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Preface

There have been several versions of the present text.

. The first draft was my record of the first semester of the grad-
uate course in algebra given at Middle East Technical University
in Ankara in –. I had taught the same course also in –.
The main reference for the course was Hungerford’s Algebra [].

. I revised my notes when teaching algebra a third time, in –
. Here I started making some attempt to indicate how theorems
were going to be used later. What is now §. (the development of
the natural numbers from the Peano Axioms) was originally pre-
pared for a course called Non-Standard Analysis, given at the Nesin
Mathematics Village, Şirince, in the summer of . I built up the
foundational Chapter  around this section.

. Another revision, but only partial, came in preparation for a
course at Mimar Sinan Fine Arts University in Istanbul in –.
I expanded Chapter , out of a desire to give some indication of how
mathematics, and especially algebra, could be built up from some
simple axioms about the relation of membership—that is, from set
theory. This building up, however, is not part of the course proper.

. The present version of the notes represents a more thorough-
going revision, made during and after the course at Mimar Sinan. I
try to make more use of examples, introducing them as early as pos-
sible. The number theory that has always been in the background
has been integrated more explicitly into the text (see page ). I
have tried to distinguish more clearly between what is essential to
the course and what is not; the starred sections comprise most of
what is not essential.

All along, I have treated groups, not merely as structures sat-
isfying certain axioms, but as structures isomorphic to groups of





symmetries of sets. The equivalence of the two points of view
has been established in the theorem named for Cayley (in §.,
on page ). Now it is pointed out (in that section) that standard
structures like (Q+, 1,−1, ·) and (Q, 0,−,+), are also groups, even
though they are not obviously symmetry groups. Several of these
structures are constructed in Chapter . (In earlier editions they
were constructed later.)

Symmetry groups as such are investigated more thoroughly now,
in §§. and ., before the group axioms are simplified in §..

Rings are defined in Part II, on groups, so that their groups
of units are available as examples of groups, especially in §. on
semidirect products (page ). Also rings are needed to produce
rings of matrices and their groups of units, as in §. (page ).

I give many page-number references, first of all for my own con-
venience in the composition of the text at the computer. Thus the
capabilities of Leslie Lamport’s LATEX program in automating such
references are invaluable. Writing the text could hardly have been
contemplated in the first place without Donald Knuth’s original
TEX program. I now use the scrbook document class of KOMA-

Script, “developed by Markus Kohm and based on earlier work by
Frank Neukam” [, p. ].

Ideally every theorem would have an historical reference. This is
a distant goal, but I have made some moves in this direction.

The only exercises in the text are the theorems whose proofs are
not already supplied. Ideally more exercises would be supplied,
perhaps in the same manner.
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Part I.

Preliminaries





. Introduction

Published around  b.c.e., the Elements of Euclid is a model of
mathematical exposition. Each of its thirteen books consists mainly
of statements followed by proofs. The statements are usually called
Propositions today [, ], although they have no particular title
in the original text []. By their content, they can be understood
as theorems or problems. Writing six hundred years after Euclid,
Pappus of Alexandria explains the difference [, p. ]:

Those who wish to make more skilful distinctions in geometry find
it worthwhile to call

• a problem (πρόβλημα), that in which it is proposed (προ-
βάλλεται) to do or construct something;

• a theorem (θεώρημα), that in which the consequences and
necessary implications of certain hypotheses are investigated

(θεωρεῖται).

(The Greek letters are listed and discussed in Appendix A, p. .)
For example, Euclid’s first proposition is the the problem of con-
structing an equilateral triangle. His fifth proposition is the theo-
rem that the base angles of an isosceles triangle are equal to one
another.

Each proposition of the present notes has one of four titles:
Lemma, Theorem, Corollary, or Porism. Each proposition
may be followed by an explicitly labelled proof, which is termi-
nated with a box . If there is no proof, the reader is expected to
supply her or his own proof, as an exercise. No propositions are to
be accepted on faith.

Nonetheless, for an algebra course, some propositions are more
important than others. The full development of the foundational
Chapter  below would take a course in itself, but is not required
for algebra as such.





In these notes, a proposition may be called a lemma if it will
be used to prove a theorem, but then never used again. Lemmas
in these notes are numbered sequentially. Theorems are also num-
bered sequentially, independently from the lemmas. A statement
that can be proved easily from a theorem is called a corollary and
is numbered with the theorem. So for example Theorem  on
page  is followed by Corollary ..

Some propositions can be obtained easily, not from a preceding
theorem itself, but from its proof. Such propositions are called
porisms and, like corollaries, are numbered with the theorems from
whose proofs they are derived. So for example Porism . on p.
 follows Theorem .

The word porism and its meaning are explained, in the th cen-
tury c.e., by Proclus in his commentary on the first book of Euclid’s
Elements [, p. ]:

“Porism” is a term applied to a certain kind of problem, such
as those in the Porisms of Euclid. But it is used in its special
sense when as a result of what is demonstrated some other theo-
rem comes to light without our propounding it. Such a theorem
is therefore called a “porism,” as being a kind of incidental gain
resulting from the scientific demonstration.

The translator explains that the word porism comes from the verb
πορίζω, meaning to furnish or provide.

The original source for much of the material of these notes is
Hungerford’s Algebra [], or sometimes Lang’s Algebra [], but
there are various rearrangements and additions. The back cover of
Hungerford’s book quotes a review:

Hungerford’s exposition is clear enough that an average graduate
student can read the text on his own and understand most of it.

I myself aim for logical clarity; but I do not intend for these notes to
be a replacement for lectures in a classroom. Such lectures may am-
plify some parts, while glossing over others. As a graduate student
myself, I understood a course to consist of the teacher’s lectures,
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and the most useful reference was not a printed book, but the notes
that I took in my own hand. I still occasionally refer to those notes
today.

Hungerford is inspired by category theory, of which his teacher
Saunders Mac Lane was one of the creators. Categories are defined
in the present text in §. (page ). The spirit of category theory
is seen at the beginning of Hungerford’s Chapter I, “Groups”:

There is a basic truth that applies not only to groups but also to
many other algebraic objects (for example, rings, modules, vector
spaces, fields): in order to study effectively an object with a given
algebraic structure, it is necessary to study as well the functions
that preserve the given algebraic structure (such functions are
called homomorphisms).

Hungerford’s term object here reflects the usage of category the-
ory. Taking inspiration from model theory, the present notes will
often use the term structure instead. Structures are defined in §.
(page ). The examples of objects named by Hungerford are all
structures in the sense of model theory, although not every object
in a category is a structure in this sense.

When a word is printed in boldface in these notes, the word is a
technical term whose meaning can be inferred from the surrounding
text.





. Mathematical foundations

As suggested in the Introduction, the full details of this chapter are
not strictly part of an algebra course, but are logically presupposed
by the course.

One purpose of the chapter is to establish the notation whereby

N = {1, 2, 3, . . . }, ω = {0, 1, 2, . . . }.

The elements of ω are the von-Neumann natural numbers, so that
if n ∈ ω, then

n = {0, . . . , n− 1}.
In particular, n is itself a set with n elements. When n = 0, this
means n is the empty set. A cartesian power An can be understood
as the set of functions from n to A. Then a typical element of An

can be written as (a0, . . . , an−1). Most people write (a1, . . . , an)
instead; and when they want an n-element set, they use {1, . . . , n}.
This is a needless complication, since it leaves us with no simple
abbreviation for an n-element set.

Another purpose of this chapter is to review the construction,
not only of the sets N and ω, but the sets Q+, Q, Z, R+, and R
derived from them. We ultimately have certain structures, namely:

The letter ω is not the minuscule English letter called double u, but the
minuscule Greek omega, which is probably in origin a double o. Obtained
with the control sequence \upomega from the upgreek package for LATEX,
the ω used here is upright, unlike the standard slanted ω (obtained with
\omega; see Appendix A, p. ). The slanted ω might be used as a variable
(as for example on page ). We shall similarly distinguish between the
constant π (used for the ratio of the circumference to the diameter of a
circle, as well as for the canonical projection defined on page  and the
coordinate projections defined on pages  and ) and the variable π
(pages  and ).





• the semigroup (N,+);
• monoids (ω, 0,+) and (N, 1, ·);
• groups (Q+, 1,−1, ·), (Q, 0,−,+), (Z, 0,−,+), (R+, 1,−1, ·),

and (R, 0,−,+);
• rings (Z, 0,−,+, 1, ·), (Q, 0,−,+, 1, ·), and (R, 0,−,+, 1, ·).

.. Sets and geometry

Most objects of mathematical study can be understood as sets. A
set is a special kind of collection. A collection is many things,
considered as one. Those many things are the members or ele-
ments of the collection. The members compose the collection,
and the collection comprises them. Each member belongs to
the collection and is in the collection, and the collection contains
the member.

Designating certain collections as sets, we shall identify some
properties of them that will allow us to do the mathematics that we
want. These properties will be expressed by axioms. We shall use
versions of the so-called Zermelo–Fraenkel Axioms with the Axiom
of Choice. The collection of these axioms is denoted by ZFC. Most
of these axioms were described by Zermelo in  [].

We study study sets axiomatically, because a naïve approach can
lead to contradictions. For example, one might think naïvely that
there was a collection of all collections. But there can be no such
collection, because if there were, then there would be a collection of
all collections that did not contain themselves, and this collection
would contain itself if and only if it did not. This result is the
Russell Paradox, described in a letter [] from Russell to Frege
in .

The propositions of Euclid’s Elements concern points and lines
in a plane and in space. Some of these lines are straight lines, and

Thus the relations named by the verbs compose and comprise are converses
of one another; but native English speakers often confuse these two verbs.

.. Sets and geometry 



some are circles. Two straight lines that meet at a point make an
angle. Unless otherwise stated, straight lines have endpoints. It
is possible to compare two straight lines, or two angles: if they
can be made to coincide, they are equal to one another. This is
one of Euclid’s so-called common notions. If a straight line has
an endpoint on another straight line, two angles are created. If
they are equal to one another, then they are called right angles.
One of Euclid’s postulates is that all right angles are equal to one
another. The other postulates tell us things that we can do: Given
a center and radius, we can draw a circle. From any given point to
another, we can draw a straight line, and we can extend an existing
straight line beyond its endpoints; indeed, given two straight lines,
with another straight line cutting them so as to make the interior
angles on the same side together less than two right angles, we can
extend the first two straight lines so far that they will intersect one
another.

Using the common notions and the postulates, Euclid proves
propositions: the problems and theorems discussed in the Introduc-
tion above. The common notions and the postulates do not create
the plane or the space in which the propositions are set. The plane
or the space exists already. The Greek word γεωμετρία has the
original meaning of earth measurement, that is, surveying. People
knew how to measure the earth long before Euclid’s Elements was
written.

Similarly, people were doing mathematics long before set the-
ory was developed. Accordingly, the set theory presented here will
assume that sets already exist. Where Euclid has postulates, we
shall have axioms. Where Euclid has definitions and common no-
tions and certain unstated assumptions, we shall have definitions
and certain logical principles.

It is said of the Elements,

A critical study of Euclid, with, of course, the advantage of present
insights, shows that he uses dozens of assumptions that he never
states and undoubtedly did not recognize. [, p. ]
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One of these assumptions is that two circles will intersect if each of
them passes through the center of the other. (This assumption is
used to construct an equilateral triangle.) But it is impossible to
state all of one’s assumptions. We shall assume, for example, that
if a formal sentence ∀x ϕ(x) is true, what this means is that ϕ(a) is
true for arbitrary a. This means ϕ(b) is true, and ϕ(c) is true, and
so on. However, there is nothing at the moment called a or b or
c or whatever. For that matter, we have no actual formula called
ϕ. There is nothing called x, and moreover there will never be
anything called x in the way that there might be something called
a. Nonetheless, we assume that everything we have said about ϕ,
x, a, b, and c makes sense.

The elements of every set will be sets themselves. By definition,
two sets will equal if they have the same elements. There will be
an empty set, denoted by

∅;

this will have no elements. If a is a set, then there will be a set
denoted by

{a},
with the unique element a. If b is also a set, then there will be a
set denoted by

a ∪ b,
whose members are precisely the members of a and the members
of b. Thus there will be sets a ∪ {b} and {a} ∪ {b}; the latter is
usually written as

{a, b}.
If c is another set, we can form the set {a, b} ∪ {c}, which we write
as

{a, b, c},
and so forth. This will allow us to build up the following infinite
sequence:

∅, {∅},
{
∅, {∅}

}
,

{

∅, {∅},
{
∅, {∅}

}}

, . . .

.. Sets and geometry 



By definition, these sets will be the natural numbers 0, 1, 2, 3, . . . To
be more precise, they are the von Neumann natural numbers
[].

.. Set theory

... Notation

Our formal axioms for set theory will be written in a certain logic,
whose symbols are:

) variables, as x, y, and z;
) the symbol ∈ denoting the membership relation;
) the Boolean connectives of propositional logic:

a) the singulary connective ¬ (“not”), and
b) the binary connectives ∨ (“or”), ∧ (“and”), ⇒ (“implies”),

and ⇔ (“if and only if”);
) parentheses;
) quantification symbols ∃ (“there exists”) and ∀ (“for all”).

We may also introduce constants, as a, b, and c, or A, B, and C, to
stand for particular sets. A variable or a constant is called a term.
If t and u are terms, then the expression

t ∈ u

is called an atomic formula. It means t is a member of u. From
atomic formulas, other formulas are built up recursively by use of
the symbols above, according to certain rules, namely,

) if ϕ is a formula, then so is ¬ϕ;
) if ϕ and ψ are formulas, then so is (ϕ ∗ ψ), where ∗ is one of

the binary Boolean connectives;
) if ϕ is a formula and x is variable, then ∃x ϕ and ∀x ϕ are

formulas.
The formula ¬ t ∈ u says t is not a member of u. We usually
abbreviate the formula by

t /∈ u.
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The expression ∀z (z ∈ x ⇒ z ∈ y) is the formula saying that
every element of x is an element of y. Another way to say this is
that x is a subset of y, or that y includes x. We abbreviate this
formula by

x ⊆ y.

The expression x ⊆ y ∧ y ⊆ x is the formula saying that x and y
have the same members, so that they are equal by the definition
foretold above (page ); in this case we use the abbreviation

x = y.

All occurrences of x in the formulas ∃x ϕ and ∀x ϕ are bound,

and they remain bound when other formulas are built up from these
formulas. Occurrences of a variable that are not bound are free.

... Classes and equality

A singulary formula is a formula in which only one variable occurs
freely. If ϕ is a singulary formula with free variable x, we may write
ϕ as

ϕ(x).

If a is a set, then by replacing every free occurrence of x in ϕ with
a, we obtain the formula

ϕ(a),

The relation ⊆ of being included is completely different from the relation ∈
of being contained. However, many mathematicians confuse these relations
in words, using the word contained to describe both.

The word bound here is the past participle of the verb to bind. There is
another verb, to bound, which is also used in mathematics, but its past
participle is bounded. The two verbs to bind and to bound are apparently
unrelated. The verb to bind has been part of English since the beginning
of that language in the tenth century. The verb to bound is based on the
noun bound, which entered Middle English in the th century from the
Old French noun that became the modern borne.

The word unary is more common, but less etymologically correct.

.. Set theory 



which is called a sentence because it has no free variables. This
sentence is true or false, depending on which set a is. If the sentence
is true, then a can be said to satisfy the formula ϕ. There is a
collection of all sets that satisfy ϕ: we denote this collection by

{x : ϕ(x)}.

Such a collection is called a class. In particular, it is the class
defined by the formula ϕ. If we give this class the name C, then
the expression

x ∈ C

means just ϕ(x).
A formula in which only two variables occur freely is binary. If

ψ is such a formula, with free variables x and y, then we may write
ψ as

ψ(x, y).

We shall want this notation for proving Theorem  below. If needed,
we can talk about ternary formulas χ(x, y, z), and so on.

The definition of equality of sets can be expressed by the sen-
tences

∀x ∀y
(
x = y ⇒ (a ∈ x⇔ a ∈ y)

)
, (.)

∀x ∀y ∃z
(
¬(z ∈ x⇔ z ∈ y) ∨ x = y

)
, (.)

where a is an arbitrary set. The Equality Axiom is that equal
sets belong to the same sets:

∀x ∀y
(
x = y ⇒ (x ∈ a⇔ y ∈ a)

)
. (.)

The meaning of the sentences (.) and (.) is that equal sets
satisfy the same atomic formulas a ∈ x and x ∈ a.

Theorem . Equal sets satisfy the same formulas:

∀x ∀y
(

x = y ⇒
(
ϕ(x) ⇔ ϕ(y)

))

. (.)
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Proof. Suppose a and b are equal sets. By symmetry, it is enough
to show

ϕ(a) ⇒ ϕ(b) (.)

for all singulary formulas ϕ(x). As noted, we have (.) whenever
ϕ(x) is an atomic formula x ∈ c or c ∈ x. We also have it when ϕ
is x ∈ x. If we have (.) when ϕ is ψ, then we have it when ϕ is
¬ψ. If we have (.) when ϕ is ψ or χ, then we have it when ϕ is
(ψ∗χ), where ∗ is one of the binary connectives. If, for some binary
formula ψ, we have (.) whenever ϕ(x) is of the form ψ(x, c), then
we have it when ϕ(x) is ∀y ψ(x, y) or ∃y ψ(x, y). Therefore we do
have (.) in all cases.

The foregoing is a proof by induction. Such a proof is possible
because formulas are defined recursively. See §. below (page ).
Actually we have glossed over some details. This may cause confu-
sion; but then the details themselves could cause confusion. What
we are really proving is all of the sentences of one of the infinitely
many forms

∀x ∀y
(

x = y ⇒
(
ϕ(x) ⇔ ϕ(y)

))

,

∀x ∀y ∀z
(

x = y ⇒
(
ϕ(x, z) ⇔ ϕ(y, z)

))

,

∀x ∀y ∀z ∀z′
(

x = y ⇒
(
ϕ(x, z, z′) ⇔ ϕ(y, z, z′)

))

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,







(.)

where no constant occurs in any of the formulas ϕ. Assuming a = b,
it is enough to prove every sentence of one of the forms

ϕ(a) = ϕ(b),

ϕ(a, c) = ϕ(b, c),

ϕ(a, c, c′) = ϕ(b, c, c′),

. . . . . . . . . . . . . . . . . . . . . . .

.. Set theory 



We have tried to avoid writing all of this out, by allowing constants
to occur implicitly in formulas, and by understanding ∀x ϕ(x) to
mean ϕ(a) for arbitrary a, as suggested above (page ). We could
abbreviate the sentences in (.) as

∀x ∀y ∀z1 . . . ∀zn
(

x = y ⇒
(
ϕ(x, z1, . . . , zn) ⇔ ϕ(y, z1, . . . , zn)

))

. (.)

However, we would have to explain what n was and what the dots
of ellipsis meant. The expression in (.) means one of the formulas
in the infinite list suggested in (.), and there does not seem to be
a better way to say it than that.

The sentence (.) is usually taken as a logical axiom, like one
of Euclid’s common notions. Then (.) and (.) are special cases
of this axiom, but (.) is no longer true, either by definition or by
proof. So this too must be taken as an axiom, which is called the
Extension Axiom.

In any case, all of the sentences (.), (.), (.), and (.) end
up being true. They tell us that equal sets are precisely those sets
that are logically indistinguishable. We customarily treat equality
as identity. We consider equal sets to be the same set. If a = b, we
may say simply that a is b.

Similarly, in ordinary mathematics, since 1/2 = 2/4, we consider
1/2 and 2/4 to be the same. In ordinary life they are distinct: 1/2
is one thing, namely one half, while 2/4 is two things, namely two
quarters. In mathematics, we ignore this distinction.

As with sets, so with classes, one includes another if every el-
ement of the latter belongs to the former. Hence if formulas ϕ(x)
and ψ(y) define classes C and D respectively, and if

∀x
(
ϕ(x) ⇒ ψ(x)

)
,

this means D includes C, and we write

C ⊆ D.
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If also C includes D, then the two classes are equal, and we write

C = D;

this means ∀x
(
ϕ(x) ⇔ ψ(x)

)
. Likewise set and a class can be

considered as equal if they have the same members. Thus if again
C is defined by ϕ(x), then the expression

a = C

means ∀x
(
x ∈ a⇔ ϕ(x)

)
.

Theorem . Every set is a class.

Proof. The set a is the class {x : x ∈ a}.

However, there is no reason to expect the converse to be true.

Theorem . Not every class is a set.

Proof. There are formulas ϕ(x) such that

∀y ¬∀x
(
x ∈ y ⇔ ϕ(x)

)
.

Indeed, let ϕ(x) be the formula x /∈ x. Then

∀y ¬
(
y ∈ y ⇔ ϕ(y)

)
.

More informally, the argument is that the class {x : x /∈ x} is not
a set, because if it were a set a, then a ∈ a ⇔ a /∈ a, which is a
contradiction. This is what was given above as the Russell Paradox
(page ). Another example of a class that is not a set is given by
the Burali-Forti Paradox on page  below.
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... Construction of sets

We have established what it means for sets to be equal. We have
established that sets are examples, but not the only examples, of the
collections called classes. However, we have not officially exhibited
any sets. We do this now. The Empty Set Axiom is

∃x ∀y y /∈ x.

As noted above (page ), the set whose existence is asserted by
this axiom is denoted by ∅. This set is the class {x : x 6= x}.

We now obtain the sequence 0, 1, 2, . . . , described above (p. ).
We use the Empty Set Axiom to start the sequence. We continue
by means of the Adjunction Axiom: if a and b are sets, then the
set denoted by a ∪ {b} exists. Formally, the axiom is

∀x ∀y ∃z ∀w (w ∈ z ⇔ w ∈ x ∨ w = y).

In writing this sentence, we follow the convention whereby the con-
nectives ∨ and ∧ are more binding than ⇒ and ⇔, so that, for
example, the expression

(w ∈ z ⇔ w ∈ x ∨ w = y)

means the formula
(
w ∈ z ⇔ (w ∈ x ∨ w = y)

)
.

We can understand the Adjunction Axiom as saying that, for
all sets a and b, the class {x : x ∈ a ∨ x = b} is actually a set.
Adjunction is not one of Zermelo’s original axioms of ; but the
following is Zermelo’s Pairing Axiom:

Theorem . For any two sets a and b, the set {a, b} exists:

∀x ∀y ∃z ∀w (w ∈ z ⇔ w = x ∨ w = y).

Proof. By Empty Set and Adjunction, ∅ ∪ {a} exists, but this is
just {a}. Then {a} ∪ {b} exists by Adjunction again.
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The theorem is that the class {x : x = a∨ x = b} is always a set.
Actually Zermelo does not have a Pairing Axiom as such, but he
has an Elementary Sets Axiom, which consists of what we have
called the Empty Set Axiom and the Pairing Axiom.

Every class C has a union, which is the class

{x : ∃y (x ∈ y ∧ y ∈ C)}.

This class is denoted by
⋃

C.

This notation is related as follows with the notation for the classes
involved in the Adjunction Axiom:

Theorem . For all sets a and b, a ∪ {b} =
⋃{

a, {b}
}
.

We can now use the more general notation

a ∪ b =
⋃

{a, b}.

The Union Axiom is that the union of a set is always a set:

∀x ∃y y =
⋃

x.

The Adjunction Axiom is a consequence of the Empty-Set, Pairing,
and Union Axioms. This why Zermelo did not need Adjunction as
an axiom. We state it as an axiom, because we can do a lot of
mathematics with it that does not require the full force of the Union
Axiom. We shall however use the Union Axiom when considering
unions of chains of structures (as on p.  below).

Suppose A is a set and C is the class {x : ϕ(x)}. Then we can
form the class

A ∩C,

Zermelo also requires that for every set a there be a set {a}; but this can be
understood as a special case of pairing.
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which is defined by the formula x ∈ A ∧ ϕ(x). The Separation
Axiom is that this class is a set. Standard notation for this set is

{x ∈ A : ϕ(x)}. (.)

However, this notation is unfortunate. Normally the formula x ∈ A
is read as a sentence of ordinary language, namely “x belongs to A”
or “x is in A.” However, the expression in (.) is read as “the set
of x in A such that ϕ holds of x”; in particular, x ∈ A here is read
as the noun phrase “x in A” (or “x belonging to A,” or “x that are
in A,” or something like that).

Actually Separation is a scheme of axioms, one for each singulary
formula ϕ:

∀x ∃y ∀z
(
z ∈ y ⇔ z ∈ x ∧ ϕ(z)

)
.

