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0 Introduction

Model-theory: mathematics done ‘self-consciously’—with an eye on lan-
guage and interconnections.

General question: When are two structures mathematically the same (that
is, isomorphic)?

Necessary model-theoretic condition: when they are elementarily equivalent.
When is this condition sufficient?

Is it sufficient when the structures are function-fields of curves over an alge-
braically closed field?

—Yes, unless the curves are elliptic curves with complex multiplication.

1 Powers of sets

w=10,1,2,...}
= closure of {@} under A — AU {A}
={9.{9},{2.{2}},.. . }.
Then 0 = @ and 1 = {0} = {@}.
n € wmeans n = {0,1,2,...,n— 1}, so n Cf w.
Let I Crw, let M # &, and define
M" = {functions from I to M}.

Typical element: (a;:7 € I)or i a; ord.

Special case: Elements of M™ are also (ag, ay,...,a, 1), and M™ itself is
Mx---x M.
—_—

MY ={0} =1.

M'= M.

Each P(M') is a Boolean algebra, equipped with:
(0) the operations N, U and ¢;
(1) the distinguished elements @ and M7; and
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(2) the relation C.

Special case:

P(M?) = P({0}) = {0,{0}} = {0,1} = 2.
One can think of 2 as {F, T} and identify the study of P(M?°) with propo-
sitional logic.

P(M?) contains {(a,a) : a € M}, the diagonal A,;.
Let also J C¢ w, and let o : I — J. This induces
M7 5 T
(bj:jeJ)r— (bapy:i €1)
and hence

Oé* or (a* )//
)

P(M7 P(MT)
B+ {a*(b):b € B}

as well as

Py LD pprt)
A—{b :a*(b) € A}.

For example, Ay = o*M when a : 2 — 1.

Also, let ¢ be the inclusion of n in n + 1. Then

L*(b(), ey bnfl,bn) = (bo, Ce ,bnfl).

If BC M"*' then .*B={ad € M": (d,b) € B for some b in M}.
If AC M™, then 1,A= A x M.

2 Structures

M becomes a structure 9t when equipped with some (or no):
(0) maps f™ from M™) to M for some n(f) in w ~ {0}; then f™ is an
n(f)-ary operation on M,
(1) distinguished elements ¢™ of M;

(2) subsets R™ of M™% for some n(R) in w~ {0}; then R™ is an n(R)-ary
relation on M.



Then the signature L of 91 consists of the various symbols f, ¢ and R,—
names for the corresponding operations, elements and relations.

M is the universe of 91, and 9 is an L-structure.
For example, R is a structure with signature {+, —, -, 0,1, <}.
Structures with more than one universe are possible, e.g. vector-spaces.

Different structures can have the same signature. Any ordered field is a
structure with the same signature as R.

Since M = M*' and 1 = M?°, elements of M are 0-ary operations on M.
Any n-ary operation f on M is identified with the (n + 1)-ary relation
{(@.fl@):aemM}.

Hence the operations, distinguished elements and relations of 991 correspond
to certain elements of various P(M"): the primitive relations of 9.

Suppose D' C P(M') and HD?T is the smallest subset X of H P(MT)
I ICsw
such that:

(0) X contains Aj; and each primitive relation of 9;
(1) X NnP(MT) is a sub-algebra of P(M?);
(2) if a: T — J, then a, (X NP(M")), a* (X NP(M7)) C X.
The elements of H D" are the definable relations of 9.
T

L-structures 9 and N are isomorphic,
M=N,

if there is a bijection from M to N taking each primitive relation of 9% to
the corresponding relation of .

I and N are elementarily equivalent,
M =M,
if there is an isomorphism from H D to H DY taking each primitive re-
lation of 9 to the corresponding {"elation of gﬁ Then
M=N = M=MN.

Example. All algebraically closed fields of the same characteristic are ele-
mentarily equivalent. Their definable sets are the constructible sets over the
prime field.



