).

If dimK V > 1, then (V,K, ∗, ‖) is interpretable uniformly in the reduct
(V, ‖), and

(V,K, ∗, ‖) ⊆ (W,L, ∗, ‖) ⇐⇒ (V, ‖) ⊆ (W, ‖).

(By contrast, three-sorted structures (G,N,G/N), where N / G, are
interpretable in the reducts (G,N); but

(Z, 4Z,Z4) * (Z, 2Z,Z2) & (Z, 4Z) ⊆ (Z, 2Z).)

The theory VS2 of the expansions (V,K, ∗, ‖) is inductive.

Hence the theory of the reducts (V, ‖) is inductive.

The model-companion of VS2 is the theory VS2
∗ of two-dimensional

vector-spaces over algebraically closed fields. In particular, VS2
∗ is

model-complete:
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Replace the binary ‖ with an n-ary predicate ‖n for linear dependence;
in the new signature, let VSn be the theory of vector-spaces.

Theorem.The existentially closed models of VSn are n-dimensional
(over algebraically closed fields; since these models compose an ele-
mentary class, their theory is the model-companion of VSn).

Proof. Say K ⊂ L (both fields), and dimK L > n + 1.

I say that (Kn+1, K, ‖n) embeds in (Ln, L, ‖n):

Suppose {a0, . . . , an−1, 1} from L is linearly independent over K. Let

A =















1 0 0
0 1 0

. . .

0 0 1
−a0 −a1 · · · −an−1















=

(

In
−a

)

.

The embedding is x 7→ x ·A, taking the rows of In+1 to the rows of A:
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Indeed, write n elements of Kn+1 as the rows of ( U v ). These rows
are dependent if and only if

0 = det

(

U v

a 1

)

= det(U − v · a).

But U − v · a = ( U v ) ·

(

In
−a

)

, whose rows are the images in Ln of

the rows of ( U v ).

Compare with structures (L,K, P n), where P n is n-ary algebraic de-
pendence. From a standard counterexample:

(K(a0, . . . , an), K, P
n) ⊂ (K(a0, . . . , an, b, c), K(b, c), P n),

where dim(a0 · · · an/K) = n + 1, and (b, c) is a generic solution to
∑n

i=0
aix

i = y, so that dim(a0 · · · an/Kbc) = n.

Ka0 · · · an b c
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