In most of mathematics, and in particular in the other sections
of these notes, one need not worry too much about the distinction
between sets and classes. But it is logically important. It turns out
that the objects of interest in mathematics can be understood as
sets. Indeed, we have already defined natural numbers as sets. We
can talk about sets by means of formulas. Formulas define classes
of sets, as we have said. Some of these classes turn out to be sets
themselves; but again, there is no reason to expect all of them to
be sets, and indeed by Theorem  (p. ) some of them are not
sets. Sub-classes of sets are sets, by the Separation Axiom; but
some classes are too big to be sets. The class {x : x = x} of all sets
is not a set, since if it were, then the sub-class {x : x /∈ x} would
be a set, and it is not.

Every set a has a power class, namely the class {x : x ⊆ a} of all
subsets of a. This class is denoted by

P(a).

Ambiguity of expressions like x ∈ A (is it a noun or a sentence?) is common in
mathematical writing, as for example in the abbreviation of ∀ε (ε > 0 ⇒ ϕ)
as (∀ε > 0) ϕ. Such ambiguity is avoided in these notes. However, certain
ambiguities are tolerated: letters like a and A stand sometimes for sets,
sometimes for names for sets.
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The Power Set Axiom is that this class is a set:

∀x ∃y y = P(x).

Then P(a) can be called the power set of a. In the main text,
after this chapter, we shall not explicitly mention power sets until p.
. However, the Power Set Axiom is of fundamental importance
for allowing us to prove Theorem  on p.  below.

We want the Axiom of Infinity to be simply that the collection
{0, 1, 2, . . . } of natural numbers as defined on p.  is a set. It is not
obvious how to formulate this as a sentence of our logic. However,
the indicated collection contains 0, which by definition is the empty
set; also, for each of its elements n, the collection contains also
n ∪ {n}. Let I be the class of all sets with these properties: that
is,

I =
{
x : 0 ∈ x ∧ ∀y (y ∈ x⇒ y ∪ {y} ∈ x)

}
.

Thus, if it exists, the set of natural numbers will belong to I. Fur-
thermore, the set of natural numbers will be the smallest element
of I. But we still must make this precise. For an arbitrary class C,
we define

⋂

C = {x : ∀y (y ∈ C ⇒ x ∈ y)}.

This class is the intersection of C.

Theorem . If a and b are two sets, then

a ∩ b =
⋂

{a, b}.

If a ∈ C, then
⋂

C ⊆ a,

so in particular
⋂

C is a set. However,
⋂
∅ is the class of all sets,

which is not a set.
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We can now define

ω =
⋂

I. (.)

Theorem . The following conditions are equivalent.

. I 6= ∅.
. ω is a set.
. ω ∈ I.

Any of the equivalent conditions in the theorem can be taken as
the Axiom of Infinity. This does not by itself establish that ω has
the properties we expect of the natural numbers; we still have to
do some work. We shall do this in §. (p. ).

The Axiom of Choice can be stated in any of several equiva-
lent versions. One of these versions is that every set can be well-
ordered: that is, the set can be given a linear ordering (as defined
on p.  below) so that every nonempty subset has a least element
(as in Theorem  on p. ). However, we have not yet got a way
to understand an ordering as a set. An ordering is a kind of binary
relation, and a binary formula can be understood to define a binary
relation. But we cannot yet use our logical symbolism to say that
such a relation exists. We shall be able to do so in the next section.
We shall use the Axiom of Choice:

• to establish that every set has a cardinality (p. );
• to prove Theorem , that every pid is a ufd (p. );
• to prove Zorn’s Lemma (p. ;
• hence to prove Stone’s theorem on representations of Boolean

rings (p. ).

The Axiom can also used to show:

• that direct sums are not always the same as direct products
(p. );

• that nonprincipal ultraproducts of fields exist (p. ).

Some writers define
⋂

C only when C is a nonempty set. This would make
our definition of ω invalid without the Axiom of Infinity.
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For the record, we have now named all of the axioms given by
Zermelo in : (I) Extension, (II) Elementary Sets, (III) Separa-
tion, (IV) Power Set, (V) Union, (VI) Choice, and (VII) Infinity.
Zermelo assumes that equality is identity: but his assumption is
our Theorem . In fact Zermelo does not use logical formalism as
we have. We prefer to define equality with (.) and (.) and then
use the Axioms of (i) the Empty Set, (ii) Equality, (iii) Adjunc-
tion, (iv) Separation, (v) Union, (vi) Power Set, (vii) Infinity, and
(viii) Choice. But these two collections of definitions and axioms
are logically equivalent.

Apparently Zermelo overlooked one axiom, the Replacement Ax-
iom, which was supplied in  by Skolem [] and by Fraenkel.

We shall give this axiom in the next section.
An axiom never needed in ordinary mathematics is the Founda-

tion Axiom. Stated originally by von Neumann [], it ensures that
certain pathological situations, like a set containing itself, are im-
possible. It does this by declaring that every nonempty set has an
element that is disjoint from it: ∀x ∃y (x 6= ∅ ⇒ y ∈ x∧x∩y = ∅).
We shall never use this.

The collection called ZFC is Zermelo’s axioms, along with Re-
placement and Foundation. If we leave out Choice, we have what
is called ZF.

.. Functions and relations

Given two sets a and b, we define

(a, b) =
{
{a}, {a, b}

}
.

This set is the ordered pair whose first entry is a and whose
second entry is b. The purpose of the definition is to make the

I have not been able to consult Fraenkel’s original papers. However, accord-
ing to van Heijenoort [, p. ], Lennes also suggested something like
the Replacement Axiom at around the same time () as Skolem and
Fraenkel; but Cantor had suggested such an axiom in .
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following theorem true.

Theorem . Two ordered pairs are equal if and only if their first
entries are equal and their second entries are equal:

(a, b) = (x, y) ⇔ a = x ∧ b = y.

If A and B are sets, then we define

A×B = {z : ∃x ∃y (z = (x, y) ∧ x ∈ A ∧ y ∈ B)}.

This is the cartesian product of A and B.

Theorem . The cartesian product of two sets is a set.

Proof. If a ∈ A and b ∈ B, then {a} and {a, b} are elements of
P(A ∪B), so (a, b) ∈ P(P(A ∪B)), and therefore

A×B ⊆ P(P(A ∪B)).

An ordered triple (x, y, z) can be defined as
(
(x, y), z

)
, and so

forth.

A function or map from A to B is a subset f of A×B such that,
for each a in A, there is exactly one b in B such that (a, b) ∈ f .
Then instead of (a, b) ∈ f , we write

f(a) = b. (.)

We have then

A = {x : ∃y f(x) = y},
that is, A = {x : ∃y (x, y) ∈ f}. The set A is called the domain
of f . A function is sometimes said to be a function on its domain.
For example, the function f here is a function on A. The range of
f is the subset

{y : ∃x f(x) = y}
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of B. If this range is actually equal to B, then we say that f is
surjective onto B, or simply that f is onto B. Strictly speaking,
it would not make sense to say f was surjective or onto, simply.

A function f is injective or one-to-one, if

∀x ∀z (f(x) = f(z) ⇒ x = z).

The expression f(x) = f(z) is an abbreviation of ∃y (f(x) = y ∧
f(z) = y), which is another way of writing ∃y

(
(x, y) ∈ f ∧ (z, y) ∈

f
)
. An injective function from A onto B is a bijection from A to

B.

If it is not convenient to name a function with a single letter like
f , we may write the function as

x 7→ f(x),

where the expression f(x) would be replaced by some particular
expression involving x. As an abbreviation of the statement that f
is a function from A to B, we may write

f : A→ B. (.)

Thus, while the symbol f can be understood as a noun, the expres-
sion f : A→ B is a complete sentence. If we say, “Let f : A→ B,”
we mean let f be a function from A to B.

If f : A → B and D ⊆ A, then the subset {y : ∃x (x ∈ D ∧ y =
f(x)} of B can be written as one of

{f(x) : x ∈ D}, f [D].

This set is the image of D under f . Similarly, we can write

A×B = {(x, y) : x ∈ A ∧ y ∈ B}.
The notation f(D) is also used, but the ambiguity is dangerous, at least in

set theory as such.
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Then variations on this notation are possible. For example, if
f : A→ B and D ⊆ A, we can define

f ↾ D = {(x, y) ∈ f : x ∈ D}.

Theorem . If f : A→ B and D ⊆ A, then

f ↾ D : D → B

and, for all x in D, (f ↾ D)(x) = f(x).

If f : A→ B and g : B → C, then we can define

g ◦ f = {(x, z) : ∃y (f(x) = y ∧ g(y) = z)};

this is called the composite of (g, f).

Theorem . If f : A→ B and g : B → C, then

g ◦ f : A→ C.

If also h : C → D, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

We define
idA = {(x, x) : x ∈ A};

this is the identity on A.

Theorem . idA is a bijection from A to itself. If f : A → B,
then

f ◦ idA = f, idB ◦f = f.

If f is a bijection from A to B, we define

f−1 = {(y, x) : f(x) = y};

this is the inverse of f .
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Theorem .
. The inverse of a bijection from A to B is a bijection from B

to A.
. Suppose f : A → B and g : B → A. Then f is a bijection

from A to B whose inverse is g if and only if

g ◦ f = idA, f ◦ g = idB .

In the definition of the cartesian product A×B and of a functions
from A to B, we may replace the sets A and B with classes. For
example, we may speak of the function x 7→ {x} on the class of
all sets. If F is a function on some class C, and A is a subset of
C, then by the Replacement Axiom, the image F [A] is also a
set. For example, if we are given a function n 7→ Gn on ω, then
by Replacement the class {Gn : n ∈ ω} is a set. Then the union of
this class is a set, which we denote by

⋃

n∈ω

Gn.

A singulary operation on A is a function from A to itself; a
binary on A is a function from A × A to A. A binary relation
on A is a subset of A × A; if R is such, and (a, b) ∈ R, we often
write

a R b.

A singulary operation on A is a particular kind of binary relation
on A; for such a relation, we already have the special notation
in (.). The reader will be familiar with other kinds of binary
relations, such as orderings. We are going to define a particular
binary relation on p.  below and prove that it is an ordering.

.. An axiomatic development of the natural numbers

In the preceding sections, we sketched an axiomatic approach to
set theory. Now we start over with an axiomatic approach to the
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natural numbers alone. In the section after this, we shall show that
the set ω does actually provide a model of the axioms for natural
numbers developed in the present section.

For the moment though, we forget the definition of ω. We forget
about starting the natural numbers with 0. Children learn to count
starting with 1, not 0. Let us understand the natural numbers to
compose some set called N. This set has a distinguished initial
element, which we call one and denote by

1.

On the set N there is also a distinguished singulary operation of
succession, namely the operation

n 7→ n+ 1,

where n + 1 is called the successor of n. Note that some other
expression like S(n) might be used for this successor. For the mo-
ment, we have no binary operation called + on N.

I propose to refer to the ordered triple (N, 1, n 7→ n+1) as an iter-
ative structure. In general, by an iterative structure, I mean any
set that has a distinuished element and a distinguished singulary
operation. Here the underlying set can be called the universe of
the structure. For a simple notational distinction between a struc-
ture and its universe, if the universe is A, the structure itself might
be denoted by a fancier version of this letter, such as the Fraktur
version A. See Appendix B (p. ) for Fraktur versions, and their
handwritten forms, for all of the Latin letters.

The iterative structure (N, 1, n 7→ n+ 1) is distinguished among
iterative structures by satisfying the following axioms.

. 1 is not a successor: 1 6= n+ 1.
. Succession is injective: if m+ 1 = n+ 1, then m = n.
. The structure admits proof by induction, in the following

sense. Every subset A of the universe must be the whole
universe, provided A has the following two closure properties:
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a) 1 ∈ A, and
b) for all n, if n ∈ A, then n+ 1 ∈ A.

These axioms were discovered originally by Dedekind [, II, VI
(), p. ]; but they were written down also by Peano [], and
they are often known as the Peano axioms.

Suppose (A, b, f) is an iterative structure. If we successively com-
pute b, f(b), f(f(b)), f(f(f(b))), and so on, either we always get
a new element of A, or we reach an element that we have already
seen. In the latter case, if the first repeated element is b, then the
first Peano axiom fails. If it is not b, then the second Peano axiom
fails. The last Peano axiom, the Induction Axiom, would ensure
that every element of A was reached by our computations. None of
the three axioms implies the others, although the Induction Axiom
implies that exactly one of the other two axioms holds [].

The following theorem will allow us to define all of the usual
operations on N. The theorem is difficult to prove. Not the least
difficulty is seeing that the theorem needs to be proved.

Homomorphisms will be defined generally on p. , but mean-
while we need a special case. A homomorphism from (N, 1, n 7→
n + 1) to an iterative structure (A, b, f) is a function h from N to
A such that

) h(1) = b, and
) h(n+ 1) = f(h(n)) for all n in N.

Theorem  (Recursion). For every iterative structure, there is
exactly one homomorphism from (N, 1, n 7→ n+1) to this structure.

Proof. Given an iterative structure (A, b, f), we seek a homomor-
phism h from (N, 1, x 7→ n + 1) to (A, b, f). Then h will be a
particular subset of N × A. Let B be the set whose elements are
the subsets C of N×A such that, if (n, y) ∈ C, then either

) (n, y) = (1, b) or else

Peano did not see this need, but Dedekind did. Landau discusses the matter
[, pp. ix–x].
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) C has an element (m,x) such that (n, y) = (m+ 1, f(x)).
In particular, {(1, b)} ∈ B. Also, if C ∈ B and (m,x) ∈ C, then

C ∪ {(m+ 1, f(x))} ∈ B.

Let R =
⋃
B; so R is a subset of N×A. We may say R is a relation

from N to A. If (n, y) ∈ R, then (as suggested on p.  above) we
may write also

n R y.

Since {(1, b)} ∈ B, we have 1 R b. Also, if m R x, then (m,x) ∈
C for some C in B, so C ∪ {(m + 1, f(x))} ∈ B, and therefore
(m + 1) R f(x). Thus R is the desired function h, provided R is
actually a function from N to A. Proving that R is a function from
N to R has two stages.

. Let D be the set of all n in N for which there is y in A such
that n R y. Then we have just seen that 1 ∈ D, and if n ∈ D,
then n+ 1 ∈ D. By induction, D = N. Thus if R is a function, its
domain is N.

. Let E be the set of all n in N such that, for all y in A, if n R y
and n R z, then y = z. Suppose 1 R y. Then (1, y) ∈ C for some C
in B. Since 1 is not a successor, we must have y = b, by definition
of B. Therefore 1 ∈ E. Suppose n ∈ E, and (n + 1) R y. Then
(n + 1, y) ∈ C for some C in B. Again since 1 is not a successor,
we must have

(n+ 1, y) = (m+ 1, f(x))

for some (m,x) in C. Since succession is injective, we must have
m = n. Thus, y = f(x) for some x in A such that n R x. Since
n ∈ E, we know x is unique such that n R x. Therefore y is unique
such that (n+ 1) R y. Thus n+ 1 ∈ E. By induction, E = N.

So R is the desired function h. Finally, h is unique by induction.

Note well that the proof uses all three of the Peano Axioms. The
Recursion Theorem is often used in the following form.
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Corollary .. For every set A with a distinguished element b,
and for every function F from N×B to B, there is a unique function
H from N to A such that

) H(1) = b, and
) H(n+ 1) = F (n,H(n)) for all n in N.

Proof. Let h be the unique homomorphism from (N, 1, n 7→ n+1) to
(N×A, (1, b), f), where f is the operation (n, x) 7→ (n+1, F (n, x))).
In particular, h(n) is always an ordered pair. By induction, the first
entry of h(n) is always n; so there is a function H from N to A such
that h(n) = (n,H(n)). Then H is as desired. By induction, H is
unique.

We can now use recursion to define, on N, the binary operation

(x, y) 7→ x+ y

of addition, and the binary operation

(x, y) 7→ x · y

of multiplication. More precisely, for each n in N, we recursively
define the operations x 7→ n+x and x 7→ n ·x. The definitions are:

n+ 1 = n+ 1,

n · 1 = n,

n+ (m+ 1) = (n+m) + 1,

n · (m+ 1) = n ·m+ n.
(.)

The definition of addition might also be written as n + 1 = S(n)
and n+ S(m) = S(n+m). In place of x · y, we often write xy.

Lemma . For all n and m in N,

1 + n = n+ 1, (m+ 1) + n = (m+ n) + 1.

Proof. Induction.

Theorem . Addition on N is
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) commutative: n+m = m+ n; and
) associative: n+ (m+ k) = (n+m) + k.

Proof. Induction and the lemma.

Theorem . Addition on N allows cancellation: if n+x = n+y,
then x = y.

Proof. Induction, and injectivity of succession.

The analogous proposition for multiplication is Corollary .
below.

Lemma . For all n and m in N,

1 · n = n, (m+ 1) · n = m · n+ n.

Proof. Induction.

Theorem . Multiplication on N is
) commutative: nm = mn;
) distributive over addition: n(m+ k) = nm+ nk; and
) associative: n(mk) = (nm)k.

Proof. Induction and the lemma.

Landau [] proves using induction alone that + and · exist as
given by the recursive definitions above. However, Theorem 
needs more than induction. So does the existence of the factorial
function defined by

1! = 1, (n+ 1)! = n! · (n+ 1).

So does exponentiation, defined by

n1 = n, nm+1 = nm · n.

The usual ordering < of N is defined recursively as follows. First
note that m 6 n means simply m < n or m = n. Then the
definition of < is:
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) m 6< 1 (that is, ¬ m < 1);
) m < n+ 1 if and only if m 6 n.

In particular, n < n+ 1. Really, it is the sets {x ∈ N : x < n} that
are defined by recursion:

{x ∈ N : x < 1} = ∅,

{x ∈ N : x < n+ 1} = {x ∈ N : x < n} ∪ {n} = {x ∈ N : x 6 n}.

We now have < as a binary relation on N; we must prove that it is
an ordering.

Theorem . The relation < is transitive on N, that is, if k < m
and m < n, then k < n.

Proof. Induction on n.

Theorem . The relation < is irreflexive on N: m 6< m.

Proof. Since every element k of N is less than some other element
(namely k + 1), it is enough to prove

k < n⇒ k 6< k.

We do this by induction on n. The claim is vacuously true when
n = 1. Suppose it is true when n = m. If k < m+ 1, then k < m
or k = m. If k < m, then by inductive hypothesis k 6< k. If k = m,
but k < k, then k < m, so again k 6< k. Thus the claim holds when
n = m+ 1. By induction, it holds for all n.

Lemma . 1 6 m.

Proof. Induction.

Lemma . If k < m, then k + 1 6 m.

.. An axiomatic development of the natural numbers 



Proof. The claim is vacuously true when m = 1. Suppose it is
true when m = n. Say k < n + 1. Then k 6 n. If k = n,
then k + 1 = n+ 1, so k + 1 6 n+ 1. If k < n, then k + 1 6 n by
inductive hypothesis, so k+1 < n+1 by transitivity (Theorem ),
and therefore k+1 6 n+1. Thus the claim holds when m = n+1.
By induction, the claim holds for all m.

Theorem . The relation < is total on N: either k 6 m or
m < k.

Proof. By Lemma , the claim is true when k = 1. Suppose it is
true when k = ℓ. If m 6< ℓ + 1, then m 
 ℓ. In this case, we have
both m 6= ℓ and m 6< ℓ. Also, by the inductive hypothesis, ℓ 6 m,
so ℓ < m, and hence ℓ+ 1 6 m by Lemma .

Because of Theorems , , and , the relation < is a linear
ordering of N, and N is linearly ordered by <.

Theorem . For all m and n in N, we have m < n if and only
if the equation

m+ x = n (.)

is soluble in N.

Proof. By induction on k, if m + k = n, then m < n. We prove
the converse by induction on n. We never have m < 1. Suppose
for some r that, for all m, if m < r, then the equation m + x = r
is soluble. Suppose also m < r + 1. Then m < r or m = r. In the
former case, by inductive hypothesis, the equation m + x = r has
a solution k, and therefore m + (k + 1) = r + 1. If m = r, then
m+1 = r+1. Thus the equation m+x = r+1 is soluble whenever
m < r + 1. By induction, for all n in N, if m < n, then (.) is
soluble in N.

Theorem . If k < ℓ, then

k +m < ℓ+m, km < ℓm.
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Here the first conclusion is a refinement of Theorem ; the sec-
ond yields the following analogue of Theorem  for multiplication.

Corollary .. If km = ℓm, then k = ℓ.

Theorem . N is well-ordered by <: every nonempty set of nat-
ural numbers has a least element.

Proof. Suppose A is a set of natural numbers with no least element.
Let B be the set of natural numbers n such that, if m 6 n, then
m /∈ A. Then 1 ∈ B, since otherwise 1 would be the least element of
A. Suppose m ∈ B. Then m+1 ∈ B, since otherwise m+1 would
be the least element of A. By induction, B = N, so A = ∅.

The members of N are the positive integers; the full set Z of
integers will be defined formally in §. below, on p. . As pre-
sented in Books VII–IX of Euclid’s Elements, number theory is a
study of the positive integers; but a consideration of all integers is
useful in this study, and the integers that will constitute a moti-
vating example, first of a group (p. ), and then of a ring (p. ).
Fundamental topics of number theory developed in the main text
are:

• greatest common divisors, the Euclidean algorithm, and num-
bers prime to one another (sub-§.., p. );

• prime numbers, Fermat’s Theorem, and Euler’s generaliza-
tion of this (§., p. );

• Chinese Remainder Theorem, primitive roots (§., p. );
• Euclid’s Lemma (§., p. );
• the Fundamental Theorem of Arithmetic (§., p. ).

.. A construction of the natural numbers

For an arbitrary set a, let

a′ = a ∪ {a}.

.. A construction of the natural numbers 



If A belongs to the class I defined in (.) on p. , then 0 ∈ A,
and A is closed under the operation x 7→ x′, and so (A, 0, ′) is an
iterative structure. In particular, by the Axiom of Infinity, ω is a
set, so (ω, 0, ′) is an iterative structure.

Theorem . The structure (ω, 0, ′) satisfies the Peano Axioms.

Proof. There are three things to prove.
. In (ω, 0, ′), the initial element 0 is not a successor, because for

all sets a, the set a′ contains a, so it is nonempty.
. (ω, 0, ′) admits induction, because, if A ⊆ ω, and A contains

0 and is closed under x 7→ x′, then A ∈ I, so
⋂
I ⊆ A, that is,

ω ⊆ A.
. It remains to establish that x 7→ x′ is injective on ω. On p.

, we used recursion to define a relation < on N so that

m 6< 1, m < n+ 1 ⇔ m < n ∨m = n. (.)

Everything that we proved about this relation required only these
properties, and induction. On ω, we do not know whether we have
recursion, but we have (.) when < is ∈ and 1 is 0: that is, we
have

m /∈ 0, m ∈ n′ ⇔ m ∈ n ∨m = n.

Therefore ∈ must be a linear ordering of ω, by the proofs in the
previous section. We also have Lemma  for ∈, that is, if n in ω,
and m ∈ n, then either m′ = n or m′ ∈ n. In either case, m′ ∈ n′.
Thus, if m 6= n, then either m ∈ n or n ∈ m, and so m′ ∈ n′ or
n′ ∈ m′, and therefore m′ 6= n′.

Given sets A and B, we define

ArB = {x ∈ A : x /∈ B}.

As a corollary of the foregoing theorem, we have that the iterative
structure (ω r {0}, 1, ′) also satisfies the Peano Axioms. We may
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henceforth assume that (N, 1, x 7→ x + 1) is this structure. In
particular,

N = ωr {0}.
Thus we no longer need the Peano Axioms as axioms; they are
theorems about (N, 1, x 7→ x+ 1) and (ω, 0, ′).

We extend the definitions of addition and multiplication on N to
allow their arguments to be 0:

n+ 0 = n = 0 + n, n · 0 = 0 = 0 · n.

Theorem . Addition and multiplication are commutative and
associative on ω, and multiplication distributes over addition.

In particular, the equations (.) making up the recursive def-
initions of addition and multiplication on N are still valid on ω.
The same goes for factorials and exponentiation when we define

0! = 1, n0 = 1.

.. Structures

For us, the point of using the von-Neumann definition of the natural
numbers is that, under this definition, a natural number n is a
particular set, namely {0, . . . , n− 1}, with n elements. We denote
the set of functions from a set B to a set A by

AB.

In particular then, An is the set of functions from {0, . . . , n − 1}
into A. We can denote such a function by one of

(x0, . . . , xn−1), (xi : i < n),

so that

An = {(x0, . . . , xn−1) : xi ∈ A}.