3 Formulas

Every definable relation X of the L-structure 9t has a non-unique name ¢:
a string of symbols from

LUz, :newlU{= A~ 3}

Also symbols from {V, —, <+, V} can be used. Then ¢ is a formula (of first-
order logic), and X is the interpretation

¢9ﬁ
of ¢ in 9.
Dictionary: (Here, n =n(f) =n(R), and o : n — 1.)

s | ™
xp | @ — ap =1%(@), where v : {k} C T
[Ta@) Tam-1) | @ — [P(a*(@)
Rta) - Tam-1) | ox(R™)
— | Ay
AN
Jzp ¢ | (™), where v : I N {k} C 1

If ¢ C MP, then ¢ is a sentence o.

If 0™ =1, then ¢ is true in I

M E o.

So truth is a relation between sentences and structures.
Let Th(9M) = {0 : M E o}, the theory of M; then

M=M < Th(ON) = Th(N).



4 Curves

Let K = K. (Perhaps K =C.) If K C L, let
A™(L)=1L"
Any irreducible p in K[X, Y] determines a curve C over K:
C(L) = {(v,y) € A*(L) : p(z,y) = 0}.
Let (o, B) € C and {o, B} Z K; then («, ) is a generic point of C' over K.
The field of rational functions on C' over K, denoted

K(0),

is generated by
(x,y) — x
(z,y) —y

these are coordinates of a generic point of C'; hence

}:C—>A.

K(C) = K(a, §).

Say also D is a curve over K, with generic point (v, ¢), and
h K(775) — K(O@B)
over K. Let h(y) = f(«, 8) and h(d) = g(«, 5). Then

(I7y) — (f(xay)7g($7y)) 1O - D7

a dominant rational map (its image contains a generic point).
Any such map ¢ induces the K-embedding ¢* of K(D) in K(C) given by

¢ (f)=So0.

Then
deg ¢ = [K(C) : 9"K(D)].

Example. K(A') > K(X). Then

deg(x — 2" : A — Al) = [K(X) : K(X™)] = n.



Example. Let C be given by 22 + 3% = 1, and let

: y .
gb.(aj,y)l—>1+$.0—>A.

A

(7, y)
(1,026

Let (o, ) be a generic point of C; then

o": f(X) Hf(lfoz) : K(X) — K(a, B);
deg ¢ = [K(a,ﬁ):K(lfaﬂ =1
since ¢* is invertible: If £ = 8/(1 + «), then
2 (2 1—a? -« 1—t2_ 5= 2t

I+a)? (I+a2 1+ta " 1+ 1+

Each curve C has a genus g(C') in w. (A curve over C is a Riemann surface,
hence an orientable surface over R; its genus is the number of holes.)

If ¢ : C --» D, dominant, then (by the Hurwitz formula)
(0) &(C) > g(D), or
(1) 8(C) = g(D) € {0, 1}, or

)
)
(2) h is an isomorphism.
If g(C) < g(D), then every point of D(K («, 3)) has coordinates in K.
Theorem.

e K is a definable subset of K(C).
e Ifg(C)#1 org(D)#1, then
K(C)=K(D) < K(C)2 K(D).

(Jean-Louis Duret proved this in case char K = 0.)



5 Function-fields (optional)

A function-field over K is K(«y,...,q,) (finitely generated). If L; are
such, then
Ly=L, = tr. deg(Ly/K) = tr. deg(L,/K)

by the Tsen—Lang Theorem:

A quadratic form over K is a polynomial

where A'* = A with entries from K. Then A is diagonalizable, so by change
of variables, the form becomes

E ale
i<n

By Tsen and Lang, this form has a non-trivial zero from a function-field L

over K if and only if
n> 2tr.deg(L/K).

Every form axz? + by? + cz? has a non-trivial zero if and only if every non-
trivial equation az? + by? = 1 has a solution. So a function-field L over K is
the function-field of a curve if and only if

LEVzVYw 3z Iy (2w =0V z2? + wy? = 1).

Hence in particular

K(X)# K(X,Y).



