MODEL-THEORY OF LIE-RINGS

DAVID PIERCE

The prototypical Lie-ring is $(\text{End}(E), \circ - \circ')$, where E is an abelian group, End(E) is the abelian group of its endomorphisms, \circ is composition, and $x \circ' y = y \circ x$. Then an arbitrary ring (E, \cdot) is a Lie-ring if

$$\begin{aligned} x \cdot y + y \cdot x &= 0, \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) - y \cdot (x \cdot z). \end{aligned}$$

The latter identity means that the map $u \mapsto (z \mapsto u \cdot z)$ is a homomorphism from (E, \cdot) to $(\operatorname{End}(E), \circ - \circ')$. Commutative rings then have a parallel definition: $x \cdot y - y \cdot x = 0$, and $u \mapsto (z \mapsto u \cdot z)$ is a homomorphism from (E, \cdot) to $(\operatorname{End}(E), \circ)$. Other rings can be defined in terms of different linear combinations * of \circ and \circ' , but they don't behave so nicely: we do not in general have that $u \mapsto (z \mapsto u * z)$ is a homomorphism from $(\operatorname{End}(E), *)$ to $(\operatorname{End}(\operatorname{End}(E)), *)$ unless * is \circ or $\circ - \circ'$ or trivial.

To what extent will the model-theory of Lie-rings parallel that of commutative rings (integral domains, fields)? The set of derivations of a commutative ring is naturally a Lie-ring. Hence, for example, the model-theory of differential fields gives rise to model-complete and ω -stable theories of (expansions of) Lie-rings.

Mathematics Department, Middle East Technical University, Ankara 06531, Turkey

E-mail address: dpierce@math.metu.edu.tr *URL*: http://www.math.metu.edu.tr/~dpierce/