.. Structures 



Thus, A2 can be identified with A×A, and A1 with A itself. There
is exactly one function from 0 to A, namely 0; so

A0 = {0} = 1.

An n-ary relation on A is a subset of An; an n-ary operation on
A is a function from An to A. Relations and operations that are
2-ary, 1-ary, or 0-ary can be called binary, singulary, or nullary,
respectively; after the appropriate identifications, this agrees with
the terminology used in §.. A nullary operation on A can be
identified with an element of A.

Generalizing the terminology used at the beginning of §., we
define a structure as a set together with some distinguished rela-
tions and operations on the set; as before, the set is the universe of
the structure. Again, if the universe is A, then the whole structure
might be denoted by A; if B, then B.

The signature of a structure comprises a symbol for each distin-
guished relation and operation of the structure. For example, we
have so far obtained N as a structure in the signature {1,+, ·, <}.
We may then write out this structure as

(N, 1,+, ·, <).

In this way of writing the structure, an expression like + stands not
for the symbol of addition, but for the actual operation on N. In
general, if s is a symbol of the signature of A, then the correspond-
ing relation or operation on A can, for precision, be denoted by sA,
in case there is another structure around with the same signature.
We use this notation in writing the next definition, and later on p.
.

A homomorphism from a structure A to a structure B of the
same signature is a function h from A to B that preserves the
distinguished relations and operations: this means

h(fA(x0, . . . , xn−1)) = fB(h(x0), . . . , h(xn−1)),
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(x0, . . . , xn−1) ∈ RA ⇒ (h(x0), . . . , h(xn−1)) ∈ RB, (.)

for all n-ary operation-symbols f and relation-symbols R of the
signature, for all n in ω. To indicate that h is a homomorphism
from A to B, we may write

h : A → B

(rather than simply h : A → B). We have already seen a special
case of a homomorphism in the Recursion Theorem (Theorem 
on p.  above).

Theorem . If h : A → B and g : B → C, then

g ◦ h : A → C.

A homomorphism is an embedding if it is injective and if the
converse of (.) also holds. A surjective embedding is an iso-
morphism.

Theorem . The function idA is an isomorphism from A to it-
self. The following are equivalent conditions on a bijective homo-
morphism h from A to B:

) B is an isomorphism from A to B,
) h−1 is a homomorphism from B to A,
) h−1 is an isomorphism from B to A.

If there is an isomorphism from a structure A to a structure B,
then these two structures are said to be isomorphic to one another,
and we may write

A ∼= B.

In this case A and B are indistinguishable as structures, and so
(out of laziness perhaps) we may identify them, treating them as
the same structure. We have already done this, in a sense, with
(N, 1, x 7→ x + 1) and (ω r {0}, 1, ′). However, we never actually
had a set called N, until we identified it with ωr {0}.

.. Structures 



A substructure of a structure B is a structure A of the same
signature such that A ⊆ B and the inclusion x 7→ x of A in B is
an embedding of A in B.

Model theory studies structures as such. Universal algebra
studies algebras, which are sets with distinguished operations, but
no distinguished relations (except for equality). In other words, an
algebra is a structure in a signature with no symbols for relations
(except equality).

We shall study mainly the algebras called groups and the algebras
called rings. Meanwhile, we have the algebra (N, 1,+, ·), and we
shall have more examples in the next section.

A reduct of a structure is obtained by ignoring some of its op-
erations and relations, while the universe remains the same. The
original structure is then an expansion of the reduct. For exam-
ple, (N,+) is a reduct of (N,+, ·, <), and the latter is an expansion
of the former.

.. Constructions of the integers and rationals

The following theorem is an example of something like localization,
which will be the topic of §. (p. ). One learns the theorem
implicitly in school, when one learns about fractions (as on p. 
above). Perhaps fractions are our first encounter with nontrivial
equivalence-classes.

Let ≈ be the binary relation on N× N given by

(a, b) ≈ (x, y) ⇔ ay = bx. (.)

Lemma . The relation ≈ on N× N is an equivalence-relation.

If (a, b) ∈ N × N, let its equivalence-class with respect to ≈ be
denoted by a/b or

a

b
.

As a binary relation on N×N, the relation ≈ is a subset of (N×N)2, which
we identify with N4.
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Let the set of all such equivalence-classes be denoted by

Q+.

This set comprises the positive rational numbers.

Theorem . There are well-defined operations +, −1, and · on
Q+ given by the rules

a

b
+
x

y
=
ay + bx

by
,

(
x

y

)−1

=
y

x
,

a

b
· x
y
=
ax

by
.

There is a linear ordering < of Q+ given by

a

b
<
x

y
⇔ ay < bx.

The structure (N,+, ·, <) embeds in (Q+,+, ·, <) under the map
x 7→ x/1. Addition and multiplication are commutative and asso-
ciative on Q+, and multiplication distributes over addition. More-
over,

1

1
· x
y
=
x

y
,

(
x

y

)−1

· x
y
=

1

1
, (.)

Finally,
1

1
<
a

b
∧ 1

1
<
x

y
⇒ 1

1
<
a

b
· x
y
. (.)

The operations on Q+ in the theorem are said to be well defined
because it is not immediately obvious that they exist at all. It is
possible that a/b = c/d although (a, b) 6= (c, d). In this case one
must check that (for example) (ay+bx)/(by) = (cy+dx)/(dy). See
p.  below.

.. Constructions of the integers and rationals 



Because multiplication is commutative and associative on Q+,
and also (.) holds, the structure (Q+, 1/1,−1, ·) is an abelian
group. Because in addition Q+ is linearly ordered by <, and (.)
holds, the structure (Q+, 1/1,−1, ·, <) is an ordered group.

In the theorem, the natural number n is not a rational number,
but n/1 is a rational number. However, we henceforth identify n
and n/1: we treat them as the same thing. Then we have N ⊆ Q+.

In the definition (.) of ≈, if we replace multiplication with ad-
dition, then instead of the positive rational numbers, we obtain the
integers. Probably this construction of the integers is not learned
in school. If it were, possibly students would never think that −x
is automatically a negative number. In any case, by applying this
construction of the integers to the positive rational numbers, we
obtain all of the rational numbers as follows. Let ∼ be the binary
relation on Q+ ×Q+ given by

(a, b) ∼ (x, y) ⇔ a+ y = b+ x. (.)

Lemma . The relation ∼ on Q+×Q+ is an equivalence-relation.

If (a, b) ∈ Q+ × Q+, let its equivalence-class with respect to ∼
be denoted by

a− b.

Let the set of such equivalence-classes be denoted by

Q.

Theorem . There are well-defined operations −, +, and · on Q
given by the rules

−(x− y) = y − x,

(a− b) + (x− y) = (a+ x)− (b+ y),

(a− b) · (x− y) = (ax+ by)− (ay + bx).
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There is a dense linear ordering < of Q given by

a− b < x− y ⇔ a+ y < b+ x.

The structure (Q+,+, ·, <) embeds in (Q,+, ·, <) under the map
x 7→ (x+1)−1. The structure (Q, 1−1,−,+, <) is an ordered group.
Moreover, multiplication is also commutative and associative on Q,
and it distributes over addition.

We identify Q+ with its image in Q. Now we can refer to the
elements of Q as the rational numbers. We denote 1− 1 by

0.

Then Q+ = {x ∈ Q : 0 < x}. We can now define

Z = {x− y : (x, y) ∈ N× N};

this is the set of integers.

Theorem . The structure (Z, 0,−,+, 1, ·, <) is a well-defined
substructure of (Q, 0,−,+, 1, ·, <). The structure (Z, 0,−,+, <) is
an ordered group.

We can also think of Q as arising from Z by the same construction
that gives us Q+ from N. This gives us the following.

Theorem . There is a surjective function (x, y) 7→ x/y from the
product Z× (Z r {0}) to Q such that

a

b
+
x

y
=
ay + bx

by
,

1 =
1

1
,

a

b
· x
y
=
ax

by
.

.. Constructions of the integers and rationals 



Then
a

b
<
x

y
⇔ ay < bx.

There is an operation x 7→ x−1 on Qr {0} given by

(
x

y

)−1

=
y

x
.

Then (Qr {0}, 1,−1, ·) is a commutative group. Finally,

0 < x ∧ 0 < y ⇒ 0 < x · y. (.)

Because (Q, 0,−, 1, <) is an ordered group, and (Qr{0}, 1,−1, ·)
is a commutative group, and multiplication distributes over addi-
tion in Q, and (.) holds, the structure (Q, 0,−,+, 1, ·, <) is an
ordered field. However, the ordering of Q is not complete, that
is, there are subsets with upper bounds, but no suprema (least
upper bounds). An example is the set {x ∈ Q : 0 < x ∧ x2 < 2}.

.. A construction of the reals

There is a technique due to Dedekind for completing (Q, <) to ob-
tain the completely ordered set (R, <). As Dedekind says explicitly
[, pp. –], the original inspiration for the technique is the defi-
nition of proportion found in Book V of Euclid’s Elements.

In the geometry of Euclid, let us refer to the collection of straight
lines that are equal to a given straight line (in the sense of p. 
above) as the length of that straight line. Two lengths of straight
lines can be added together by taking two particular lines with those
lengths and setting them end to end. Then lengths of straight lines
compose the set of positive elements of an ordered group. Therefore
individual lengths can be multiplied, that is, taken several times.
Indeed, if A is a length, and n ∈ N, we can define the multiple nA
of x recursively:

1A = A, (n+ 1)A = nA+A.
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It is assumed that, for any two lengths A and B, some multiple of
A is greater than B: this is the archimedean property. If C and
D are two more lengths, then A has to B the same ratio that C
has to D, provided that, for all k and m in N,

kA > mB ⇔ kC > mD.

In this case, the four lengths A, B, C, and D are proportional, and
we may write

A : B : : C : D.

We can write the condition for this proportionality as
{
x

y
∈ Q+ : xB < yA

}

=

{
x

y
∈ Q+ : xD < yC

}

Dedekind’s observation is that such sets can be defined indepen-
dently of all geometrical considerations. Indeed, we may define a
positive real number as a nonempty, proper subset C of Q+ such
that

) if a ∈ C and b ∈ Q+ and b < a, then b ∈ C, and
) if C has a supremum in Q+, this supremum does not belong

to C.
Let the set of all positive real numbers be denoted by

R+.

Theorem . The set R+ is completely ordered by proper inclu-
sion. There are well-defined operations +, −1, and · on Q+ given
by the rules

C +D = {x+ y : x ∈ C ∧ y ∈ D},
C−1 = {x−1 : x ∈ Q+ ∧ ∃y (y ∈ Q+ r C ∧ y < x)},

C ·D = {x · y : x ∈ C ∧ y ∈ D}.

Then (Q+,+,−1, ·) embeds in (R+,+,−1, ·) under the map y 7→
{x ∈ Q+ : x < y}.

.. A construction of the reals 



Let us identify Q+ with its image in R+. We may also write ⊂
on R+ as <.

For every n in ω, an n-ary operation f on R+ is continuous if,
for every (Ai : i < n) in (R+)n, for every ε in Q+, there is (δi : i < n)
in (Q+)n such that, for all (Xi : i < n) in (R+)n, if

∧

i<n

Ai − δi < Xi < Ai + δi,

then

f(Ai : i < n)− ε < f(Xi : i < n) < f(Ai : i < n) + ε.

Theorem . The operations +, −1, and · on R+ are continuous.
Every composite of continuous functions on R+ is continuous.

Lemma . The only continuous singulary operation on R+ that is
1 on Q is 1 everywhere.

Theorem . The structure (R+, 1,−1, ·, <) is an ordered group,
and addition is commutative and associative on R+, and multipli-
cation distributes over addition on R+.

Now define ∼ on R+ ×R+ as in (.). Just as before, this is an
equivalence relation. The set of its equivalence-classes is denoted
by

R.

Just as before, we obtain the ordered field (R, 0,−,+,−1, ·, <). But
now, the ordering is complete. We identify R+ with its image in R.
The elements of R are the real numbers.

Lemma . For every n in N, for every element A of a completely
and densely ordered group, the equation

nX = A

is soluble in the group.
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Theorem . Suppose (G, 0,−,+, <) is a completely and densely
ordered group, and u is a positive element of G, and b is an ele-
ment of R+ such that 1 < b. Then there is an isomorphism from
(G, 0,−,+, <) to (R+, 1,−1, ·, <) taking u to b.

By this theorem, the completely ordered groups (R, 0,−,+, <)
and (R+, 1,−1, ·, <) are isomorphic, and indeed for every b in R+

such that b > 1, there is an isomorphism taking 1 to b. This
isomorphism is denoted by

x 7→ bx,

and its inverse is
x 7→ logb x.

Theorem  (Intermediate Value Theorem). If f is a continuous
singulary operation on R, and f(a) · f(b) < 0, then f has a zero
between a and b.

Hence for example the function x 7→ x2 − 2 must have a zero
in R between 1 and 2. More generally, if A ⊆ R, then the set of
polynomial functions over A is obtained from the set of constant
functions taking values in A, along with −, +, ·, and the projections
(x0, . . . , xn−1) 7→ xi, by closing under taking composites. Then all
polynomial functions over R are continuous, and so the Intermedi-
ate Value Theorem applies to the singulary polynomial functions.
Therefore the ordered field R is said to be real-closed. However,
there are smaller real-closed ordered fields: we establish this in the
next section.

.. Countability

A set is countable if it embeds in ω; otherwise the set is un-
countable.

Theorem . The sets N, Z, and Q are all countable.

.. Countability 



Theorem . P(ω) is uncountable.

Proof. Suppose f is an injection from ω to P(ω). Then the subset
{x : x /∈ f(x)} of ω is not in the range of f , by a variant of the
Russell Paradox: if {x : x /∈ f(x)} = f(a), then a ∈ f(a) ⇔ a /∈
f(a).

Theorem . The set R is uncountable.

Proof. We shall use the notation whose properties will be estab-
lished in sub-§.. (p. ). For every subset A of ω, let g(A) be
the set of rational numbers x such that, for some n in ω,

x <
∑

k∈A∩n

2

3k
.

Then g(A) is a real number by the original definition. The function
A 7→ g(A) from P(ω) to R is injective.

However, suppose we let Arc be the smallest field that contains
all zeros from R of singulary polynomial functions over A. If we
define A0 = Q and An+1 = An

rc, then
⋃

n∈ωAn will contain all
zeros from R of singulary polynomial functions over itself. In fact
⋃

n∈ωAn will be Qrc. But this field is countable.
We can say more about a set than whether it is countable or

uncountable. The main reason for doing this here is that it provides
a good example of a classification: see §. on p.  below. A class
is transitive if it properly includes all of its elements. A transitive
set is an ordinal if it is well-ordered by the relation of membership.
Then all of the elements of ω are ordinals, and so is ω itself. The
class of all ordinals can be denoted by

ON.

Theorem . The class ON is transitive and is well-ordered by
membership.
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In particular, ON cannot contain itself; so it is not a set. This
result is the Burali-Forti Paradox [].

Theorem . Every well-ordered set (A,<) is isomorphic to a
unique ordinal. The isomorphism is a certain function f on A, and
this function is determined by the rule

f(b) = {f(x) : x < b}.

There are three classes of ordinals.

. A successor is an ordinal α′ for some ordinal α.
. The least ordinal, 0, is in a class by itself.
. A limit is an ordinal that is neither 0 nor a successor.

Then ω is the least limit ordinal.

Two sets are equipollent if there is a bijection between them.
An ordinal is a cardinal if it is the least ordinal that is equipollent
with it.

Theorem . Every element of ω is a cardinal. So is ω itself.

The class of cardinals can be denoted by

CN.

By the Axiom of Choice, every set is equipollent with some unique
cardinal. This is the cardinality or size of that set. The cardi-
nality of an arbitrary set A is denoted by

|A|.

A countable set has cardinality ω or less; uncountable sets have
cardinality greater than ω. The finite sets are those whose cardi-
nalities are less then ω; other sets are infinite.

Theorem . A set is infinite if and only if it is in bijection with
a proper subset of itself.

.. Countability 



Theorem . There is a bijection from ON to CNrω (the class
of infinite cardinals).

The bijection of the theorem is denoted by

α 7→ ℵα.

Thus ω = ℵ0, and |R| = ℵα for some ordinal α that is greater than
0. The Continuum Hypothesis is that |R| = ℵ1, but we shall make
no use of this.
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Part II.

Groups





. Basic properties of groups and rings

We define both groups and rings in this chapter. We define rings (in
§., p. ), because at the beginning of the next chapter (§., p.
) we shall define certain groups—namely general linear groups—
in terms of rings.

.. Groups

Given a set A, we may refer to a bijection from A to itself as a
symmetry or permutation of A. Let us denote the set of these
symmetries by

Sym(A).

This set can be equipped with:

) the element idA, which is the identity on A;
) the singulary operation f 7→ f−1, which is inversion;
) the binary operation (f, g) 7→ f ◦ g, which is composition.

(The functions idA, f−1, and f ◦ g are defined in §., p. ). The
structure or algebra denoted by

(Sym(A), idA,
−1, ◦)

is the complete group of symmetries of A. A substructure of
this can be called simply a group of symmetries of A. (Struc-
tures, substructures, and algebras are defined in §., p. .)

We may use the expression Sym(A) to denote the whole structure
(Sym(A), idA,

−1, ◦). When we speak of a subgroup of Sym(A),
we mean a subset that contains the identity and is closed under
inversion and composition.





Theorem . For all sets A, for all elements f , g, and h of a
group of symmetries of A,

f ◦ idA = f,

idA ◦f = f,

f ◦ f−1 = idA,

f−1 ◦ f = idA,

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof. Theorems , , and  in §. (p. ).

A group is a structure with the properties of a group of symme-
tries given by the last theorem, Theorem . That is, a group is a
structure (G, e,−1, ·) in which the following equations are identities
(are true for all values of the variables):

x · e = x,

e · x = x,

x · x−1 = e,

x−1 · x = e,

(x · y) · z = x · (y · z).

We may say also that these equations are the axioms of groups:
this means that their generalizations (∀x x · e = x and so forth) are
true in every group, by definition. According to these axioms, in
every group (G, e,−1, ·),

) the binary operation · is associative,
) the element e is an identity with respect to ·,
) the singulary operation −1 is inversion with respect to · and

e.

The identity and the inversion will turn out to be uniquely deter-
mined by the binary operation, by Theorem  on p. .
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A group is called abelian if its binary operation is commutative.
If A has at least three elements, then Sym(A) is not abelian. How-
ever, every one-element set {a} becomes an abelian group when we
define

e = a, a−1 = a, a · a = a.

This group is a trivial group. All trivial groups are isomorphic to
one another. Therefore, as suggested on p. , we tend to identify
them with one another, referring to each of them as the trivial
group.

Besides symmetry groups and the trivial group, we have four
examples of groups from §. (p. ), namely

(Q+, 1,−1, ·), (Q, 0,−,+), (Z, 0,−,+), (Qr {0}, 1,−1, ·),
and three examples from §. (p. ):

(R+, 1,−1, ·), (R, 0,−,+), (Rr {0}, 1,−1, ·).
These seven examples are all abelian. Four of them are the origin
of a terminological convention. In an arbitrary group (G, e,−1, ·),
the operation · is usually called multiplication. We usually write
g · h as gh. The element g−1 is the inverse of g. The element e is
the identity, and it is sometimes denoted by 1 rather than e.

Evidently the groups of rational numbers, of integers, and of real
numbers use different notation. These groups are said to be written
additively. Additive notation is often used for abelian groups, but
almost never for other groups. It will be useful to have one more
example of an abelian group. Actually there will be one example
for each positive integer. If a and b are arbitrary integers for which
the equation

ax = b

has a solution in Z, then we say that a divides b, or a is a divisor
or factor of b, or b is a multiple of a, and we may write

a | b.
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Using the notation due to Gauss [, p. ], for a positive integer n
and arbitrary integers a and b we write

a ≡ b (mod n)

if n | a− b. In this case we say a and b are congruent with respect
to the modulus n. This manner of speaking is abbreviated by
putting the Latin word modulus into the ablative case: a and b are
congruent modulo n. Still following Gauss, we may say too that
a is a residue of b with respect to the modulus n.

Theorem . Let n ∈ N.
. Congruence modulo n is an equivalence-relation on Z.
. If a ≡ x and b ≡ y (mod n), then

−a ≡ −x & a+ b ≡ x+ y & ab ≡ xy (mod n).

Thus congruence modulo n is an example of a congruence in the
sense to be defined on p. . The set of congruence-classes of
integers modulo n can be denoted by

Zn.

If a is some integer, we can denote its congruence-class modulo n
by something like [a] or ā, or more precisely by

a+ nZ.

(This is a coset in the sense to be defined in §., p. .)

Theorem . For every positive integer n, the function

x 7→ x+ nZ

from {0, . . . , n− 1} to Zn is a bijection.

The ablative case of Latin corresponds roughly to the -den hali of Turkish.
Gauss writes in Latin; however, instead of modulo n, he says secundum

modulum n, “according to the modulus n” [, p. ].
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Proof. If 0 6 i < j < n, then 1 6 j − i < n, and so nx > j − i for
all x in N. By Theorem  (p. ),

i 6≡ j (mod n).

Thus the given map is injective. If k ∈ Z, let a be its least non-
negative residue (which exists by Theorem ). Then a < n (since
otherwise 0 6 a− n < a, and a− n is also a residue of k). Thus

a+ nZ = k + nZ.

So the given map is surjective.

Again given a positive integer n, we may treat an arbitary integer
as a name for its own congruence-class modulo n. In particular, by
the last theorem, we may consider Zn as being the set {0, . . . , n−1},
where these n elements are understood to be distinct. By Theo-
rem , we have a well-defined structure (Zn, 0,−,+, 1, ·), where 0
and 1 stand for their respective congruence-classes nZ and 1+ nZ.
The following theorem is then easy to prove. In fact the formal
verification will be made even easier by Theorem  on p. .

Theorem . For each n in N, the structure (Zn, 0,−,+) is an
abelian group.

The (multiplicative) groups of positive rational numbers, of non-
zero rational numbers, of positive real numbers, and of nonzero real
numbers, and the (additive) groups of integers, rational numbers,
real numbers, and integers with respect to some modulus, are not
obviously symmetry groups. But they can be embedded in sym-
metry groups, in the sense of §. (p. ). Indeed, every element
g of a group G (written multiplicatively) determines a singulary
operation λg on G, given by

λg(x) = gx.

Then we have the following.
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Theorem  (Cayley). For every group (G, e,−1, ·), the function

x 7→ λx

embeds (G, e,−1, ·) in the group (Sym(G), idG,
−1, ◦) of symmetries.

Proof. We first observe that

λe = idG, λg·h = λg ◦ λh,

because

λe(x) = e · x = x = idG(x),

λg·h(x) = (g · h) · x = g · (h · x) = λg(λh(x)) = (λg ◦ λh)(x).

Consequently, by Theorem  (p. ), each λg has an inverse, and

(λg)
−1 = λg−1 .

This establishes x 7→ λx : G→ Sym(G) and in fact

x 7→ λx : (G, e,
−1, ·) → (Sym(G), idG,

−1, ◦)

—that is, by the notational convention established on p. , x 7→ λx
is a homomorphism from the one group to the other. It is an
embedding, since if λg = λh, then in particular

g = ge = λg(e) = λh(e) = he = h.

By Cayley’s Theorem, every group can be considered as a sym-
metry group.

.. Symmetry groups

In case n ∈ ω, then in place of Sym(n) the notation

Sn
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is also used. However, most people probably understand Sn as the
complete group of symmetries of the set {1, . . . , n}. It does not
really matter whether {0, . . . , n− 1} or {1, . . . , n} is used; we just
need a set with n elements, and we are using {0, . . . , n− 1}, which
is n, as this set.

In the following, the factorial of a natural number was defined
on pages  and , and the cardinality of a set was defined on p.
.

Theorem . For each n in ω,

|Sym(n)| = n!

The group Sym(0) has a unique element, id0, which is itself 0,
that is, ∅. The group Sym(1) has the unique element id1, which is
{(0, 0)}. Thus

Sym(0) = 1, Sym(1) =
{
{(0, 0)}

}
.

As groups, they are both trivial. We can think of the next symme-
try groups—Sym(2), Sym(3), and so on—in terms of the following
notion.

... Automorphism groups

An automorphism of a structure is an isomorphism from the
structure to itself. The set of automorphisms of a structure A can
be denoted by

Aut(A).