6 Elliptic curves

A curve of genus 1 is an elliptic curve.
A lattice is a subgroup (wg,w;) of C, where wow; # 0 and wy/w; ¢ R.
Over C, an elliptic curve is a torus
C/A,
A a lattice. Then we may assume A = (1, 7) for some 7 in .

How is C/A a curve? The Weierstrafl p-function for A is given by
1 1 1
plz) = p(zA) = 5 + > <m—ﬁ>

¢ is doubly periodic:
p(z +w) = p(2)

if we A. So p is well-defined on C/A. Now let

1

weA~{0}
and let F be the curve given by
y? = 423 — 60Gox — 140G 5.
Then (p, ¢') € E, so C(E) = C(p, ¢'), and there is an isomorphism
z— (p(2),9'(2)) : C/A --» E.

The induced group-structure of F is given by polynomials:

4(p(a) + p(b) + pla+b)) = A%,

where ) (a)
gO) -9 o,
N e R
@' (a), if a =b.

Let E; be C/A;. A non-zero homomorphism from Ej to F; is an isogeny
and corresponds to « in C* such that

aly C Ay;

the degree of the isogeny is |Ay/a|.

Any integer induces an endomorphism of C/A; if any other complex numbers
do, then C/A has complex multiplication.

8



Theorem. Let E; be elliptic curves over K algebraically closed. The follow-
ing are equivalent:

(0) There are two isogenies from Eq to Ey of relatively prime degrees.
(1) K(Ey) and K(E,) agree on all sentences

Voo Vo, --- Vo, 1 Jz, ¢(f )»

where ¢ is quantifier-free.
(2) K(FEy) and K(E,) agree on all V3 sentences.

If one of the E; has no complex multiplication, then the following is equivalent
to the foregoing:

(3) K(Ey) = K(E).

If one of the E; does have complexr multiplication, and char K = 0, then the
following is equivalent to (0) et al.:

(4) End(E,) = End(E)).

(Duret proved (1) <= (3) when char K = 0.)
Relevant facts:

e There are just 13 elliptic curves over C that are determined by their
endomorphism-rings.

e Say £ =C/(1,7). Then
End(F) 2 {acC:a(l,7) C{1,7)} <(1,71).

If £ has complex multiplication, then 7 is quadratic (and conversely),
since then
(x+ Ar)T € (1, 1)

for some non-zero A. If |A| is minimal, then
End(F) = (1, AT) .

Example. End(C/ (1,7)) & (1,7) when 7 is i or (1 +1iv/3)/2.

e [very isogeny «a : F/y — I has a dual
a: El — EO

of the same degree d; then & o o = [d] (multiplication by d).



Ideas of proof:
(1) = (0). If p always divides [K(Ey) : ¢*K(E})], then for some Ej,

¢*K(E)) C ¢"K(Ey) C K(Ey);
[K(Eo) : K(E»)] = p.

Then K(Ey) says—but K (E;) does not—that every point of E; is the image
of a point of some F5 under a map of degree p.

(0) = (2). By (0), when n > 1, some isogeny has degree prime to n. Say
K(Ey) EVZ 37 ¢(&,7 ), where ¢ is quantifier-free. Let n be the factorial
of the degrees of the polynomials in ¢, and say

ged(n, [K(Ey) : K(E)]) = 1.

If @ is from K(FE;), then ¢(@ , 4 ) must have a solution from K (E}).
(0) — (4) If o; : Ey — E; and deg «; = d; and Zaldz =1, then

End(E,) — End(Eo)
ﬁ — Zai&ioﬁoai.
(4) = (0). Say End(Ep) = End(E)). Then we may assume

E,=C/{1,7), E,=C/{1,n7),
AT + Br+C =0, gcd(A,B,0)=0, n|A.

Hence
Hom(FEy, F1) = (n, AT) .

If = nx + Ay7, then
1 AC
deg(z > az) = — |a| = na* — Bay + —7,
n n

A
ged (n,B, —C> =1,
n

so the degree takes two relatively prime values.
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