We have Aut(A) ⊆ Sym(A), where as usual A is the universe of A;
and we have more:

Theorem . For every structure A, the set Aut(A) is the universe
of a substructure of the group of symmetries of A.

Proof. Aut(A) contains idA and is closed under inversion and com-
position.
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Thus we may speak of Aut(A) as the automorphism group of
A.

... Automorphism groups of graphs

It will be especially useful to consider automorphism groups of
graphs. As a structure, a graph on a set A is an ordered pair
(A,E), where E is an irreflexive, symmetric binary relation on A.
This means

¬ x E x, x E y ⇔ y E x.

The elements of A are called vertices of the graph. If b E c, then
the set {b, c} is called an edge of the graph. An edge is an example
of an (unordered) pair, that is, a set with exactly two elements.
The set of unordered pairs of elements of a set A can be denoted
by

[A]2.

Every graph on a given set is determined by its edges, and moreover
every subset of [A]2 determines a graph on A. This result can be
stated as follows.

Theorem . For every set A, there is a bijection

E 7→
{
{x, y} : (x, y) ∈ E

}

from the set of irreflexive, antisymmetric binary relations on A to
P([A]2).

For our purposes, the triangle is the graph on 3 with edge set
[3]2. In a word, it is the complete graph on 3. Therefore every
permutation of 3 is an automorphism of the triangle. The vertices
of this triangle can be envisioned as the points (1, 0, 0), (0, 1, 0),
and (0, 0, 1) in the space R3. An automorphism of this triangle
then induces a permutation of the coordinate axes of R3.
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Similarly, the tetrahedron is the complete graph on 4, and
so each permutation of 4 is an automorphism of the tetrahedron.
The tetrahedron can be envisioned as having vertices (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) in R4.

In general, Sym(n) can be understood as comprising the permu-
tations of the coordinate axes of Rn. In this way, an element σ of
Sym(n) determines the permutation

(xi : i < n) 7→ (xσ−1(i) : i < n)

of Rn. The reason why we use σ−1 in this rule is the following.
Suppose we denote by fσ the permutation of Rn given by this rule.
Then

fτ (fσ(xi : i < n)) = fτ (xσ−1(i) : i < n)

= (xσ−1(τ−1(i)) : i < n)

= (x(τσ)−1(i) : i < n)

= fτσ(xi : i < n).

Thus σ 7→ fσ is a homomorphism from Sym(n) to Sym(Rn). An-
other way to see this is to recall that an element (xi : i < n) of
Rn is just a function i 7→ xi from n to R. Denoting this function
simply by x, we have

fσ(x) = x ◦ σ−1,

fτ (fσ(x)) = x ◦ σ−1 ◦ τ−1 = x ◦ (τ ◦ σ)−1 = fτσ(x).

This idea will come back in §. (p. ). Meanwhile, we are going
to develop a way to distinguish the orientation-preserving permu-
tations of the axes, namely the permutations that can be achieved
by rotation without reflection.

If n > 3, we may consider the n-gon to be the graph on n with
the n vertices

{0, 1}, {1, 2}, {2, 3}, . . . , {n− 2, n− 1}, {n− 1, 0}
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Considering n as Zn, we can also write these edges more symmet-
rically as

{i, i+ 1},
where i ∈ Zn. The 3-gon is the triangle. The square is the 4-gon.
The nth dihedral group, denoted by one of

Dih(n), Dn,

is the automorphism group of the n-gon; it is a subgroup of Sym(n).

Theorem . If n > 3, then every element σ of Dih(n) is deter-
mined by (σ(0), σ(1)). Moreover, σ(0) can have any value in n, and
then σ(1) can and must be σ(0)± 1. Thus

|Dih(n)| = 2n.

Theorem  on p.  will build on this theorem.

... A homomorphism

Every permutation of 4 is an automorphism of the tetrahedron. It
can also be understood as a permutation of a certain set of three
elements as follows.

Theorem . There is a surjective homomorphism from Sym(4)
onto Sym(3).

Proof. Let A be the set consisting of the three partitions
{
{0, 1}, {2, 3}

}
,

{
{0, 2}, {1, 3}

}
,

{
{0, 3}, {1, 2}

}

of 4 into two pairs. If σ ∈ Sym(4), there is an element σ̃ in Sym(A)
given by

σ̃
({

{i, j}, {k, ℓ}
})

=
({

{σ(i), σ(j)}, {σ(k), σ(ℓ)}
})

.

Then σ 7→ σ̃ is a surjective homomorphism from Sym(4) to Sym(A).
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This homomorphism will be of use later: in an example on p.
, and then in the proof of Theorem  on p. , which will be
used on p. .

... Cycles

We now consider symmetry groups of arbitrary sets. We shall be
interested in the results mainly for finite sets; but obtaining the
results for infinite sets also will take no more work. For any set A,
for any σ in Sym(A), we make the recursive definition

σ0 = idA, σn+1 = σ ◦ σn.

If n ∈ N, we also define

σ−n = (σn)−1.

Thus we have a function n 7→ σn from Z to Sym(A).

Theorem . For every set A, for every σ in Sym(A), the function
n 7→ σn from Z to Sym(A) is a homomorphism of groups.

Proof. Since σ0 = idA and σ−n = (σn)−1 for all n in Z, it remains
to show

σn+m = σn ◦ σm (.)

for all m and n in Z. We start with the the case where m and n
are in ω. Here we use induction on n. The claim holds easily if
n = 0. Suppose it holds when n = k. Then

σ(k+1)+m = σ(k+m)+1

= σ ◦ σk+m

= σ ◦ (σk ◦ σm)
= (σ ◦ σk) ◦ σm

= σk+1 ◦ σm,
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and so (.) holds when n = k+ 1. By induction, it holds for all n
in ω, for all m in ω. Hence in this case also we have

σ−n−m = (σm+n)−1 = (σm ◦ σn)−1 = σ−n ◦ σ−m.

Finally, if also m 6 n, then we have σn−m ◦ σm = σn, so

σn−m = σn ◦ (σm)−1 = σn ◦ σ−m,
σm−n = (σn−m)−1 = (σn ◦ σ−m)−1 = σm ◦ σ−n.

This completes all cases of (.).

If b ∈ A and σ ∈ Sym(A), then the set {σn(b) : n ∈ Z} is called
the orbit of b under σ. A subset of A is an orbit under σ if it is
the orbit under σ of some element of A. So for example if we think
of the tetrahedron as a pyramid with an equilateral triangular base,
and we let σ be the automorphism that rotates the base clockwise
by 120◦, then the orbit under σ of any vertex of the base is the set
of vertices of the base.

An orbit is trivial if it has size 1; if it is larger, it is nontrivial.
Then a permutation is a cycle if, under it, there is exactly one
nontrivial orbit. Cycles are like prime numbers, by Theorem 
below. Under the identity, there are no nontrivial cycles. As we
do not consider 1 to be a prime number, so we do not consider the
identity to be a cycle.

If the nontrivial orbits under some cycles are disjoint from one
another, then the cycles themselves are said to be disjoint from
one another. If σ and τ are disjoint cycles, then στ = τσ, and so
on for larger numbers of disjoint cycles: the order of multiplying
them makes no difference to the product. It even makes sense to
talk about the product of an infinite set of disjoint cycles:

Theorem . Suppose Σ is a set of disjoint cycles in Sym(A),
where the nontrivial orbit under each σ in Σ is Aσ. Then there is
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a unique element π of Sym(A) given by

π(x) =

{

σ(x), if x ∈ Aσ,

x, if x ∈ Ar
⋃

σ∈ΣAσ.

Proof. The rule gives us at least one value of π(x) for each x in
A; and this value is itself in A. But there is at most one value,
because the sets Aσ are known to be disjoint from one another,
so that if x ∈ Aσ, and σ 6= τ , then x /∈ Aτ . Thus π is unique.
Also π : A → A. Moreover, each σ in Σ, restricted to Aσ, is a
permutation of Aσ. Thus, replacing each σ with σ−1, we obtain
π−1 by the given rule. Therefore π ∈ Sym(A).

The permutation π found in the theorem is the product of the
cycles in Σ. We may denote this product by

∏

Σ.

In the notation of the theorem, if i 7→ σi is a bijection from some
set I to Σ, then we can write

∏

i∈I

σi =
∏

Σ.

This function i 7→ σi can be called an indexing of Σ by I. The
product given by the theorem is independent of any indexing. If
j 7→ τj is an indexing of Σ by some set J , then there must be a
bijection f from I to J such that τf(i) = σi for each i in I, and so
by the theorem,

∏

j∈J

τj =
∏

i∈I

σi =
∏

i∈I

τf(i).

Next, instead of disjoint cycles, we consider disjoint orbits under
some one permutation.
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Theorem . Any two distinct orbits under the same permutation
are disjoint. In particular, if a belongs to an orbit under σ, then
that orbit is {σk(a) : k ∈ Z}. If this orbit has size n for some n in
N, then the orbit is {σk(a) : k ∈ n}.
Proof. We prove the contrapositive of the first claim. Suppose a
and b have intersecting orbits under σ. Then for some m and n in
Z we have σm(a) = σn(b). In this case, for all k in ω,

σk(a) = σn+k−m(b).

Thus the orbit of a is included in the orbit of b. By symmetry, the
two orbits are the same.

For the final claim, suppose the orbit of a is finite. Then for some
i in Z and n in N, we must have

σi(a) = σi+n(a). (.)

Then a = σ±n(a), and so, by induction, for all k in Z we have
a = σkn(a), and more generally

i ≡ j ⇒ σi(a) = σj(a) (mod n).

Therefore, by Theorem , the orbit of a is {σi : i ∈ n}. If n is
minimal such that, for some i, (.), then n the size of the orbit of
a.

Theorem . For every set A, every element of Sym(A) is the
product of disjoint cycles in a unique way.

Proof. Supposing σ ∈ A, let I be the set of nontrivial orbits under
σ. These are all disjoint from one another, by Theorem . For
each i in I, we can define a unique cycle σi that agrees with σ on i,
but otherwise is the identity. Then σ =

∏

i∈I σi. Suppose σ =
∏

Σ
for some set Σ of disjoint cycles. Then for each i in I, we must have
σi ∈ Σ. Moreover, i 7→ σi must be a bijection from I to Σ.

The cardinality of the unique nontrivial orbit under a cycle is
the order of the cycle. We may say that the identity has order 1.
Then orders come from the set N ∪ {ℵ0}, which is ω′ r {0}.
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... Notation

Suppose σ ∈ Sym(n) for some n. Then

σ =
{(

0, σ(0)
)
, . . . ,

(
n− 1, σ(n− 1)

)}
.

We might write this equation a bit more simply in the form

σ =

{
0 . . . n− 1

σ(0) . . . σ(n− 1)

}

. (.)

This is a set with n elements, and each of those elements is an
ordered pair, here written vertically. The braces in (.) might be
replaced with parentheses, as in

(
0 · · · n− 1

σ(0) · · · σ(n− 1)

)

.

However, this notation is potentially misleading, because it does
not stand for a matrix such as we shall define in §. (p. ). In
a matrix, the order of the columns (as well as the rows) matters;
but in (.), the order of the columns does not matter. The order
of the rows does matter. Indeed, we have

{
σ(0) . . . σ(n− 1)
0 . . . n− 1

}

= σ−1.

Suppose σ is a cycle, and k belongs to the nontrivial orbit under
it. Then we may use for σ the notation

(
k σ(k) · · · σm−1(k)

)
, (.)

where m is the order of σ. By Theorem , we can replace k with
any member of the same cycle. So the expression in (.) should
be understood, not as a matrix, but rather as a ring or a circle,

as in Figure . where m = 6. In general, the circle can be broken

The English word “circle” comes from the Latin circulus (which is a diminu-
tive form of circus); “cycle” comes ultimately from the Greek κύκλος. Both
circulus and κύκλος mean something round; and κύκλος is cognate with
“wheel.”
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σ(k)

σ2(k)

σ3(k)

σ4(k)

σ5(k)

Figure .. A cycle.

and written in one line in m different ways, as
(
σi(k) · · · σm−1(k) k σ(k) · · · σi−1(k)

)

for any i in m. The identity idn might be denoted by (0), or even
by (i) for any i in n.

When n is small, we can just list the elements of Sym(n), accord-
ing to their factorizations into disjoint cycles. For example, Sym(3)
consists of

(0),

(0 1), (0 2), (1 2),

(0 1 2), (0 2 1),

where no nontrivial factorizations are possible„ while Sym(4) con-
sists of

(0),

(0 1), (0 2), (0 3), (1 2), (1 3), (2 3),

(0 1 2), (0 1 3), (0 2 3), (1 2 3),

(0 1)(2 3), (0 2)(1 3), (0 3)(1 2),

(0 1 2 3), (0 1 3 2), (0 2 1 3), (0 2 3 1), (0 3 1 2), (0 3 2 1).

For larger n, one might like to have some additional principle of
organization. But then the whole study of groups might be under-
stood as a search for such principles (for organizing the elements of
a group, or organizing all groups).
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If m < n, the map σ 7→ σ ∪ idnrm is an embedding of the group
Sym(m) in Sym(n). Similarly each Sym(n) embeds in Sym(ω);
but the latter has many elements that are not in the image of any
Sym(n). Indeed, we have the following, which can be obtained as
a corollary of Theorem .

Theorem . Sym(ω) is uncountable.

... Even and odd permutations

An element of Sym(n) is said to be even if, in its factorization
as a product of disjoint cycles, there is an even number of cycles
of even order. Otherwise the permutation is odd. Thus cycles of
even order are odd; cycles of odd order are even. The reason for
this peculiar situation is suggested by Theorem  below.

Meanwhile, if m < n, then, under the embedding σ 7→ σ ∪ idnrm
just discussed of Sym(m) in Sym(n), evenness and oddness are
preserved. That is, σ in Sym(m) is even if and only if σ ∪ idnrm is
even.

We define the signum function sgn from Sym(n) to {±1} by

sgn(σ) =

{

1, if σ is even,

−1, if σ is odd.

Theorem  on p.  below is that this function is a homomorphism.
A cycle of order n can be called an n-cycle. It is consistent with

this terminology to consider the identity as a 1-cycle. A 2-cycle is
also called a transposition.

Theorem . Every finite permutation is a product of transposi-
tions. A cycle of order m is a product of m− 1 transpositions.

Proof. (0 1 · · · m− 1) = (0 m− 1) · · · (0 2)(0 1).

Thus an even permutation is the product of an even number of
transpositions, and an odd permutation is the product of an odd
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number of permutations. If the converse is true, then the signum
function must be a homomorphism.

However, proving that converse is not especially easy. The neat-
est approach might seem to be as follows. A tournament on set
A is an irreflexive, antisymmetric, total binary relation on A. This
means, if i and j are distinct elements of A, then exactly one of
(i, j) and (j, i) belongs to a given tournament on A, but (i, i) never
belongs. If (i, j) belongs to a given tournament, we can think of i
as the winner of a match between i and j; this is the reason for the
name tournament. If T is a tournament on n, and σ ∈ Sym(n), we
can define

σ̃(T ) = {(σ(i), σ(j)) : (i, j) ∈ T}.
This is another (or possibly the same) tournament on n. Fixing a
particular tournament U on n, such as {(i, j) : i < j < n}, we let

A = {σ̃(U) : σ ∈ Sym(n)}.
Then every σ̃, restricted to A, is a permutation of A, and indeed
the map σ 7→ σ̃ ↾ A is a homomorphism from Sym(n) to Sym(A).
Let

A0 = {T ∈ A : |T r U | is even}, A1 = ArA0.

We should like to show that, for every σ in Sym(n), for each i in
2, the set {σ̃(T ) : T ∈ Ai} is Ai again, if σ is even, and A1−i if
σ is odd. Thus we should obtain a homomorphism from Sym(n)
to Sym({A0, A1}), and the signum function would be a homomor-
phism. However, proving all of these things seems to be no easier
than just proving directly Theorem  on p.  below.

.. Monoids and semigroups

... Definitions

The structure (N, 1, ·) cannot expand to a group, that is, it cannot
be given an operation of inversion so that the structure becomes a
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group. (See p. .) The structure is however a monoid. A monoid
is a structure (M, e, ·) satisfying the axioms

xe = x

ex = x,

(xy)z = x(yz).

In particular, if (G, e,−1 , ·) is a group, then the reduct (G, e, ·) is a
monoid.

Not every monoid is the reduct of a group: the example of (N, 1, ·)
shows this. So does the example of a set M with an element e and
at least one other element, if we define xy to be e for all x and y
in M .

For another example, given an arbitrary set A, we have the
monoid (AA, idA, ◦). (See p. .) However, if A has at least two
elements, then AA has elements (for example, constant functions)
that are not injective and are therefore not invertible.

If (M, e, ·) is a monoid, then by the proof of Cayley’s Theorem
on p. , the map x 7→ λx is a homomorphism from (M, e, ·) to
(MM , idM , ◦). However, this homomorphism might not be an em-
bedding.

Even though the monoid (N, 1, ·) does not expand to a group,
it embeds in the monoid (Q+, 1, ·), which expands to the group
(Q+, 1,−1, ·), by the method of fractions learned in school and re-
viewed as Theorem  on p.  above. There is no such embedding
if we replace the monoid (N, 1, ·) with the monoid (AA, idA, ◦) for a
set A with at least two elements. For, in this case, Lemma  on p.
 is false, because multiplication on AA does not allow cancellation
in the sense of Theorem  on p. .

However, Theorem  does not actually require the identity 1 in
the monoid (N, 1, ·). After appropriate modifications, the method
of the theorem allows us to obtain the group (Q, 0,−,+) such that
(Q+,+) embeds in the reduct (Q,+). This is shown in Theorem 
on p. . The proof goes through, even though (Q+,+) does not
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expand to a monoid. By the same method, (Z, 0,−,+) can be
obtained directly from (N,+).

The structures (N,+) and (Q+,+) are semigroups. In general, a
semigroup is a structure (S, ·) satisfying the identity

(xy)z = x(yz).

If (M, e, ·) is a monoid, then the reduct (M, ·) is a semigroup. But
not every semigroup is the reduct of a monoid: for example (N,+)
and (Q+,+) are not reducts of monoids. Or let O be the set of all
operations f on ωω such that, for all n in ω, f(n) > n: then O is
closed under composition, so (O, ◦) is a semigroup; but it has no
identity.

The structure (Q, 0,−,+, 1, ·) is an example of a ring (or more
precisely associative ring); in fact it is a field, and it embeds in the
field (R, 0,−,+, 1, ·) of real numbers, as follows from Theorem 
on p. . Rings and fields as such will be defined formally in §.,
beginning on p. .

... Some homomorphisms

We defined powers of symmetries on p. . By the same definition,
we obtain at least the positive powers of elements of semigroups:

a1 = a, an+1 = a · an.

Theorem . Suppose (S, ·) is a semigroup, and m and n range
over N.

. For all a in S,

am+n = aman.

That is, if a ∈ S, then

n 7→ an : (N,+) → (S, ·).
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. For all a in S,
amn = (am)n. (.)

That is,

n 7→ (a 7→ an) : (N, 1, ·) → (SS , idS , ◦). (.)

Proof. We use induction. The first part is proved like Theorem .
For the second part, we have an·1 = an = (an)1, and if anm =
(an)m, then

an(m+1) = anm+n = anman = (an)man = (an)m+1.

This establishes (.). If we write fx(y) for yx, then (.) becomes

fmn = fn ◦ fm.

Since mn = nm, we get (.).

In a monoid, we define
a0 = e.

Theorem . Suppose (M, e, ·) is a monoid.
. If a ∈M , then x 7→ ax : (ω, 0,+) → (M, e, ·).
. x 7→ (y 7→ yx) : (ω, 1, ·) → (MM , idA, ◦).

In a group, we define

a−n = (an)−1.

Theorem . Suppose (G, e,−1, ·) is a group.
. If a ∈ G, then x 7→ ax : (Z, 0,−,+) → (G, e,−1 , ·).
. x 7→ (y 7→ yx) : (Z, 1, ·) → (GG, idG, ◦).

We shall use the following in Theorem  on p. .

Theorem . If x2 = e for all x in some group, then that group
is abelian.
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... Pi and Sigma notation

We can generalize the taking of powers in a semigroup as follows.
Given elements ai of a semigroup, where i ranges over ω, we define
certain iterated products recursively by

∏

i<0

ai = 1,
∏

i<n+1

ai =
(∏

i<n

ai

)

· an.

We may also write
∏

i<n ai as

a0 · · · an−1.

This product depends not just on the set {ai : i < n}, but on the
function i 7→ ai on n. As on p. , we may denote this function by
one of

(a0, . . . , an−1), (ai : i < n).

Then the product
∏

i<n ai could also be written as
∏

(ai : i < n).

By associativity of multiplication in semigroups, we obtain the fol-
lowing.

Theorem . In a semigroup,
∏

i<n+m

ai =
∏

i<n

ai ·
∏

j<m

an+j .

If the operation on a semigroup is commutative, we usually write
it additively, and then we may define

∑

i<0

ai = 0,
∑

i<n+1

ai =
∑

i<n

ai + an.

We may also write
∑

i<n ai as

a0 + · · ·+ an−1.

However, we use multiplicative notation for the following.
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Theorem . In a commutative semigroup, for all n in N, for all
σ in Sym(n),

∏

i<n

aσ(i) =
∏

i<n

ai.

Proof. Suppose first that σ is the transposition (k ℓ), where k < ℓ.
Let

b =
∏

i<k

ai, c =
∏

i<ℓ−k−1

ak+i+1, d =
∏

i<n−ℓ−1

aℓ+i+1.

By Theorem  and commutativity,
∏

i<n

aσ(i) = b · aℓ · c · ak · d

= b · aℓ · ak · c · d
= b · ak · aℓ · c · d
= b · ak · c · aℓ · d =

∏

i<n

ai.

So the claim holds when σ is a transposition. In this case we have
∏

i<n

aτσ(i) =
∏

i<n

aτ(i)

for all τ in Sym(n). Since every finite permutation is a product of
transpositions by Theorem , we obtain the claim in general.

By this theorem, if we have a function i 7→ ai from some finite
set I into a commutative semigroup, then the notation

∏

i∈I

ai

makes sense. We use such notation in the next theorem, Theo-
rem . We may denote the function i 7→ ai on I by

(ai : i ∈ I),
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and we may refer to it as an indexed set, specifically as an indexed
subset of the commutative semigroup in question. The set I is the
index set for this indexed set.

... Alternating groups

Theorem . The function sgn is a homomorphism from Sym(n)
to {±1}.

Proof. If σ ∈ Sym(n), then there is a well-defined function X 7→
qσ(X) from [n]2 to {±1} given by

qσ({i, j}) =
σ(i)− σ(j)

i− j
.

Since multiplication in {±1} is commutative, we can define

f(σ) =
∏

X∈[n]2

qσ(X).

If σ = (k ℓ), then

f(σ) = qσ({k, ℓ}) ·
∏

i∈nr{k,ℓ}

(
qσ({i, ℓ}) · qσ({k, i})

)

=
ℓ− k

k − ℓ
·

∏

i∈nr{k,ℓ}

( i− k

i− ℓ
· ℓ− i

k − i

)

= −1.

If τ ∈ Sym(n), we can define an element τ̂ of Sym([n]2) by

τ̂({i, j}) = {τ(i), τ(j)}.

By Theorem ,

f(σ) =
∏

X∈[n]2

qσ(τ̂(X)),
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so

f(στ) =
∏

{i,j}∈[n]2

σ(τ(i))− σ(τ(j))

i− j

=
∏

{i,j}∈[n]2

(
σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
· τ(i)− τ(j)

i− j

)

=
∏

X∈[n]2

(
qσ(τ̂(X)) · qτ (X)

)

=
∏

X∈[n]2

qσ(τ̂(X)) ·
∏

X∈[n]2

qτ (X)

= f(σ) · f(τ).

Thus f(τ) = 1 if and only if τ is the product of an even number of
transpositions, and otherwise f(τ) = −1. Therefore f must agree
with σ on Sym(n), and so sgn must be a homomorphism.

We have as a corollary that the even permutations of n compose
a subgroup of Sym(n). This subgroup is the alternating group
of degree n and is denoted by

Alt(n).

If n > 1, there is a permutation σ 7→ σ ◦ (0 1) of Sym(n) itself that
takes even elements to odd. In this case, Alt(n) is half the size of
Sym(n). However, Alt(1) = Sym(1). For this reason, one may wish
to say that that Alt(n) is defined only when n > 2. This makes
Theorem  (p.  below) simpler to state.

.. Simplifications

If a semigroup (G, ·) expands to a group (G, e,−1, ·), then the semi-
group (G, ·) itself is often called a group. But this usage must be
justified.
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Theorem . A semigroup can expand to a group in only one way.

Proof. Let (G, e,−1 , ·) be a group. If e′ were a second identity, then

e′x = ex, e′xx−1 = exx−1, e′ = e.

If a′ were a second inverse of a, then

a′a = a−1a, a′aa−1 = a−1aa−1, a′ = a−1.

Establishing that a particular structure is a group is made easier
by the following.

Theorem . Any structure satisfying the identities

ex = x,

x−1x = e,

x(yz) = (xy)z

is a group. In other words, any semigroup with a left-identity and
with left-inverses is a group.

Proof. We need to show xe = x and xx−1 = e. To establish the
latter, using the given identies we have

(xx−1)(xx−1) = x(x−1x)x−1 = xex−1 = xx−1,

and so

xx−1 = exx−1 = (xx−1)−1(xx−1)(xx−1) = (xx−1)−1(xx−1) = e.

Hence also
xe = x(x−1x) = (xx−1)x = ex = x.

The theorem has an obvious “dual” involving right-identities and
right-inverses. By the theorem, the semigroups that expand to
groups are precisely the semigroups that satisfy the axiom

∃z (∀x zx = x ∧ ∀x ∃y yx = z),
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which is logically equivalent to

∃z ∀x ∀y ∃u (zx = x ∧ uy = z). (.)

We shall show that this sentence is more complex than need be.
Thanks to Theorem , if a semigroup (G, ·) does expand to a

group, then we may unambiguously refer to (G, ·) itself as a group.
Furthermore, we may refer to G as a group: this is commonly done,
although, theoretically, it may lead to ambiguity.

Theorem . Let G be a nonempty semigroup. The following are
equivalent.

. G expands to a group.
. Each equation ax = b and ya = b with parameters from G

has a solution in G.
. Each equation ax = b and ya = b with parameters from G

has a unique solution in G.

Proof. Immediately ()⇒(). Almost as easily, ()⇒(). For, if a
and b belong to some semigroup that expands to a group, we have
ax = b ⇔ x = a−1b; and we know by Theorem  that a−1 is
uniquely determined. Likewise for ya = b.

Finally we show ()⇒(). Suppose G is a nonempty semigroup
in which all equations ax = b and ya = b have solutions. If c ∈ G,
let e be a solution to yc = c. If b ∈ G, let d be a solution to cx = b.
Then

eb = e(cd) = (ec)d = cd = b.

Since b was chosen arbitrarily, e is a left identity. Since the equation
yc = e has a solution, c has a left inverse. But c is an arbitrary
element of G. By Theorem , we are done.

Now we have that the semigroups that expand to groups are just
the semigroups that satisfy the axiom

∀x ∀y (∃z xz = y ∧ ∃w wx = y).
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This may not look simpler than (.), but it is. It should be un-
derstood as

∀x ∀y ∃z ∃w (xz = y ∧ wx = y),

which is a sentence of the general form ∀∃; whereas (.) is of the
form ∃∀∃.

Theorem . A map f from one group to another is a homo-
morphism, provided it is a homomorphism of semigroups, that is,
f(xy) = f(x)f(y).

Proof. In a group, if a is an element, then the identity is the unique
solution of xa = a, and a−1 is the unique solution of yaa = a. A
semigroup homomorphism f takes solutions of these equations to
solutions of xb = b and ybb = b, where b = f(a).

Inclusion of a substructure in a larger structure is a homomor-
phism. In particular, if (G, e,−1, ·) and (H, e,−1, ·) are groups, we
have

(G, ·) ⊆ (H, ·) =⇒ (G, e,−1, ·) ⊆ (H, e,−1, ·).

If an arbitrary class of structures is axiomatized by ∀∃ sentences,
then the class is “closed under unions of chains” in the sense that, if
A0 ⊆ A1 ⊆ A2 ⊆ · · · , where each Ak belongs to the class, then the
union of all of these structures also belongs to the class. In fact the
converse is also true, by the so-called Chang–Łoś–Suszko Theorem
[, ]. With this theorem, and with Theorem  in place of ,
we can still conclude that the theory of groups in the signature {·}
has ∀∃ axioms, although we may not know what they are.

Theorem  fails with monoids in place of groups. For example,
(Z, 1, ·) and (Z×Z, (1, 1), ·) are monoids (the latter being the prod-
uct of the former with itself as defined in §.), and x 7→ (x, 0) is
an embedding of the semigroup (Z, ·) in (Z× Z, ·), but it is not an
embedding of the monoids.
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.. Associative rings

A homomorphism from a structure to itself is an endomorphism.
Recall from p.  that a group in which the multiplication is com-
mutative is said to be an abelian group, and (p. ) its opera-
tion is usually written additively. The set of endomorphisms of an
abelian group can be made into an abelian group in which:

) the identity is the constant function x 7→ e;
) additive inversion converts f to x 7→ −f(x);
) addition converts (f, g) to x 7→ f(x) + g(x).

If E is an abelian group, let the abelian group of its endomorphisms
be denoted by

End(E).

The set of endomorphisms of E can also be made into a monoid in
which the identity is the identity function idE , and multiplication
is functional composition. This multiplication distributes in both
senses over addition:

f ◦ (g + h) = f ◦ g + f ◦ h, (f + g) ◦ h = f ◦ h+ g ◦ h.

We may denote the two combined structures—abelian group and
monoid together—by

(End(E), idE , ◦);

this is the complete ring of endomorphisms of E. A substruc-
ture of (End(E), idE , ◦) can be called simply a ring of endomor-
phisms E.

An associative ring is a structure (R, 0,−,+, 1, ·) such that
) (R, 0,−,+) is an abelian group,
) (R, 1, ·) is a monoid,
) the multiplication distributes in both senses over addition.

Then rings of endomorphisms are associative rings. It may be
convenient to write an associative ring as (R, 1, ·), where R is im-

See note  on p.  for the origin of the term ring.
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plicitly an abelian group. We might even say simply that R is an
associative ring.

An associative ring is usually just called a ring; however, we
shall consider some rings that are not associative rings in §. (p.
). Some authors might not require an associative ring to have
a multiplicative identity. We require it, so that the next theorem
holds. As with a group, so with an associative ring, an element a
determines a singulary operation λa on the structure, the operation
being given by

λa(x) = ax.

Then we have an analogue of Cayley’s Theorem (p. ):

Theorem . For every associative ring (R, 1, ·), the function

x 7→ λx

embeds (R, 1, ·) in (End(R), idR, ◦).

In an associative ring, if the multiplication commutes, then the
ring is a commutative ring. For example, (Z, 0,−,+, 1, ·) and
(Q, 0,−,+, 1, ·) are commutative rings. The following is easy to
check, but can be seen as a consequence of Theorem  on p. 
below, which is itself easy to prove, especially given Theorem .

Theorem . (Zn, 0,−,+, 1, ·) is a commutative ring.

In an associative ring, an element with both a left and a right
multiplicative inverse can be called simply invertible; it is also
called a unit.

Theorem . In an associative ring, the units compose a group
with respect to multiplication. In particular, a unit has a unique
left inverse, which is also a right inverse.

For Lang [, ch. II, §, p. ], a ring is what we have defined as an associative
ring. For Hungerford [, ch. III, §, p. ], what we call an associative
ring is a ring with identity.
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The group of units of an associative ring R is denoted by

R×.

For example, Z× = {1,−1}. Evidently all two-element groups are
isomorphic to this one.

By the theorem, if an element of an associative ring has both
a left inverse and a right inverse, then they are equal. However,
possibly an element can have a right inverse, but not a left inverse.
We can construct an example by means of the following.

Theorem . If I is a set and G is a group, then the set GI of
functions from I to G is a group with multiplication given by

(xi : i ∈ I) · (yi : i ∈ I) = (xi · yi : i ∈ I).

Let G be any nontrivial group. An arbitrary element (xn : n ∈ ω)
of Gω can be written also as

(x0, x1, . . . ).

Then End(Gω) contains elements f and g given by

f(x0, x1, . . . ) = (x1, x2, x3, x4, . . . ),

g(x0, x1, . . . ) = (x0, x0, x1, x2, . . . ),

so that

fg(x0, x1, . . . ) = (x0, x1, x2, . . . ),

gf(x0, x1, . . . ) = (x1, x1, x2, . . . ).

In particular, g is a right inverse of f , but not a left inverse. The
construction in Theorem  will be generalized on p. .

If R is a commutative ring, and R× = Rr{0}, then R is called a
field. For example, Q and R are fields. The field C can be defined
as R× R with the appropriate operations: see p. .

The trivial group {0} becomes the trivial associative ring when
we define 1 = 0 and 0 · 0 = 0. This ring is not a field, because its
only element 0 is a unit.
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. Groups

.. *General linear groups

The purpose of this section is to define some families of examples
of groups, besides the finite symmetry groups Sym(n).

By Cayley’s Theorem, p. , we know that every finite group
embeds, for some n in ω, in Sym(n). We know in turn (from p. )
that each Sym(n) embeds in Sym(ω), which however is uncountable
by Theorem . For every commutative ring R, for every n inω, we
shall define the group GLn(R) of invertible n× n matrices over R.
Both Sym(n) and R× embed in GLn(R). If R is countable, then so
is GLn(R). If R is finite, then so is GLn(R). In any case, GLn(R)
can be understood as the automorphism group of Rn, when this is
considered as an R-module.

We shall use invertible matrices over Z in classifying the finitely
generated abelian groups, in §. (p. ).

... Additive groups of matrices

For any commutative ring R, for any two elements m and n of ω,
a function (i, j) 7→ aij from m × n to R can be called an m × n
matrix over R and denoted by the expression






a00 · · · a0n−1
...

. . .
...

am−1
0 · · · am−1

n−1




 ,

which has m rows and n columns. We may abbreviate this matrix
to

(aij)
i<m
j<n ,





or simply

(aij)
i
j

if the sets over which i and j range is clear. The entries aij are
from R. The set of all m× n matrices over R can be denoted by

Mm×n(R).

This is an abelian group in the obvious way, with addition defined
by

(aij)
i<m
j<n + (bij)

i<m
j<n = (aij + bij)

i<m
j<n .

... Multiplication of matrices

Given any three elements m, s, and n of ω, we define multipli-
cation as a function from the product Mm×s(R) × Ms×n(R) to
Mm×n(R) by

(aij)
i<m
j<s · (bjk)

j<s
k<n =

(∑

j∈s

aijb
j
k

)i<m

k<n
.

Then in particular multiplication is a binary operation on each
group Mn×n(R) of square matrices. One particular element of this
group is






1 0
. . .

0 1




 ,

which can be denoted by

In.

This matrix can also be written as (δij)
i<n
j<n, where

δij =

{

1, if i = j,

0, otherwise,

 . Groups



Theorem . For all commutative rings R, multiplication of ma-
trices over R is associative and distributes over addition. Also
Mn×n(R) is an associative ring with multiplicative identity In.

The group Mn×n(R)
× is called the general linear group of

degree n over R; it is also denoted by

GLn(R).

Some elements of GLn(R) are picked out by the following.

Theorem . For each n in ω, there is an embedding of Sym(n)
in GLn(R), namely

σ 7→ (δ
σ−1(i)
j )i<nj<n.

Proof. The given function is evidently injective. It is a homomor-
phism since

(δ
σ−1(i)
j )ij · (δτ

−1(i)
j )ij =

(∑

k<n

δ
σ−1(i)
k · δτ

−1(k)
j

)i

j
= (δ

τ−1(σ−1(i))
j )ij

If R is a field, there is an algorithm called Gauss–Jordan elim-
ination,learned in linear algebra classes, for determining whether a
given element A of Mn×n(R) is invertible. One systematically per-
forms certain invertible operations on the rows of A, attempting to
transform it into In. These operations are called elementary row
operations, and they are:

) interchanging two rows,
) adding a multiple of one row by an element of R to another,

and
) multiplying a row by an element of R×.

One works through the matrix from left to right, first converting a
nonzero element of the first column to 1, and using this to eliminate
the other nonzero entries; then continuing with the second column,
and so on. One will be successful in transforming A to In if and
only if A is indeed invertible. In this case, the same elementary
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row operations, performed on the rows of In, will produce A−1.
The reason is that performing each of these operations is the same
as multiplying from the left by the result of performing the same
operation on In.

When R is Z, one can instead use the Euclidean algorithm to
make one entry in each column of A equal to the greatest common
divisor of all of the entries in that column. (See p. .) Then A
is invertible if and only if each of these greatest common divisors
is 1.

We now develop a method for determining whether a matrix over
an arbitrary ring is invertible.

... Determinants of matrices

Given a commutative ring R, we define the function X 7→ det(X)
from Mn×n(R) to R by

det((aij)
i<n
j<n) =

∑

σ∈Sym(n)

sgn(σ)
∏

i<n

aiσ(i).

Here det(A) is the determinant of A.

Theorem . The function X 7→ det(X) is a multiplicative ho-
momorphism, that is,

det(XY ) = det(X) · det(Y ).

Proof. We shall use the identity

∏

i<k

∑

j<n

f(i, j) =
∑

ϕ : k→n

∏

i<k

f(i, ϕ(i)).

Let A = (aij)
i<n
j<n and B = (bij)

i<n
j<n. Then

det(AB) = det

((∑

j<n

aijb
j
k

)i<n

k<n

)
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=
∑

σ∈Sym(n)

sgn(σ)
∏

i<n

∑

j<n

aijb
j
σ(i)

=
∑

σ∈Sym(n)

sgn(σ)
∑

ϕ : n→n

∏

i<n

(aiϕ(i)b
ϕ(i)
σ(i))

=
∑

ϕ : n→n

∏

i<n

aiϕ(i)
∑

σ∈Sym(n)

sgn(σ)
∏

i<n

b
ϕ(i)
σ(i).

We shall eliminate from the sum those terms in any ϕ that is not
injective. Suppose k < ℓ < n, but ϕ(k) = ϕ(ℓ). The function
σ 7→ σ ◦ (k ℓ) is a bijection between Alt(n) and Sym(n) r Alt(n).
Writing σ′ for σ ◦ (k ℓ), we have

∑

σ∈Sym(n)

sgn(σ)
∏

i<n

b
ϕ(i)
σ(i) =

∑

σ∈Alt(n)

sgn(σ)
(∏

i<n

b
ϕ(i)
σ(i) −

∏

i<n

b
ϕ(i)
σ′(i)

)

.

Each term of the last sum is 0, since σ and σ′ agree on nr {k, ℓ},
while

b
ϕ(k)
σ(k)b

ϕ(ℓ)
σ(ℓ) = b

ϕ(ℓ)
σ′(ℓ)b

ϕ(k)
σ′(k) = b

ϕ(k)
σ′(k)b

ϕ(ℓ)
σ′(ℓ).

Therefore, continuing with the computation above, we have

det(AB) =
∑

τ∈Sym(n)

∏

i<n

aiτ(i)
∑

σ∈Sym(n)

sgn(σ)
∏

i<n

b
τ(i)
σ(i).

Since each τ in Sym(n) permutes n, we have also

∏

i<n

b
τ(i)
σ(i) =

∏

i<n

biστ−1(i), sgn(σ) = sgn(τ) · sgn(στ−1).

Putting this all together, we have

det(AB) =
∑

τ∈Sym(n)

∏

i<n

aiτ(i)
∑

σ∈Sym(n)

sgn(τ) sgn(στ−1)
∏

i<n

biστ−1(i)

=
∑

τ∈Sym(n)

sgn(τ)
∏

i<n

aiτ(i)
∑

σ∈Sym(n)

sgn(στ−1)
∏

i<n

biστ−1(i)
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=
∑

τ∈Sym(n)

sgn(τ)
∏

i<n

aiτ(i)
∑

σ∈Sym(n)

sgn(σ)
∏

i<n

biσ(i)

= det(A) · det(B),

since σ 7→ στ−1 is a permutation of Sym(n).

Corollary .. An element of Mn×n(R) has an inverse only if
its determinant is in R×.

... Inversion of matrices

Given the commutative ring R, we can now characterize the ele-
ments of GLn(R) among elements of Mn×n(R) by establishing the
converse of Corollary ..

Theorem . An element of Mn×n(R) has an inverse if its deter-
minant is in R×.

Proof. Let A = (aij)
i<n
j<n. If i < n, then

det(A) =
∑

σ∈Sym(n)

sgn(σ) ·
∏

ℓ<n

aℓσ(ℓ)

=
∑

σ∈Sym(n)

sgn(σ) · aiσ(i)
∏

ℓ∈nr{i}

aℓσ(ℓ)

=
∑

j<n

aij
∑

σ∈Sym(n)
σ(i)=j

sgn(σ) ·
∏

ℓ∈nr{i}

aℓσ(ℓ)

=
∑

j<n

aijb
j
i ,

where in general

bjk =
∑

σ∈Sym(n)
σ(k)=j

sgn(σ) ·
∏

ℓ∈nr{k}

aℓσ(ℓ).
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If i 6= k, then

∑

j<n

aijb
j
k =

∑

j<n

aij
∑

σ∈Sym(n)
σ(k)=j

sgn(σ) ·
∏

ℓ∈nr{k}

aℓσ(ℓ)

=
∑

σ∈Sym(n)

sgn(σ) · aiσ(k)
∏

ℓ∈nr{k}

aℓσ(ℓ)

=
∑

σ∈Sym(n)

sgn(σ) · aiσ(k)aiσ(i)
∏

ℓ∈nr{i,k}

aℓσ(ℓ) = 0,

since the map σ 7→ σ ◦ (i k) is a bijection between Alt(n) and
Sym(n)rAlt(n). Thus

A · (bjk)
j<n
k<n = (det(A) · δik)i<nk<n.

Finally,

∑

j<n

bija
j
k =

∑

j<n

∑

σ∈Sym(n)
σ(j)=i

sgn(σ) ·
∏

ℓ∈nr{j}

aℓσ(ℓ)a
j
k

=
∑

σ∈Sym(n)

sgn(σ) ·
∏

ℓ∈nr{σ−1(i)}

aℓσ(ℓ)a
σ−1(i)
k

=
∑

σ∈Sym(n)

sgn(σ) ·
∏

ℓ∈nr{i}

a
σ−1(ℓ)
ℓ a

σ−1(i)
k ,

which is det(A) if i = k, but is otherwise 0, so

(bij)
i<n
j<nA = (det(A)δik)

i<n
k<n.

In particular, if det(A) is invertible, then so is A, and

A−1 = (det(A)−1bjk)
j<n
k<n.

Thus

GLn(R) = {X ∈ Mn×n(R) : det(X) ∈ R×}.
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In the 2× 2 case, if ad− bc = 1, we have
(
a b
c d

)−1

=

(
d −b
−c a

)

.

... Modules and vector-spaces

A module is a kind of structure with two universes. One of these
is the universe of a commutative ring R, and other is the universe
of an abelian group M . Furthermore, there is a function (x,m) 7→
x · m from R ×M to M such that the function x 7→ (m 7→ x ·
m) is a homomorphism from R to (End(M), idM , ◦). Then we
can understand M as a group equipped with a certain additional
operation for each element of R. In this sense, M is a module
over R, or an R-module.

For example, R is a module over itself. A module over a field is
called a vector space. In this case, the associated homomorphism
from R to (End(M), idM , ◦) is an embedding, unlessM is the trivial
group.

The foregoing definition of modules makes sense, even if R is
not commutative; but in that case what we have defined is a left
module. We restrict our attention to the commutative case.

We further restrict our attention to the case whereM is the group
Mn×1(R) for some n in ω. A typical element of this group can be
written as either of

x, (xi : i < n);

thus it can be identified with an element of Rn. The group becomes
an R-module when we make the obvious definition

r · x = (r · xi : i < n).

Theorem . For every commutative ring R, for every n in ω,
there is an isomorphism from GLn(R) to Aut(Rn), namely

A 7→ (x 7→ A · x). (.)

 . Groups



Proof. By Theorem , if A ∈ GLn(R), then the operation x 7→
A ·x is a group endomorphism. Being invertible, it is an group au-
tomorphism. By commutativity of R (and the definition of matrix
multiplication), for all r in R,

A · (r · x) = r · (A · x).

Hence the function in (.) is indeed a homomorphism h from
GLn(R) to Aut(Rn). To show that it is a bijection onto Aut(Rn),
we use the notation

ej = (δij : i < n),

so that
x =

∑

i<n

xi · ei.

If A = (aij)
i<n
j<n, then

A · ej = (aij : i < n),

which is the number-j column of A. This shows ker(h) is trivial.
To show that h is surjective onto Aut(Rn), suppose f ∈ Aut(Rn)
and f(ei) = (aji : j < n). Then

f(x) = f
(∑

i<n

xi · ei
)

=
∑

i<n

xi · f(ei)

=
∑

i<n

xi · (aji : j < n)

=
(∑

i<n

xi · aji : j < n
)

= A · x,

where A = (aij)
i<n
j<n. Thus f = h(A).
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By composing the isomorphism in the theorem with the embed-
ding of Sym(n) in GLn(R) given by Theorem , we obtain the
embedding of Sym(n) in Aut(Rn) discussed (in case R = R) on p.
 above.

.. New groups from old

... Products

If A and B are two algebras with the same signature, then their
direct product, denoted by

A×B,

is defined in the obvious way: the universe is A×B, and for every
n in ω, for every n-ary operation-symbol f of the signature of A
and B,

fA×B
(
(xi, yi) : i < n

)
=
(
fA(xi : i < n), fB(yi : i < n)

)
.

In the special case where A and B are groups, we have

(x0, y0) ·A×B (x1, y1) = (x0 ·A x1, y0 ·B y1),

or more simply

(x0, y0)(x1, y1) = (x0x1, y0y1).

Theorem . The direct product of two
(a) groups is a group,
(b) associative rings is an associative ring,
(c) commutative rings is a commutative ring.

If G and H are abelian, written additively, then their direct prod-
uct is usually called a direct sum, denoted by

G⊕H.
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The direct sum Z2 ⊕ Z2 is the Klein four group, denoted by

V4

(for Vierergruppe). This is the smallest group containing two ele-
ments neither of which is a power of the other.

Theorem . If A and B are two algebras with the same signature,
then the functions

(x, y) 7→ x, (x, y) 7→ y

are homomorphisms from A×B to A and B respectively.

Theorem . If A and B are two groups or two associative rings,
then the functions

x 7→ (x, e), y 7→ (e, y)

are homomorphisms from A and B respectively to A×B.

... Quotients

The groups (Zn, 0,−,+) and the rings (Zn, 0,−,+, 1, ·) are in-
stances of a general construction.

Suppose ∼ is an equivalence-relation on a set A, so that it parti-
tions A into equivalence-classes

{x ∈ A : x ∼ a};

each such class can be denoted by an expression like one of the
following:

a/∼, [a], a.

According to Wikipedia, Klein gave this name to the group in , but the
name was later applied to four-person anti-Nazi resistance groups.
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Each element of an equivalence-class is a representative of that
class. The quotient of A by ∼ is the set of equivalence-classes of
A with respect to ∼; this set can be denoted by

A/∼.

Suppose for some n in ω and some set B, we have f : An → B.
Then there may or may not be a function f̃ from (A/∼)n to B such
that the equation

f̃([x0], . . . , [xn−1]) = f(x0, . . . , xn−1) (.)

is an identity. If there is such a function f̃ , then it is unique. In this
case, the function f̃ is said to be well-defined by the given identity
(.). Note however that there are no “ill-defined” functions. An
ill-defined function would be a nonexistent function. The point is
that choosing a function f and writing down the equation (.)
does not automatically give us a function f̃ . To know that there is
such a function, we must check that

a0 ∼ x0 ∧ · · · ∧ an−1 ∼ xn−1 ⇒ f(a0, . . . , an−1) = f(x0, . . . , xn−1).

When this does hold (for all ai), so that f̃ exists as in (.), then

f̃ ◦ p = f, (.)

where p is the function (x0, . . . xn−1) 7→ ([x0], . . . , [xn−1]) from An

to (A/∼)n. Another way to express the equation (.) is to say
that the following diagram commutes:

An
f //

p

��

B

(A/∼)n
f̃

;;✇✇✇✇✇✇✇✇✇

Suppose now A is an algebra with universe A. If for all n in ω,
for every distinguished n-ary operation f of A, there is an n-ary
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operation f̃ on (A/∼)n as given by (.), then ∼ is a congruence-
relation or congruence on A. In this case, the f̃ are the dis-
tinguished operations of a structure with universe A/∼. This new
structure is the quotient of A by ∼ and can be denoted by

A/∼.

For example, by Theorem  on p. , for each n in N, congruence
modulo n is a congruence on (Z, 0,−,+, 1, ·). Then the structure
(Zn, 0,−,+) can be understood as the quotient (Z, 0,−,+)/∼, and
(Zn, 0,−,+, 1, ·) as (Z, 0,−,+, 1, ·)/∼. The former quotient is an
abelian group by Theorem , and the latter quotient is a commu-
tative ring by Theorem  on p. . These theorems are special
cases of the next two theorems. In fact the first of these makes
verification of Theorem  easier.

Theorem . Suppose ∼ is a congruence-relation on a semigroup
(G, ·).

. (G, ·)/∼ is a semigroup.
. If (G, ·) expands to a group (G,−1, ·), then ∼ is a congruence-

relation on this, and (G,−1, ·)/∼ is a group.
. If this group (G,−1, ·) is abelian, then so is (G,−1, ·)/∼.

Theorem . Suppose (R, 0,−,+, 1, ·) is an associative ring, and
∼ is a congruence-relation on the reduct (R,+, ·).

. ∼ is a congruence-relation on (R, 0,−,+, 1, ·).
. The quotient (R, 0,−,+, 1, ·)/∼ is also an associative ring.
. If the original ring is commutative, so is the quotient.

For another example, there is a congruence-relation on (R,+)
given by

a ∼ b⇔ a− b ∈ Z.

There is a well-defined embedding of (R, 0,−,+)/∼ in (C×, 1,−1, ·)
denoted by [a] 7→ exp(2π ia).
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... Subgroups

We defined subgroups of symmetry groups on p. , and of course
subgroups of arbitrary groups are defined the same way. A sub-
group of a group is just a substructure of the group, when this
group is considered as having the full signature {e,−1, ·}. More in-
formally, a subgroup of a group is a subset containing the identity
that is closed under multiplication and inversion.

The subset N of Q+ contains the identity and is closed under
multiplication, but is not closed under inversion, and so it is not
a subgroup of Q+. The subset ω of Z contains the additive iden-
tity and is closed under addition, but is not closed under additive
inversion, and so it is not a subgroup of Z.

Theorem . A subset of a group is a subgroup if and only if it is
non-empty and closed under the binary operation (x, y) 7→ xy−1.

If H is a subgroup of G, we write

H < G.

One could write H 6 G instead, if one wanted to reserve the ex-
pression H < G for the case where H is a proper subgroup of G.
We shall not do this. However, starting on p. , we shall want
an expression for this case: then we shall just have to write

H � G.

Meanwhile, we have the following examples.

Theorem . . For all groups G,

{e} < G, G < G.

I do think it is useful to reserve the notation A ⊂ B for the case where A is
a proper subset of B, writing A ⊆ B when A is allowed to be equal to B.
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. For all groups G0 and G1, if H0 < G0 and H1 < G1, then

H0 ×H1 < G0 ×G1.

. In particular, for all groups G and H,

G× {e} < G×H, {e} ×H < G×H.

. For all groups G,

{(x, x) : x ∈ G} < G×G.

. The subset
{e, (0 1), (2 3), (0 1)(2 3)}

of Sym(4) is a subgroup isomorphic to V4.
. If ∼ is a congruence-relation on a group G, then

{x ∈ G : x ∼ e} < G.

It is important to note that the converse of the last part of the
theorem is false in general: there are groups G with subgroups H
such that for no congruence-relation on G is H the congruence-
class of the identity. For example, let G be Sym(3), and let H be
the image of Sym(2) in G under the obvious embedding mentioned
in §.. Then H contains just the identity and (0 1). If ∼ is a
congruence-relation on G such that (0 1) ∼ e, then

(1 2)(0 1)(1 2) ∼ (1 2)e(1 2) ∼ e;

but (1 2)(0 1)(1 2) = (0 2), which is not in H. See §. (p. )
for the full story.

If f is a homomorphism from G to H, then the kernel of f is
the set

{x ∈ G : f(x) = e},
which can be denoted by ker(f). The image of f is

{y ∈ H : y = f(x) for some x in G},
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that is, {f(x) : x ∈ G}; this can be denoted by im(f). For example,
considering sgn as a homomorphism from Sym(n) to Q×, we have

ker(sgn) = Alt(n), im(sgn) = {±1}.

If g is (x, y) 7→ x from G × H to G as in Theorem , and h is
x 7→ (x, e) from G to G×H as in Theorem , then

ker(g) = {e} ×H,

im(g) = G,

ker(h) = {e},
im(h) = G× {e}.

An embedding (that is, an injective homomorphism) is also called
a monomorphism. A surjective homomorphism is called an epi-
morphism. In the last example, g is an epimorphism, and h is a
monomorphism.

Theorem . Let f be a homomorphism from G to H.
. ker(f) < G.
. f is a monomorphism if and only if ker(f) = {e}.
. im(f) < H.

There is a monomorphism from R⊕ R into M2×2(R), namely

(x, y) 7→
(
x y
−y x

)

.

One can define C to be the image of this monomorphism. One
shows that C then is a sub-ring of M2×2(R) and is a field. The
elements of C usually denoted by 1 and i are given by

1 =

(
1 0
0 1

)

, i =

(
0 1
−1 0

)

.

Then every element of C is x + y i for some unique x and y in R.
The function z 7→ z̄ is an automorphism of C, where

x+ y i = x− y i .
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There is then a monomorphism from C⊕C into M2×2(C), namely

(x, y) 7→
(
x y
−ȳ x̄

)

;

its image is denoted by
H

in honor of its discoverer Hamilton: it consists of the quaternions.
One shows that H is a sub-ring of M2×2(C) and that all non-zero
elements of H are invertible, although H is not commutative. The
element of H usually denoted by j is given by

j =

(
0 1
−1 0

)

.

Theorem . An arbitrary intersection of subgroups is a subgroup.

Proof. This is an instance of the general observation that an arbi-
trary intersection of substructures is a substructure.

... Generated subgroups

Given a subset A of (the universe of) a group G, we can close
under the three group-operations, obtaining a subgroup, 〈A〉. For
a formal definition, we let

〈A〉 =
⋂

S,

where S is the set of all subgroups of G that include A. Note that

〈∅〉 = {e}.

The subgroup 〈A〉 of G is said to be generated by A, and the
elements of A are said to be, collectively, generators of 〈A〉. If
A = {a0, . . . , an−1}, then for 〈A〉 we may write

〈a0, . . . , an−1〉.
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In this case, 〈A〉 is said to be finitely generated. If also n = 1,
then 〈A〉 is said to be cyclic. It is easy to describe cyclic groups
as sets, and almost as easy to describe finitely generated abelian
groups:

Theorem . Let G be a group.
. If a ∈ G, then

〈a〉 = {an : n ∈ Z}.
. If {a0, . . . , an−1} ⊆ G, and G is abelian, then

〈a0, . . . , an−1〉
= {x0a0 + · · ·+ xn−1an−1 : (x0, . . . , xn−1) ∈ Zn}.

Proof. . Let f be the homomorphism x 7→ ax from Z to G as
in Theorem  (p. ). We have to show 〈a〉 = im(f). Since a ∈
im(f), it is now enough, by Theorem , to show im(f) ⊆ H for all
subgroups H of G that contain a. But for such H we have a0 ∈ H,
and if an ∈ 〈a〉, then an±1 ∈ 〈a〉, so by induction, im(f) ⊆ H.

. The indicated set is a subgroup of G by Theorem , and it
contains the ai. It remains to note that the indicated set is included
in every subgroup of G that contains the ai.

As examples of cyclic groups, we have Z and the Zn. Indeed,

Z = 〈1〉, Zn = 〈[1]〉.

Theorem . All subgroups of Z are cyclic. All nontrivial sub-
groups of Z are isomorphic to Z.

Proof. Suppose G is a nontrivial subgroup of Z. Then G has posi-
tive elements, so it has a least positive element, n. If a ∈ G, then
all residues of a modulo n belong to G. By Theorem  (p. ), a
has a residue in n (that is, {0, . . . , n−1}), and so this residue must
be 0. Thus n | a, so a ∈ 〈n〉. Therefore G = 〈n〉. The function
x 7→ nx from Z to 〈n〉 is a surjective homomorphism; that it is
injective can be derived from Corollary . (p. ).
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Theorem . If n is a positive integer and m is an arbitrary in-
teger, then

〈[m]〉 = Zn ⇐⇒ [m] ∈ Zn
×.

Proof. Each condition means the congruence

mx ≡ 1 (mod n)

is soluble.

The language of generated subgroups is useful for establishing a
basic theorem of number theory. In Z, the relation of dividing is
transitive:

a | b & b | c =⇒ a | c.
This is just because ax = b and by = c imply axy = c. A common
divisor of two integers is just a divisor of each of them. Equiva-
lently, a common divisor of a and b is some c such that

〈a, b〉 ⊆ 〈c〉.

Hence it makes sense to speak of a greatest common divisor
of two integers: it is a common divisor that is divisible by each
common divisor. Since 0 divides only itself, it is not a common
divisor of two different integers. If a 6= 0, then a is a greatest
common divisor of a and 0. Defining

|a| =
{

a, if a > 0,

−a, if a < 0,

we have

c | d & d 6= 0 =⇒ |c| 6 |d| ,
c | d & d | c ⇐⇒ |c| = |d| ,

so if d is a greatest common divisor of a and b, then so is −d, but
nothing else. In this case we denote |d| by

gcd(a, b);

.. New groups from old 



this is greater (in the usual sense) than all other common divisors
of a and b.

Theorem . Any two integers a and b have a greatest common
divisor, and

〈a, b〉 = 〈gcd(a, b)〉,
so that the equation

ax+ by = gcd(a, b)

is soluble.

Proof. By Theorem , there is d such that 〈a, b〉 = 〈d〉. Since we
have

c | d ⇐⇒ 〈d〉 ⊆ 〈c〉,
it follows that d is a greatest common divisor of a and b. Then
gcd(a, b) = |d|, so 〈gcd(a, b)〉 = 〈d〉.

A common divisor of a and b is a common divisor of |a| and |b|.
The proof of Theorem  suggests a way to find greatest common
divisors, which is the Euclidean algorithm, established in Propo-
sitions VII. and  of the Elements. Suppose a0 and a1 are positive
integers. We define a sequence (a0, a1, . . . ) of positive integers by
letting ak+2 be the residue in ak+1 of ak modulo ak+1, if this residue
is positive; otherwise ak+2 is undefined. Then

ak+1 > ak+2,

so the sequence must have a last term; this is gcd(a0, a1). When
this is 1, then a0 and a1 are said to be prime to one another, or
relatively prime. In this case, by Theorem , the equation

a0x+ a1y = 1

is soluble in Z.
If a ≡ b (mod n), then gcd(a, n) = gcd(b, n). Hence the following

makes sense:

 . Groups



Theorem . For all positive integers n,

Zn
× = {x ∈ Zn : gcd(x, n) = 1}.

Proof. By the proof of Theorem , Zn× consists of those m in Zn
such that the congruence

mx ≡ 1 (mod n)

is soluble, that is, the equation mx + ny = 1 is soluble, so that
gcd(m,n) must be 1. Conversely, if gcd(m,n) = 1, then the equa-
tion mx+ ny = 1 is soluble by Theorem .

For an arbitrary subset A of an arbitrary group, it is not so easy
to give a description of the elements of 〈A〉. We shall do it by
means of Theorem  on p. . Meanwhile, we may note some
more specific examples:

The subgroup 〈(0 1), (2 3)〉 of Sym(4) is the subgroup given
above in Theorem  as being isomorphic to V4.

The subgroup 〈 i , j〉 of H× is the quaternion group, denoted
by

Q8;

it has eight elements: ±1, ± i , ±j , and ±k, where k = ij . We
consider this group further in the next section (§.) and later.

Theorem . If n > 3, let

σn = (0 1 . . . n− 1),

β = (1 n− 1)(2 n− 2) · · · (m n−m)

in Sym(n), where m is the greatest integer that is less than n/2.
Then

Dih(n) = 〈σn, β〉 = 〈β, βσn〉.
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Proof. The subset {σniβj : (i, j) ∈ n × 2} of Sym(n) is a subset
of Dih(n) and has 2n distinct elements, so by Theorem  (p. )
it must be all of Dih(n). Moreover 〈β, βσn〉 < 〈σn, β〉, but also
〈σn, β〉 < 〈β, βσn〉 since σ = β · βσn.

Our analysis of Dih(n) is continued in Theorem  below.
In case n = 0, the group 〈a0, . . . , an−1〉 should logically be de-

noted by 〈 〉. Probably most people write 〈e〉 instead. This is not
wrong, but is redundant, since every group contains an identity,
and the angle brackets indicate that a group is being given. The
practice of these notes will be to write {e}.

.. Order

The order of a group is its cardinality. The order of a group G is
therefore denoted by

|G|.
We have examples in Theorems  and  (pp. –). If a ∈ G,
then the order of the cyclic subgroup 〈a〉 of G is said to be the
order of a simply and is denoted by

|a|.

For example, in the quaternion group Q8 (p.  above), we have

〈 i〉 = {0, i ,−1,− i}, | i | = 4.

In the notation of Theorem  above,

|σn| = n, |β| = 2 = |βσn|.

For another example, we have the following.

Theorem . The order of a finite permutation is the least com-
mon multiple of the orders of its disjoint cyclic factors.
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Theorem . In a group, if a is an element of finite order n, then

〈a〉 = {ai : i ∈ n},

and x 7→ ax is a well-defined isomorphism from Zn to 〈a〉, so in
particular

an = e.

Proof. Since 〈a〉 does not have n + 1 distinct elements, for some i
and j we have 0 6 i < j 6 n, but ai = aj . Therefore e = aj−i, and
hence ak = aℓ whenever k ≡ ℓ (mod j − i). Consequently 〈a〉 has
at most j − i elements, that is, n 6 j − i. Since also j − i 6 n, we
have n = j − i, and in particular an = aj−i = e.

For integers a and b, the notation a | b was defined on p. .

Theorem . The following conditions on positive integers m and
n are equivalent.

. Zn has a subgroup of order m.
. Zn has a unique subgroup of order m.
. m | n.

Under these conditions, the subgroup is 〈n/m〉.

The orders of certain generators of a group may determine the
group up to isomorphism. We work out a couple of examples in the
next two theorems.

Theorem . If n > 2, and G = 〈a, b〉, where

|a| = n, |b| = 2, |ab| = 2,

then
G ∼= Dih(n).

Proof. Assume n > 2. Since abab = e and b−1 = b, we have

ba = a−1b, ba−1 = ab.
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Therefore bak = a−kb for all integers k. This shows

G = {aibj : (i, j) ∈ n× 2}.

It remains to show |G| = 2n. Suppose

aibj = akbℓ,

where (i, j) and (k, ℓ) are in n× 2. Then

ai−k = bℓ−j .

If bℓ−j = e, then ℓ = j and i = k. The alternative is that bℓ−j = b.
In this case,

n | 2(i− k).

If n | i− k, then i = k and hence j = ℓ. The only other possibility
is that n = 2m for some m, and i− k = ±m, so that am = b. But
then aamaam = a2, while abab = e, so n = 2.

According to this theorem, if a group with certain abstract prop-
erties of Dih(n) exists, then that group is isomorphic to Dih(n). In
§., we shall develop a way to create a group G with those prop-
erties, regardless of whether we know about Dih(n). Then, using
Theorem , we shall be able to conclude that G is isomorphic to
Dih(n). This result is Theorem  (p. ).

Theorem . If G = 〈a, b〉, where

|a| = 4, b2 = a2, ba = a3b,

then, under an isomorphism taking a to i and b to j ,

G ∼= Q8.

Proof. Since ba = a3b and |a| = 4, we have also

ba−1 = ba3 = a9b = ab,
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so we can write every element of G as a product aibj for some i
and j in Z. By Theorem , since |a| = 4, we can require i ∈ 4.
Similarly, since b2 = a2, we can require j ∈ 2. In Q8, the elements
i and j have the given properties of a and b. Moreover |Q8| = 8, so
that if (i, j) and (k, ℓ) are distinct elements of 4× 2, then

i ij j 6= ikj ℓ.

Therefore there is a well-defined surjective function i ij j 7→ aibj

from Q8 to G, and this function is a homomorphism. It remains to
show |G| = 8. Suppose (i, j) and (k, ℓ) are in 4× 2, and

aibj = akbℓ.

Then ai−k = bℓ−k and hence

am = bn

for some n in 2 and m in 4. If n = 0, then m = 0 (since |a| = 4),
and so (i, j) = (k, ℓ). But a 6= b (since ba = a3b and |a| = 4).
Similarly a3 6= b. Finally, a2 6= b (since b2 = a2 and |a| = 4). Thus
n 6= 1, so n = 0.

As with Dih(n), so with Q8, we shall be able to create the
group using only the abstract properties just given, in Theorem 
(p. ).

.. Cosets

Suppose H < G. If a ∈ G, let

aH = {ax : x ∈ H},
Ha = {xa : x ∈ H}.

Each of the sets aH is a left coset of H, and the set {xH : x ∈ G}
of left cosets is denoted by

G/H.
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Each of the setsHa is a right coset ofH, and the set {Hx : x ∈ G}
of right cosets is denoted by

H\G.

Note that H itself is both a left and a right coset of itself.
Sometimes, for each a in G, we have aH = Ha. For example,

this is the case when G = G0 ×G1, and H = G0 × {e}, so that, if
a = (g0, g1), then

aH = H × {g1} = Ha.

Sometimes left and right cosets are different, as in the example on
p. , where G = Sym(3), and H is the image of Sym(2) in G. In
this case

(0 2)H = {(0 2), (0 1 2)}, H(0 2) = {(0 2), (0 2 1)},
(1 2)H = {(1 2), (0 2 1)}, H(1 2) = {(1 2), (0 1 2)}.

Moreover, there are no other cosets of H, besides H itself, by the
next theorem; so in the example, no left coset, besides H, is a right
coset.

Theorem . Suppose H < G. The left cosets of H in G compose
a partition of G. Likewise for the right cosets. All cosets of H have
the same size; also, G/H and H\G have the same size.

Proof. We have a ∈ aH. Suppose aH ∩ bH 6= ∅. Then ah = bh1
for some h and h1 in H, so that a = bh1h

−1, which is in bH. Thus
a ∈ bH, and hence aH ⊆ bH. By symmetry of the argument, we
have also bH ⊆ aH, and therefore aH = bH. Hence the left cosets
compose a partition of G. By symmetry again, the same is true for
the right cosets.

All cosets of H have the same size as H, since the map x 7→ ax
from H to aH is a bijection with inverse x 7→ a−1H, and likewise
x 7→ xa from H to Ha is a bijection. (One might see this as an
application of Cayley’s Theorem, Theorem , p. .)

 . Groups



Inversion is a permutation of G taking aH to Ha−1, so G/H and
H\G must have the same size.

Corollary .. If H < G, then the relation ∼ on G defined by

a ∼ x⇔ aH = xH

is an equivalence-relation, and

G/H = G/∼.

Corollary .. If H < G and aH = Hb, then aH = Ha.

Proof. Under the assumption, a ∈ Hb, so Ha ⊆ Hb, and therefore
Ha = Hb.

The cardinality of G/H (or of H\G) is called the index of H in
G and can be denoted by

[G : H].

If G is finite, then by the last theorem,

[G : H] =
|G|
|H| .

However, [G : H] may be finite, even though G is not. In this
case, H must also be infinite, and indeed the last equation may be
understood to say this, since an infinite cardinal divided by a finite
cardinal should still be infinite.

Of the next theorem, we shall be particularly interested in a
special case, Lagrange’s Theorem, in the next section.

Theorem . If K < H < G, then [G : K] = [G : H][H : K].

Proof. Every left coset of K is included in a left coset of H. Indeed,
if bK ∩ aH 6= ∅, then as in the proof of Theorem , bK ⊆ aH.
Moreover, every left coset of H includes the same number of left
cosets of K. For, the bijection x 7→ ax that takes H to aH also
takes each coset bK of K to a coset abK of K.
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.. Lagrange’s Theorem

According to [, p. –], the following “is implied but not explic-
itly proved” in a memoir by Lagrange published in –.

Theorem  (Lagrange). If H < G and G is finite, then |H|
divides |G|.

Proof. Use Theorem  when K = {e}.

Corollary .. If G is finite and a ∈ G, then a|G| = e.

Proof. a|a| = e by Theorem  (p. ), and |a| divides |G|.

Cauchy’s Theorem (p. ) and its generalization, the first Sylow
Theorem (p. ), are partial converses of Lagrange’s Theorem.

Meanwhile, some basic results of number theory can be seen as
applications of Lagrange’s Theorem. First we obtain a classification
of certain finite groups. An integer greater than 1 is called prime
if its only divisors are itself and 1.

Theorem . All groups of prime order are cyclic.

Proof. Say |G| = p. There is a in Gr{e}, so |a| > 1; but |a| divides
p, so |a| = p, and therefore G = 〈a〉.

The following can be obtained as a corollary of Theorem  (p.
); but we can obtain it also from Lagrange’s Theorem.

Theorem . An integer p that is greater than 1 is prime if and
only if

Zp
× = {1, . . . , p− 1}.

This is observed by Timothy Gowers, editor of [], in a Google+ article of
December , .
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Proof. Say 1 < a < p and a ∈ Zp×, so that ac ≡ 1 (mod p) for
some c. If ab = p, then ab ≡ 0, so abc ≡ 0, hence b ≡ 0, which is
absurd. Thus a ∤ p. Hence, if Zp× = {1, . . . , p− 1}, then p must be
prime.

Now suppose p is prime and 1 < a < p, so that a ∤ p. But
gcd(a, p) | p and 1 6 gcd(a, p) 6 a, so gcd(a, p) = 1, and therefore
a ∈ Zp× by Theorem .

Alternatively, 〈a〉 has order greater than 1, so by Lagrange’s The-
orem this order must be p. In particular ab ≡ 1 (mod p) for some
b, so a ∈ Zp×.

Theorem  (Fermat). If the prime p is not a factor of a, then

ap−1 ≡ 1 (mod p). (.)

Hence for all integers a,

ap ≡ a (mod p). (.)

Proof. By the previous theorem, if p ∤ a, then [a] ∈ Zp×, and this
group has order p− 1, so (.) holds by Lagrange’s Theorem. Also
(.) implies (.), and the latter holds trivially if p | a.

If n ∈ N, then by Theorem , the order of Zn× is the number
of elements of Zn that are prime to n. Let this number be denoted
by

φ(n).

This then is the number of generators of Zn, that is, the number of
elements k of Zn such that 〈k〉 = 〈1〉. This feature of φ(n) will be
used in Theorem  (p. ).

Theorem  (Euler). If gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).

Proof. If gcd(a, n) = 1, then [a] ∈ Zn× by Theorem .
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.. Normal subgroups

If H < G, we investigate the possibility of defining a multiplication
on G/H so that

(xH)(yH) = xyH. (.)

In any case, each member of this equation is a well-defined subset
of G. The question is when they are the same. Continuing with
the example from pages  and , where G = Sym(3) and H =
〈(0 1)〉, we have

(1 2)H(1 2)H = {e, (0 1), (0 2), (0 1 2)},
(1 2)(1 2)H = H = {e, (0 1))},

so (.) fails in this case.

Theorem . Suppose H < G. The following are equivalent:
. G/H is a group whose multiplication is given by (.).
. Every left coset of H is a right coset.
. aH = Ha for all a in G.
. a−1Ha = H for all a in G.

Proof. Immediately the last two conditions are equivalent, and they
imply the second. The second implies the third, by Corollary .
(p. ).

Suppose now the first condition holds. For all h in H, since
hH = H, we have

aH = eaH = eHaH = hHaH = haH,

hence a−1haH = H, so a−1ha ∈ H. Thus a−1Ha ⊆ H, so
a−1Ha = H. Conversely, if the third condition holds, then

(xH)(yH) = xHHy = xHy = xyH.

In this case, the equivalence-relation ∼ on G given as in Corol-
lary . (p. ) by

a ∼ x⇔ aH = xH
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is a congruence-relation, and so, by Theorem  (p. ), G/H is
a group with respect to the proposed multiplication.

A subgroup H of G meeting any of these equivalent conditions is
called normal, and in this case we write

H ⊳ G.

As trivial examples, we have

G ⊳ G, {e} ⊳ G.

Only slightly less trivially, all subgroups of abelian groups are nor-
mal subgroups. More examples arise from the following.

Theorem . If [G : H] = 2, then H ⊳ G.

If n > 1, since [Sym(n) : Alt(n)] = 2, we now have

Alt(n) ⊳ Sym(n).

Of course we have this trivially if n 6 1.
In general, if N ⊳ G, then the group G/N is called the quotient-

group of G by N . In this case, we can write the group also as

G

N
.

Theorem . If N ⊳ G and H < G, then N ∩ H ⊳ H. (That
is, normality is preserved in subgroups.)

Proof. The defining property of normal subgroups is universal. In
particular, N ⊳ G means that the sentence

∀x ∀y (x ∈ N → yxy−1 ∈ N)

is true in the structure (G,N). Therefore the same sentence is true
in every substructure of (G,N). If H < G, then (G,N ∩ H) is a
substructure of (G,N).
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For example, if m < n, and we identify Sym(m) with its image in
Sym(n) under σ 7→ σ ∪ idnrm, then Sym(m) ∩ Alt(n) ⊳ Sym(m).
But then, we already know this, since Sym(m) ∩Alt(n) = Alt(m).

In proving Theorem  (p. ), we showed that every element
of Dih(n) is a product gh, where g ∈ 〈σn〉 and h ∈ 〈β〉. Note that
that, since |σn| = n and |Dih(n)| = 2n, by Theorem  we have
〈σn〉 ⊳ Dih(n). Thus our result is a special case of the following.

Lemma . If N ⊳ G and H < G, then 〈N ∪H〉 = NH.

Proof. Since
N ∪H ⊆ NH ⊆ 〈N ∪H〉,

it is enough to show NH < G. Suppose n ∈ N and h ∈ H.
Then nh = hh−1nh. Since N ⊳ 〈N ∪ H〉, we have h−1nh ∈ N ,
so nh ∈ HN . Thus NH ⊆ HN , so by symmetry NH = HN .
Therefore

NH(NH)−1 = NHH−1N−1 = NHHN

⊆ NHN = NNH ⊆ NH,

that is, NH is closed under (x, y) 7→ xy−1. Since NH also contains
e, it is a subgroup of G by Theorem .

Theorem . Suppose N ⊳ G and H < G and N ∩ H = {e}.
Then the surjection (x, y) 7→ xy from N ×H to NH is a bijection,
and so the structure of a group is induced on N ×H.

Proof. If g and h are in H, and m and n are in N , and gm = hn,
then

h−1g = nm−1,

so each side must be e, and hence g = h and m = n.

Multiplication in NH is given by

(mg)(nh) = (m · gng−1)(gh), (.)
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while multiplication in the direct product (N, ·)× (H, ·) is given by

(m, g)(n, h) = (m · n, gh).
Thus the direct-product structure on N ×H is not necessarily the
structure on N × H given by the theorem. The latter structure
is called a semidirect product of N and H. The group NH is
the internal semidirect product of N and H. Theorem 
on p.  below establishes conditions under which this is a di-
rect product. Semidirect products are treated abstractly in §.
(p. ). Meanwhile, again in the notation of Theorem , we have
that Dih(n) is the internal semidirect product of 〈σn〉 and 〈β〉.
Theorem . The normal subgroups of a group are precisely the
kernels of homomorphisms on the group.

Proof. If f is a homomorphism from G to H, then for all n in
ker(f),

f(ana−1) = f(a)f(n)f(a)−1 = e,

so a(ker(f))a−1 ⊆ ker(f); thus ker(f) ⊳ G. Conversely, if N ⊳ G,
then the map x 7→ xN from G to G/N is a homomorphism with
kernel N .

For example, from the homomorphism from Sym(4) onto Sym(3)
given in Theorem  above (p. ), Sym(4) has a normal subgroup
that contains (0 1)(2 3), (0 2)(1 3), and (0 3)(1 2), along with e.
These four elements constitute the subgroup

〈(0 1)(2 3), (0 2)(1 3)〉
of Sym(4), and this subgroup is isomorphic to V4. By Theorem 
on p.  below, this subgroup is precisely the kernel of the homo-
morphism in question.

In the proof of the last theorem, the map x 7→ xN is the canon-
ical projection or the quotient map of G onto G/N ; it may be
denoted by

π.
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Theorem . If f is a homomorphism from G to H, and N is a
normal subgroup of G such that N < ker(f), then there is a unique
homomorphism f̃ from G/N to H such that

f = f̃ ◦ π,

that is, the following diagram commutes (see p. ).

G
π //

f
��

G/N

f̃||③③
③③
③③
③③

H

Proof. If f̃ exists, it must be given by

f̃(xN) = f(x).

Such f̃ does exist, since if xN = yN , then xy−1 ∈ N , so xy−1 ∈
ker(f), hence f(xy−1) = e, and therefore f(x) = f(y).

Corollary . (First Isomorphism Theorem). Suppose f is a
homomorphism from a group G to some other group. Then

G/ ker(f) ∼= im(f).

In particular, if im(f) is finite, then

[G : ker(f)] = |im(f)|.

Proof. Let N = ker(f); then f̃ is the desired homomorphism.

For example, letting f be x 7→ x+ nZ from Z to Zn, we have

Z/nZ ∼= Zn.

Another example is Theorem  below.
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Corollary . (Second Isomorphism Theorem). If H < G and
N ⊳ G, then

H

H ∩N
∼= HN

N
.

Proof. The map h 7→ hN fromH toHN/N is surjective with kernel
H ∩ N . So the claim follows by the First Isomorphism Theorem
(that is, Corollary .).

For example, In Z, since 〈n〉∩〈m〉 = 〈lcm(n,m)〉 and 〈n〉+〈m〉 =
〈gcd(n,m)〉, we have

〈n〉
〈lcm(n,m)〉

∼= 〈gcd(n,m)〉
〈m〉 .

Corollary . (Third Isomorphism Theorem). If N and K are
normal subgroups of G and N < K, then

K/N ⊳ G/N,
G/N

K/N
∼= G/K.

Proof. For the first claim, we have

aN

(
K

N

)

(aN)−1 =
aKa−1

N
=
K

N

since (aN)(xN)(aN)−1 = axa−1N . By the First Isomorphism
Theorem (Corollary .) in case f is x 7→ xK from G to G/K, we
have a homomorphism xN 7→ xK from G/N to G/K. The kernel
is {xN : x ∈ K}, which is just G/N . The second claim follows by
the First Isomorphism Theorem.

One more basic result about normal subgroups will be Theo-
rem  on p. . Theorem  will be used to prove von Dyck’s
Theorem (Theorem , p. ). As promised, another application
of the First Isomorphism Theorem is the following.

Theorem . 〈(0 1)(2 3), (0 2)(1 3)〉 ⊳ Alt(4).
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Proof. Let f be the homomorphism from Sym(4) to Sym(3) given
in Theorem . Then |ker(f)| = 4. We have already noted (p. )
that

〈(0 1)(2 3), (0 2)(1 3)〉 < ker(f).

Since 〈(0 1)(2 3), (0 2)(1 3)〉 ∼= V4, the Klein four group, it must
be equal to ker(f). Hence 〈(0 1)(2 3), (0 2)(1 3)〉 ⊳ Sym(4).
Moreover, this normal subgroup is a subgroup of Alt(4), and there-
fore, by Theorem , it is a normal subgroup of Alt(4).

.. Classification of finite simple groups

... Classification

One of the goals of mathematical research is classification [,
p. ]. To classify is to divide into classes. Originally, the word
class refers to a class of persons in a society. In mathematics, the
word is used for collections defined by formulas, as described on
p.  above. To classify a class C of structures is to partition it
into subclasses. Such a partitioning corresponds to an equivalence-
relation on C: the subclasses of C are then the corresponding
equivalence-classes.

For example, C might be the class of all structures. We have
classified structures according to whether they are algebras or not
(p. ). There is a finer classification, according to the precise
signatures of structures. Within the class of structures having the
signature {e,−1, ·} of groups, we have distinguished the subclass
consisting of those structures that actually are groups.

For the class of groups, or indeed for any class of structures,
the finest classification that is of interest to us is the classification
determined by the relation of isomorphism. In an abstract sense,
merely to specify the relation of isomorphism is to determine a
classification of the class in question. But we want to do more. For
example, we should like to be able to choose a representative from
each isomorphism-class.
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We have already done this for sets as such. We have classified sets
according to the relation of equipollence, and then we have shown
that, within every equipollence-class, there is a unique cardinal (p.
).

For the classification of groups, Cayley’s Theorem (p. ) is of
use. If G is a group, and |G| = κ, then G embeds in Sym(κ).
Thus the isomorphism-class of G contains a subgroup of Sym(κ).
However, it will usually contain more than one subgroup of Sym(κ).

The natural numbers are classified according to whether they are
prime. Moreover, every natural number is the product of a unique
set of prime powers. We state this formally.

Theorem . For every n in N, there is a unique finite set S of
prime numbers and a unique function f from S into N such that

n =
∏

p∈S

pf(p).

In §. (p.  below) we are going to be able to give a similar
classification of the finitely generated abelian groups, building on
the initial distinguishing of certain groups as being cyclic.

... Finite simple groups

A group is simple if it is nontrivial and has no proper nontrivial
normal subgroups. In §. (p. ) below, culminating in the
Jordan–Hölder Theorem, we shall see that every finite group can
be analyzed as a kind of ‘product’ of a list of simple groups. In this
case, the analysis is not reversible; different finite groups can yield
the same list of simple groups. A grand project of group theory
has been to classify the finite simple groups. We establish part of

In defining simple groups, Hungerford [, p. ] omits the condition that
they must be nontrivial; but then he immediately states our Theorem ,
which excludes the trivial Z1 from being simple, because 1 is not prime.
Lang [] gives the nontriviality condition.
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this classification now. The abelian finite simple groups are easy to
find:

Theorem . The simple abelian groups are precisely the groups
isomorphic to Zp for some prime number p.

As for nonabelian groups, we already know by Theorem  that
Alt(4) is not simple. However, Alt(3) is simple, being isomorphic
to Z3. Being trivial, Alt(2) is not simple. We are going to show
that Alt(n) is simple when n > 5.

Theorem . Alt(n) is generated by the 3-cycles in Sym(n).

Proof. The group Alt(n) is generated by the products (a b)(a c)
and (a b)(c d), where a, b, c, and d are distinct elements of n. But

(a b)(a c) = (a c b),

(a b)(c d) = (b c a)(c d b).

Hence all 3-cycles belong to Alt(n), and this group is generated by
these cycles.

If a and b belong to an arbitrary group G, then the element
aba−1 of G is called the conjugate of b by a, and the operation
x 7→ axa−1 on G is called conjugation by a. Conjugation by an
element of G is an automorphism of G: this is stated formally as
Theorem  on p.  below. For now, all we need to know is
that, if N ⊳ G, then conjugates of elements of N by elements of G
are elements of N .

Theorem . Every normal subgroup of Alt(n) containing a 3-
cycle is Alt(n).

Proof. By Theorem , it is enough to show that for any 3-cycle,
every 3-cycle is a conjugate of it. We have

(a b d) = (a b)(c d)
︸ ︷︷ ︸

(c b a) (c d)(a b)
︸ ︷︷ ︸

.
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Thus, by conjugation, we can change any entry in a 3-cycle’s non-
trivial orbit.

Theorem . Alt(n) is simple if n > 4.

Proof. Suppose Alt(n) has normal subgroup N with a nontrivial
element σ. Then σ is the product of disjoint cycles, among which
are:

) a cycle of order at least 4; or
) two cycles of order 3; or
) transpositions, only one 3-cycle, and no other cycles; or
) only transpositions.

We show that, in each case, N contains a 3-cycle.

. Suppose first that σ is (0 1 . . . k − 1)τ for some τ that is
disjoint from (0 1 · · · k − 1). Then N contains both

(0 1 2)(0 1 · · · k − 1)τ(2 1 0)

and τ−1(k − 1 · · · 1 0), and their product is a 3-cycle:

(0 1 2)(0 1 · · · k − 1)τ(2 1 0)τ−1(k − 1 · · · 1 0)

= (0 1 3).

. If τ is disjoint from (0 1 2)(3 4 5), then we reduce to the
previous case:

(0 1 3) (0 1 2)(3 4 5)
︸ ︷︷ ︸

τ(3 1 0)τ−1 (5 4 3)(2 1 0)
︸ ︷︷ ︸

= (0 1 4 2 3).

. If τ is disjoint from (0 1 2) and is the product of transposi-
tions, then

[(0 1 2)τ ]2 = (2 1 0).
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. Finally, suppose τ is a product of transpositions disjoint from
(0 1) and (2 3). Then

(0 1 2) (0 1)(2 3)τ
︸ ︷︷ ︸

(2 1 0) τ(3 2)(1 0)
︸ ︷︷ ︸

= (0 2)(1 3).

Furthermore, since n > 4, in Alt(n) we compute

(0 2 4) (0 2)(1 3)
︸ ︷︷ ︸

(4 2 0) (3 1)(2 0)
︸ ︷︷ ︸

= (0 4 2).

For the sake of classifying small finite groups in general (in §.,
p. ), we shall want the following, which assumes Alt(n) is defined
just when n > 2 (see p.  above).

Theorem . Alt(n) is the unique subgroup of Sym(n) of index
2.
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. Category theory

.. Products

There is a simple property of direct products of groups (as defined
on p. ) that will turn out to characterize these products. If G0

and G1 are groups, then we know from Theorem  on p.  that
for each i in 2, the function

(x0, x1) 7→ xi

from G0 ×G1 to Gi is a homomorphism. It can be called a coor-
dinate projection and denoted by

πi.

Theorem . Let G0, G1 and H be groups such that, for each i
in 2, there is a homomorphism fi from H to Gi. Then the function

x 7→ (f0(x), f1(x))

from H to G0 × G1 is a homomorphism, and it is the unique ho-
momorphism f from H to G0 ×G1 such that, for each i in 2,

πif = fi,

that is, the following diagram commutes:

G0 G0 ×G1
π0oo π1 // G1

H
f0

dd■■■■■■■■■■
f

OO

f1

::✉✉✉✉✉✉✉✉✉✉

If the groups Gi are abelian, then so is G0 ×G1.





Proof. If u ∈ G0 ×G1, then

u = (π0(u),π1(u)).

Hence, if f : H → G0 × G1, then f(x) = (π0f(x),π1f(x)). In
particular then, f is as desired if and only if f(x) = (f0(x), f1(x)).

Considering this theorem and its proof, we may see that a more
general result can be obtained. This is the porism below. We obtain
it by considering an indexed family (Gi : i ∈ I) of groups. This
is an indexed set in the sense of p. ; we use the word family to
emphasize that the structure of each Gi will be important. The
direct product of the indexed family can be denoted by one of

∏

i∈I

Gi,
∏

(Gi : i ∈ I).

This is, first of all, the set whose elements are indexed sets (xi : i ∈
I) such that xi ∈ Gi for each i in I. Note a special case: If all of
the groups Gi are the same group G, then

∏

i∈I

G = GI .

In case I = n, we may write
∏

i∈I Gi also as

G0 × · · · ×Gn−1,

and a typical element of this as (x0, . . . , xn−1).

Theorem . The direct product (Gi : i ∈ I) of an indexed family
of groups is a group under the multiplication given by

(xi : i ∈ I) · (yi : i ∈ I) = (xi · yi : i ∈ I).

Each of the functions

(xj : j ∈ I) 7→ xi

is a homomorphism from
∏

j∈I Gj to Gi.
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Proof. As for Theorem  on p.  and Theorem  on p. .

As before, the homomorphisms in the porism are the coordinate
projections, denoted by

πi.

Porism .. Suppose (Gi : i ∈ I) is an indexed family of groups,
and H is a group, and for each i in I there is a homomorphism from
H to Gi. Then there is a homomorphism

x 7→ (fi(x) : i ∈ I) (.)

from H to
∏

i∈I Gi, and this is the unique homomorphism f from
H to

∏

i∈I Gi such that, for each i in I,

πif = fi,

that is, the following diagram commutes:

∏

j∈I

Gj
πi // Gi

H

f

OO
fi

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

If the groups Gi are abelian, then so is
∏

i∈I Gi.

If we ignore the actual definition (.) of the unique homomor-
phism f , then the porism can be summarized as being that the
direct product of an indexed family of groups has a certain uni-
versal property. Theorem  on p.  below is that the direct
product is characterized by its universal property. Other construc-
tions characterized by universal properties are:

• the direct sum (next section, namely §.);
• the free abelian group and the free group (§.);
• the quotient field of an integral domain (§., p. );
• the polynomial ring (sub-§.., p. ).
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.. Sums

We now investigate the possibility of reversing the arrows in The-
orem . If G0 and G1 are arbitrary groups, then we know from
Theorem  on p.  that the functions

x 7→ (x, e), x 7→ (e, x)

are homomorphisms, from G0 and G1 respectively to G0×G1. They
can be called the canonical injections, denoted respectively by

ι0, ι1.

Theorem . Let G0, G1 and H be abelian groups such that, for
each i in 2, there is a homomorphism fi from Gi to H. Then the
function

(x0, x1) 7→ f0(x0) + f1(x1)

from G0 ⊕ G1 to H is a homomorphism, and it is the unique ho-
momorphism f from G0 ⊕G1 to H such that, for each i in 2,

f ιi = fi,

that is, the following diagram commutes:

G0
ι0 //

f0 $$■
■■

■■
■■

■■
■

G0 ⊕G1

f
��

G1
ι1oo

f1zz✉✉
✉✉
✉✉
✉✉
✉✉

H

Proof. If (x0, x1) ∈ G0 ⊕G1, then

(x0, x1) = ι0(x0) + ι1(x1),

so that, if f is a homomorphism on G0 ⊕G1, then

f(x0, x1) = f ι0(x0) + f ι1(x1).
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Hence, if f is as desired, then it must be given by

f(x0, x1) = f0(x0) + f1(x1). (.)

The function so defined is indeed a homomorphism, since

f((x0, x1) + (u0, u1)) = f(x0 + u0, x1 + u1)

= f0(x0 + u0) + f1(x1 + u1)

= f0(x0) + f0(u0) + f1(x1) + f1(u1)

= f0(x0) + f1(x1) + f0(u0) + f1(u1) (.)

= f(x0, x1) + f(u0, u1),

where (.) uses that H is abelian. Moreover, when f is as in (.),
then

f ι0(x) = f(x, 0) = f0(x),

so f ι0 = f0, and similarly f ι1 = f1.

In the proof, the definition of f in (.) does not require that
the indexed family (Gi : i ∈ 2) have just two members, but that it
have finitely many. Also, as noted, f is a homomorphism because
H is abelian; but this condition too can be weakened. Given an
arbitrary indexed family (Gi : i ∈ I) of groups, we have, for each i
in I, a function ιi from Gi to

∑

j∈I Gj given by

ιi(x) = (xj : j ∈ I),

where

xj =

{

x, if j = i,

e, otherwise.

The monomorphisms ιi are the canonical injections.

Porism .. Suppose (Gi : i < n) is a finite indexed family of
groups, and H is a group, and for each i in n there is a homomor-
phism fi from Gi to H. Suppose further that, for all distinct i and
j in n,

fi(x) · fj(y) = fj(y) · fi(x).
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Then the map

(xi : i < n) 7→
∏

i<n

fi(xi)

from
∏

i<nGi to H is the unique homomorphism f from
∏

i<nGi
to H such that, for each i in n,

f ιi = fi.

We use the porism to establish the next theorem below, which we
shall use in characterizing finite nilpotent groups in Theorem 
on p. . We need the following observation.

Lemma . If M and N are normal subgroups of G, and

M ∩N = {e},

then each element of M commutes with each element of N , that is,
for all m in M and n in N ,

mn = nm.

Proof. We can analyze mnm−1n−1 in two ways:
• as the element (mnm−1)n−1 of N ,
• as the element m(nm−1n−1) of M .

So the element is e, and therefore mn = (m−1n−1)−1 = nm.

Theorem . If (Ni : i < n) is a finite indexed family of normal
subgroups of a group, and for each j in nr {0},

N0 · · ·Nj−1 ∩Nj = {e}, (.)

then the map

(xi : i < n) 7→
∏

i<n

xi (.)

from
∏

i<nNi to N0 · · ·Nn−1 is an isomorphism.
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Proof. Say the Ni are normal subgroups of the group G, and let the
map in (.) be denoted by h. Since Ni∩Nj = {e} whenever i 6= j,
the last porism and the lemma guarantee that h is a homomorphism
and, for each i in n, the composition hιi is just the inclusion of Ni

in G. Then the range of h is N0 · · ·Nn−1. To see that h is injective,
note that, if m ∈∏i∈nNi and h(m) = e, then

mn−1
−1 =

∏

i<n−1

mi.

The left member is in Nn−1, and the right is in N0 · · ·Nn−2, so each
member is e. In particular, mn−1 = e, but also, we can repeat the
argument to show mn−2 = e and so on. Thus m = e.

In the theorem, the group N0 · · ·Nn−1 is the internal direct
product of (Ni : i < n). For the result, it is not enough to assume
Ni∩Nj = {e} when i < j < n. For example, consider the subgroups
〈(1, 0)〉, 〈(0, 1)〉, and 〈(1, 1)〉 of V4.

We can generalize Theorem  in another sense. Given an ar-
bitrary indexed family (Gi : i ∈ I) of abelian groups, we define its
direct sum,

∑

i∈I

Gi,

to consist of the elements (xi : i ∈ I) of the direct product
∏

i∈I Gi
such that the set {i ∈ I : xi 6= 0} is finite. The direct sum is indeed
a group:

Theorem . For every indexed family (Gi : i ∈ I) of abelian
groups,

∑

i∈I

Gi <
∏

i∈I

Gi.

In case I = n, we may write
∑

i∈I Gi also as

G0 ⊕ · · · ⊕Gn−1.
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If I is finite, then the direct sum is the same as the direct product.
If I is infinite, and the groups Gi are nontrivial for infinitely many i
in I, then the sum is not the same as the direct product. The proof
uses the Axiom of Choice, because it involves choosing a nontrivial
element from each of infinitely many of the nontrivial groups Gi.

Porism .. Suppose (Gi : i ∈ I) is an indexed family of abelian
groups, and H is an abelian group, and for each i in I there is a
homomorphism fi from Gi to H. Then the map

x 7→
∑

i∈I

fi(xi)

from
∑

i∈I Gi to H is the unique homomorphism f from
∑

i∈I Gi
to H such that, for each i in I,

f ιi = fi,

that is, the following diagram commutes:

Gi
ιi //

fi
  ❆

❆❆
❆❆

❆❆
❆❆

❆

∑

j∈I

Gj

f

��
H

.. *Weak direct products

For completeness, we observe that Theorem  can be generalized
even further. The weak direct product of an indexed family
(Gi : i ∈ I) of arbitrary groups has the same definition as the direct
sum in the abelian case; but in the general case we use the notation

∏w

i∈I

Gi.
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So this comprises those elements (xi : i ∈ I) of
∏

i∈I Gi such that
the set {i ∈ I : xi 6= e} is finite. For each i in I we have the ho-
momorphism ιi from Gi to

∏w
i∈I Gi, defined as in the abelian case.

Direct products and weak direct products are related as follows.

Theorem . Let (Gi : i ∈ I) be an indexed family of groups.
Then

ιj [Gj ] ⊳
∏w

i∈I

Gi,
∏w

i∈I

Gi ⊳
∏

i∈I

Gi, ιj [Gj ] ⊳
∏

i∈I

Gi.

Porism . can be generalized to some cases of arbitrary groups:

Porism .. Suppose (Gi : i ∈ I) is an indexed family of groups,
and H is a group, and for each i in I there is a homomorphism fi
from Gi to H. Suppose further that, for all distinct i and j in I,

fi(x) · fj(y) = fj(y) · fi(x).
Then the map

x 7→
∏

i∈I

fi(xi)

from
∏w
i∈I Gi to H is the unique homomorphism f from

∏w
i∈I Gi

to H such that, for each i in I,

f ιi = fi.

Porism .. If (Ni : i ∈ I) is an indexed family of normal sub-
groups of a group, and for each j in I,

Nj ∩
〈

⋃

i∈Ir{j}

Ni

〉

= {e}, (.)

then 〈⋃

i∈I

Ni

〉
∼=
∏w

i∈I

Ni.

In this porism, the group
〈
⋃

i∈I Ni

〉

is called the internal weak

direct product of the Ni.
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.. Free groups

For every index set I, the direct sum
∑

i∈I Z is called a free
abelian group on I for the reason given by the next theorem.
To state the theorem, we note that, for every i in I, the abelian
group

∑

i∈I Z has the element ιi(1), which can also be written as
(δij : j ∈ I), where

δij =

{

1, if j = i,

0, otherwise.

Let us also use the notation

e
i

for ιi(1) or (δij : j ∈ I). An arbitrary element of
∑

i∈I Z can then
be written as ∑

i∈I

xie
i.

The use of this notation implies that only finitely many of the xi
are different from 0.

Theorem . Suppose G is an abelian group, I is a set, and f
is a function from I to G. Then the map

∑

i∈I

xie
i 7→

∑

i∈I

xif(i)

from
∑

i∈I Z to G is the unique homomorphism f̃ from
∑

i∈I to G
such that, for each i in I,

f̃(ei) = f(i),

that is, the following diagram commutes, where ι is the map i 7→ e
i.

I
ι //

f

��

∑

i∈I

Z

f̃
��⑧⑧
⑧⑧
⑧⑧
⑧

G
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In particular, the subgroup 〈f(i) : i ∈ I〉 of G is isomorphic to a
quotient of

∑

i∈I Z.

As a special case, we have that every finitely generated abelian
group is isomorphic to a quotient of some Z⊕· · ·⊕Z. Observing this
is the first step in classifying the finitely generated abelian groups
as in §. (p. ).

Meanwhile, since
∑

i∈I

Z = 〈ei : i ∈ I〉,

we can write every element as a finite sum
∑

i∈I xie
i, as we said.

But then, if xi > 0, we can replace xie
i with xi-many copies of ei,

and if xj < 0, we can replace xje
j with −xj-many copies of −e

j .
For example,

3e0 − 2e1 = e
0 + e

0 + e
0 − e

1 − e
1.

In general, every nontrivial element of
∑

i∈I Z is uniquely a sum of
some copies of the e

i and the −e
j , if we disregard order, and if we

never allow e
i and −e

i for the same i to appear in the same sum. If
we use multiplicative notation instead, and if we do not disregard
order, what we get is not an abelian group, much less a free abelian
group; but it is a free group.

To be precise, a word on I is a finite nonempty string t0t1 · · · tn,
where each entry tk is either e, or else a or a−1 for some a in I.
A word is reduced if a and a−1 are never adjacent in it, and e is
never adjacent to any other entry. Thus the only reduced word in
which e can appear is just the word of length 1 whose only entry is
e. The free group on I, denoted by

F(I),

consists of the reduced words on I. Multiplication in this group
is juxtaposition followed by reduction, namely, replacement of
each occurrence of aa−1 or a−1a with e, and replacement of each
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occurrence of xe or ex with x. Thus, if we write an element a of I
as a1, we can express the product of two arbitrary reduced words
by the equation

(aε(m)
m · · · aε(0)0 )(b

ζ(0)
0 · · · bζ(n)n ) = aε(m)

m · · · aε(j)j b
ζ(j)
j · · · bζ(n)n ,

where each exponent ε(i) or ζ(i) is ±1, and the equation

a
ε(i)
i = b

−ζ(i)
i

is true when i < j, but false when i = j. We consider I as a subset
of F(I). An element of the latter other than e can be written also
as

a0
n(0) · · · amn(m),

where ai and ai+1 are always distinct elements of I, and each n(i)
is in Z r {0}.

We can now give the following analogue for Theorem . This
solves the question raised on p.  above of how to describe the
elements of a generated subgroup 〈A〉 of a given group. The answer
is that these elements can be given as reduced words on A, although
possibly the two different reduced words will stand for the same
element of 〈A〉.
Theorem . Suppose G is a group, I is a set, and f is a function
from I to G. Then the map

a0
n(0) · · · amn(m) 7→ f(a0)

n(0) · · · f(am)n(m)

from F(I) to G is the unique homomorphism f̃ from F(I) to G such
that

f̃ ↾ I = f,

that is, the following diagram commutes, where ι is the inclusion of
I in F(I).

I
ι //

f
��

F(I)

f̃}}④④
④④
④④
④④

G
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In particular, the subgroup 〈f(i) : i ∈ I〉 of G is isomorphic to a
quotient of F(I).

.. *Categories

Suppose C is a class of structures, all having the same signature.
For example, C could be the class of all groups, or the class of all
abelian groups. If A and B belong to C, we can denote by

Hom(A,B)

the set of all homomorphisms from A to B. By Theorem  on p.
, if also C ∈ C, then

(g, f) 7→ g ◦ f : Hom(B,C)×Hom(A,B) → Hom(A,C).

By Theorem  on p. , if f ∈ Hom(A,B), g ∈ Hom(B,C), and
h ∈ Hom(C,D), then

(h ◦ g) ◦ f = h ◦ (g ◦ f). (.)

By Theorem , Hom(A,A) contains idA. If f ∈ Hom(A,B) and
g ∈ Hom(B,C), then by Theorem ,

idB ◦f = f, g ◦ idB = g. (.)

Because of these properties, C is called a category. Elements of C
are called objects of the category; elements of each set Hom(A,B)
are called morphisms or arrows of the category, and specifically
morphisms or arrows from A to B. Strictly, the category is spec-
ified by four things:

) the class C,
) the function (A,B) 7→ Hom(A,B) on C ×C,
) the functions ◦, satisfying (.);
) the function A 7→ idA on C, satisfying (.).
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The conditions (.) and (.) can be expressed by means of the
following commutative diagrams.

A
f //

f
��

B

g

��
B

idB⑦⑦⑦

>>⑦⑦⑦

g
// C

B

g

��

A
foo

g◦f
⑦⑦
⑦

~~⑦⑦⑦ ��

f // B

h◦g
⑦⑦
⑦

~~⑦⑦⑦
g

��
C

h
// D C

h
oo

It is possible to have a category in which the objects are not struc-
tures and the arrows are not homomorphisms. For example, if G is
a group, then its elements can be considered as objects of a cate-
gory in which Hom(a, b) = {ba−1}, and c◦d = cd, and the function
corresponding to A 7→ idA is simply the constant function a 7→ e.

In an arbitrary category, the objects may be denoted by plain
capital letters like A and B, and the function corresponding to
A 7→ idA may be denoted simply by A 7→ idA. In accordance with
Theorems  and , we say that an element f of Hom(A,B) is an
isomorphism if, for some g in Hom(B,A),

g ◦ f = idA, f ◦ g = idB .

In this case, g is an inverse of f .

Theorem . In a category, inverses are unique, and the inverse
of a morphism has its own inverse, which is that morphism.

Proof. If g and h are inverses of f , then

g = g ◦ idB = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idA ◦h = h.

The rest is by symmetry of the definition.

If it exists, then the inverse of f is denoted by

f−1.
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When each object of a category has an associated set, and every
arrow from an object with associated set A to an object with asso-
ciated set B is actually a function from A to B, then the category
is said to be concrete. We shall be interested only in concrete cat-
egories. Classes of structures, like C above, can be understood as
concrete categories. However, other kinds of concrete categories are
possible. For example, there is a concrete category whose objects
are topological spaces and whose arrows are continuous functions.

... Products

Suppose C is a category, and A is an indexed family (Ai : i ∈ I)
of objects of C. If it exists, the product of A in the category is an
object with the properties of a direct product of groups given by
Porism . on p. . For a formal definition, we define a new
category, whose objects are the pairs

(
B, (fi : i ∈ I)

)

such that B is an object of C and, for each i in I,

fi ∈ Hom(B,Ai).

An element h of Hom(C,B) is a morphism from
(
C, (gi : i ∈ I)

)
to

(
B, (fi : i ∈ I)

)
in the new category if, for each i in I,

fi ◦ h = gi,

that is, the following diagram commutes.

C
gi //

h
��

Ai

idAi

��
B

fi
// Ai
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Suppose, in the new category, there is an object to which there is
a unique morphism from every other object. This object is called
a product of A .

By Porism ., if (Gi : i ∈ I) is an indexed family of groups,
then the ordered pair

(∏

i∈I Gi, (πi : i ∈ I)
)

is a product of the
indexed family in the category of groups. If the Gi are abelian,
then the pair is a product in the category of abelian groups.

Theorem . Any two products of the same indexed family of
objects in the same category are uniquely isomorphic.

Thus, if A is an indexed family (Ai : i ∈ I) of objects in a cat-
egory with products, then we may refer to the product of A , de-
noting it by

(∏

A , (πi : i ∈ I)
)
.

We may still refer to the morphisms πi as coordinate projec-
tions.

... Coproducts

Given a category, if we can reverse all of the arrows, and if we
reverse composition correspondingly, then we still have a category,
called the dual or opposite of the original category. A co-product
or sum in a category is a product in the dual. Thus, suppose C is
a category, and A is an indexed family (Ai : i ∈ I) of objects of C.
We define a new category, whose objects are the pairs

(
B, (fi : i ∈ I)

)

such that B is an object of C and, for each i in I,

fi ∈ Hom(Ai, B).

An element h of Hom(B,C) is a morphism from
(
B, (fi : i ∈ I)

)
to

(
C, (gi : i ∈ I)

)
in the new category if, for each i in I,

h ◦ fi = gi,
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that is, the following diagram commutes.

C Ai
gioo

B

h

OO

Ai
fi

oo

idAi

OO

Suppose, in the new category, there is an object from which there
is a unique morphism to every other object. This object is called a
coproduct or sum of A .

By Porism ., if (Gi : i ∈ I) is an indexed family of abelian
groups, then the pair

(∑

i∈I Gi, (ιi : i ∈ I)
)

is its coproduct in the
category of abelian groups.

By Theorem , coproducts are unique when they exist at all.
Thus if A is an indexed family (Ai : i ∈ I) of objects in a category
with coproducts, then we may refer to the coproduct of A , denoting
it by one of

(∐

A , (ιi : i ∈ I)
)

,
(∑

A , (ιi : i ∈ I)
)

.

We may still refer to the the morphisms ιi as canonical injections.
Although weak direct products of groups are defined like sums of

abelian groups, they are not coproducts in the category of groups.
However, this category has coproducts, as follows.

The free product of an indexed family (Gi : i ∈ I) of groups is
the group, denoted by

∏∗

i∈I

Gi,

or by

G0 ∗ · · · ∗Gn−1

if I is some n in ω, comprising the string e together with strings
t0 · · · tm, where each entry ti is an ordered pair (g, n(i)) such that
n(i) ∈ I and g ∈ Gn(i)r{e}, and n(i) 6= n(i+1). This complicated
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definition allows for the possibility that Gi might be the same as Gj
for some distinct i and j; the groups Gi and Gj must be considered
as distinct in the formation of the free product. Multiplication on
∏∗
i∈I Gi, as on F(I), is juxtaposition followed by reduction, so that

if (g, i) is followed directly by (h, i), then they are replaced with
(gh, i), and all instances of (e, i) are deleted, or replaced with e
if there is no other entry. Each Gj embeds in

∏∗
i∈I Gi under ιj ,

namely x 7→ (x, j).

Theorem . If (Gi : i ∈ I) is an indexed family of groups, then
(∏∗

i∈I Gi, (ιi : i ∈ I)
)

is its coproduct in the category of groups.

... Free objects

Given a concrete category C and a set I, we define a new category,
whose objects are the pairs

(f,A),

where A is an object of C, and f is a function from I to (the
associated set of) A. An element h of Hom(A,B) is a morphism
from (f,A) to (g,B) in the new category if

h ◦ f = g,

that is, the following diagram commutes.

I
f //

idI
��

A

h
��

I g
// B

Suppose, in the new category, from the object (f,A), there is a
unique morphism to every other object. Then A is a free object
on I with respect to f .
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Theorem . In a concrete category C, if A is a free object on
a set I with respect to a function f , and B is a free object on I
with respect to g, then there is a unique isomorphism h from A to
B such that h ◦ f = g.

By Theorems  and , free objects exist in the categories of
abelian groups and of arbitrary groups. Another example will be
given by Theorem  (p. ).

.. Presentation of groups

We develop a method for describing groups as quotients of free
groups. Let us first note that every group is (isomorphic to) such
a quotient.

Theorem . Every group is isomorphic to the quotient of a free
group by some normal subgroup.

Proof. By Theorem  (p. ), the identity map from G to itself
extends to a homomorphism from F(G) to G. Since this homo-
morphism is surjective, the claim follows by the First Isomorphism
Theorem (p. ).

If A is a subset of some group G, on p.  we defined 〈A〉 as
the intersection of (the set of) subgroups of G that include A. We
know this intersection is a subgroup of G, by Theorem . But
possibly 〈A〉 is not a normal subgroup of G. However, we have the
following.

Theorem . An arbitrary intersection of normal subgroups is a
subgroup.

Now, given a subset B of a group G, we can define

〈〈B〉〉 =
⋂

N ,
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where N is the set of all normal subgroups of G that include B. If
A is an arbitrary set, and B ⊆ F(A), we define

〈A | B〉 = F(A)/〈〈B〉〉.

This is the group with generators A and relations B. Note how-
ever that, strictly, the elements of A as such do not generate the
group; rather, the cosets a〈〈B〉〉, where a ∈ A, generate the group.
But we can understand a as a name for the coset a〈〈B〉〉.

Suppose there is a function f from A to a group G, and f̃ is
the homomorphism from F(A) to G that extends f , and this ho-
momorphism is surjective, and its kernel is 〈〈B〉〉. By the First
Isomorphism Theorem,

G ∼= 〈A | B〉.

We say in this case that 〈A | B〉 is a presentation of G. If A =
{a0, . . . , an}, and B = {w0, . . . , wm}, then 〈A | B〉 can be written
as

〈a0, . . . , an | w0, . . . , wm〉.
Sometimes, instead of wi, one may write wi = e or an equivalent
equation. Meanwhile, F(A) can be presented as 〈A | ∅〉. In par-
ticular Z can be presented as 〈a | ∅〉, but also as 〈a, b | ab−1〉 or
〈a, b | a = b〉. The group Zn has the presentation 〈a | an〉. More
examples are given by the theorems after the next.

Theorem  (von Dyck). Suppose G is a group, A is a set,
f : A → G, and f̃ is the induced homomorphism from F(A) to G.
Suppose further

B ⊆ ker f̃

Then there is a well-defined homomorphism g from 〈A | B〉 to G
such that g(a〈〈B〉〉) = f(a) for each a in A, that is, the following

Walther von Dyck (–) gave an early (–) definition of abstract
groups [, ch. , p. ].
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diagram commutes.

A
f //

��

G

F(A)

f̃tttt

::ttttt

π
// 〈A | B〉

g

OO

If G = 〈f(a) : a ∈ A〉, then g is an epimorphism.

Proof. Since ker(f̃) is a normal subgroup of F(A) that includes B,
we have 〈〈B〉〉 < ker f̃ . Hence g is well-defined by Theorem  on
p. .

Theorem . If n > 2, then Dih(n) has the presentation

〈a, b | an, b2, (ab)2〉.

Proof. Note first that, in the group 〈a, b | an, b2, (ab)2〉, the order
of a must divide n, and each of the orders of b and ab must divide
2. Now, by Theorem  on p. , Dih(n) has elements α and β
that generate the group and are such that αn, β2, and (αβ)2 are all
equal to e. By von Dyck’s Theorem then, there is an epimorphism
from 〈a, b | an, b2, (ab)2〉 to Dih(n) taking a to α and b to β and
hence ab to αβ. Therefore the order of a must be exactly n, and
the orders of b and of ab must be 2. By Theorem  on p. , the
epimorphism onto Dih(n) must be an isomorphism.

Theorem . The quaternion group Q8 has the presentation

〈 i , j | i4, i2j2, i j i3j〉,

or equivalently 〈 i , j | i4 = e, i2 = j2, j i = i3j〉.
Proof. Use von Dyck’s Theorem and Theorem  in the manner
of the previous proof.

Yet another example of a presentation will be given in Theo-
rem  on p. .
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.. Finitely generated abelian groups

We now classify, in the sense of §. (p. ), the abelian groups
with finite sets of generators, and in particular the finite abelian
groups. A useful application of this will be that the group of units
of every finite field is cyclic (Theorem ).

Theorem . If (Gi : i ∈ I) is an indexed family of groups, and
for each i in I, Ni ⊳ Gi, then

∏

i∈I

Ni ⊳
∏

i∈I

Gi,
∏

i∈I

Gi

/
∏

i∈I

Ni
∼=
∏

i∈I

Gi
Ni
.

Theorem . For every abelian group G on n generators, there
is a unique element k of n+1, along with positive integers d0, . . . ,
dk−1, where

d0 | d1 ∧ · · · ∧ dk−2 | dk−1, (.)

such that

G ∼= Zd0 ⊕ · · · ⊕ Zdk−1
⊕ Z⊕ · · · ⊕ Z
︸ ︷︷ ︸

n−k

. (.)

Proof. Suppose G = 〈gi : i < n〉 and is abelian. Let F be the free
abelian group

∑

i∈n Z. Using notation from p. , we have that
F = 〈e0, . . . , en−1〉, and there is a surjective function

∑

i∈n

xie
i 7→

∑

i∈n

xig
i

from F to G. Let N be its kernel, so that

G ∼= F/N.

Suppose it should happen to be that N = 〈d0e0, . . . , dk−1e
k−1〉.

We have

F ∼= 〈e0〉 ⊕ · · · ⊕ 〈en−1〉,
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and under the isomorphism,

N ∼= 〈d0e0〉 ⊕ · · · ⊕ 〈dk−1e
k−1〉 ⊕ {e} ⊕ · · · ⊕ {e}.

By the lemma then,

F/N ∼= 〈e0〉
〈d0e0〉

⊕ · · · ⊕ 〈ek−1〉
〈dk−1e

k−1〉 ⊕ 〈ek〉 ⊕ · · · ⊕ 〈en−1〉,

which has the form in (.), although (.) might not hold. Not
every subgroup of F is given to us so neatly, but we shall be able
to put it into the desired form, even satisfying (.).

We can identify F with M1×n(Z). If X ∈ Mm×n(Z), let us denote
by 〈X〉 the subgroup of F generated by the rows of X. If P ∈
GLm(Z) and Q ∈ GLn(Z), then

〈X〉 = 〈PX〉, F/〈X〉 ∼= F/〈XQ〉.

Now we can choose P and Q so as to effect certain row operations
(as on p. ) and column operations, respectively. In particular,
assuming m > n, for some P we have

PX =

(
U

0

)

,

where U is an n× n upper triangular matrix, that is,

U =






∗ · · · ∗
. . .

...
0 ∗




 .

Then we may assume m = n, so PX = U . For some Q, the matrix
PXQ is diagonal, so that

PXQ =






d0 0
. . .

0 dn−1




 .
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By further adjusting P andQ, we may ensure that (.) holds, while
dk = · · · = dn−1 = 0. Indeed, suppose b, c ∈ Z and gcd(b, c) = d.
By elementary row and column operations, from a matrix

(
b 0
0 c

)

we obtain

(
b 0
c c

)

and then

(
d e
0 f

)

, where e and f are multiples

of c and hence of d; hence, with an invertible column operation, we
get

(
d 0
0 f

)

.

where again d | f . Applying such transformations as needed to
pairs of entries in D yields (.). The number k is uniquely deter-
mined by X. We have shown that every subgroup of F is generated
by a set of at most n elements. Then we may assume N = 〈X〉, so
that F/N is as desired.

Porism .. Every subgroup of a free abelian group on n gen-
erators is free abelian on n generators or fewer.

In the theorem, not only is k unique, but the numbers dj are
also unique. This can be established by means of an alternative
classification of the finitely generated abelian groups.

The following is Proposition VII. of Euclid’s Elements. In §.
(p. ), we are going to be interested in rings besides Z in which
the proof can be carried out. Meanwhile, the theorem will motivate
the definition of prime ideal in §. (p. ).

Theorem  (Euclid’s Lemma). If p is a prime number, then for
all integers a and b,

p | ab & p ∤ a =⇒ p | b.
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Proof. Given that p ∤ a, we know that gcd(p, a) = 1 by the proof
of Theorem  (p. ; or by the result of this theorem and The-
orem , p. ). Hence by Theorem , we can solve ax+ py = 1.
In this case we obtain

abx+ pby = b,

so if p | ab, then, since immediately p | pby, we must have p | b.

Porism .. If m and n are relatively prime integers, then for
all integers a,

m | na =⇒ m | a.

Theorem  (Chinese Remainder). If gcd(m,n) = 1, then the
homomorphism x 7→ (x, x) from Zmn to Zm⊕Zn is an isomorphism.

Proof. If x ≡ 0 (mod m) and x ≡ 0 (mod n), then, by the porism,
since gcd(m,n) = 1, we have x ≡ 0 (mod mn). Hence the given
homomorphism is injective. Since Zmn and Zm ⊕ Zn both have
order mn, the given homomorphism must also be surjective, by
Theorem  on p. .

The Chinese Remainder Theorem will be generalized as Theo-
rem  on p. . In the usual formulation of the theorem, every
system

x ≡ a (mod m), x ≡ b (mod n)

of congruences has a unique solution modulo mn; but this solution
is just the inverse image of (a, b) under the isomorphism x 7→ (x, x).

Theorem . For every finite abelian group, there is a unique
list (pi : i < k) of primes, where

p0 6 . . . 6 pk−1,
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there are unique elements m(0), . . . , m(k− 1) of N, and there is a
unique r in ω such that

G ∼= Zp0m(0) ⊕ · · · ⊕ Zpk−1
m(k−1) ⊕ Z⊕ · · · ⊕ Z

︸ ︷︷ ︸

r

.

Proof. To obtain the analysis, apply the Chinese Remainder Theo-
rem to Theorem . The analysis is unique, provided it is unique
in the case where all of the pj are the same. But in this case, the
analysis is unique, by repeated application of the observation that
the order of the group is the highest prime power appearing in the
factorization.

Theorem . The group of units of every finite field is cyclic. In
particular, if p is prime, then

Zp
× ∼= Zp−1.

Proof. Let F be a finite field. By Theorem ,

F× ∼= Zd0 ⊕ Zdk−1
⊕ Zm

for some d(i) and m such that

d0 | di ∧ · · · ∧ dk−1 | m.

In particular,

m 6 |F×|.

Also, every element of F× is a zero of the polynomial xm − 1. But
this polynomial can have at most m roots in a field. Thus

|F×| 6 m.

Hence |F×| = m and so F× ∼= Zm.
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If Zn× is cyclic, then its generators are called primitive roots
of n; Gauss [, p. ] attributes the terminology to Euler. Recall
from p.  the definition

φ(n) = |Zn×|.

Thus, if Zn× is indeed cyclic, it is isomorphic to Zφ(n).

Theorem . If n has a primitive root a, then it has exactly
φ(φ(n)) primitive roots, namely those ak such that gcd(k,φ(n)) =
1.

By Theorem , primes have primitive roots. We have to find
them by trial. For example, 2 is not a primitive root of 7, but 3 is,
by the following computations.

k 0 1 2 3 4 5 (mod 6)

2k 1 2 −3 1 2 −3 (mod 7)

3k 1 3 2 −1 −3 −2 (mod 7)

Then 5 (or −2) is the only other primitive root of 7.
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. Finite groups

.. Semidirect products

Recall from p.  that conjugation in a group is an operation
x 7→ axa−1 for some element a of the group. The following is
reminiscent of Cayley’s Theorem (Theorem  on p. ), although
the homomorphism now need not be an embedding.

Theorem . Conjugation in a group is an automorphism. For
every group G, the function

g 7→ (x 7→ gxg−1)

from G to Aut(G) is a homomorphism.

Conjugation by an arbitrary element of a group is also called an
inner automorphism of the group. The kernel of the homomor-
phism in the theorem is the center of G, denoted by

C(G).

We shall generalize this notion in §. (p. ). Meanwhile, it will
be useful to have the following generalization of the last theorem.

Theorem . For every group G, if N ⊳ G, then there is a
homomorphism

g 7→ (x 7→ gxg−1)

from G to Aut(N).

Repeating the process of forming inner automorphisms, we can define a func-
tion α 7→ Gα on the class of ordinals so that G0 = G, and Gα′ = Aut(Gα),
and if β is a limit, then Gβ is the so-called direct limit of (Gα : α < β).
Then for some ordinal α, for all ordinals β, if β > α, then Gβ = Gα: Simon
Thomas [] shows this in case G has trivial center; Joel Hamkins [], in
the general case.





In the theorem, let the homomorphism be g 7→ σg. Suppose also
H < G, and N ∩ H = {e}. Then the conditions of Theorem 
(p. ) are met, and NH is an internal semidirect product. Equa-
tion (.) describing multiplication on NH, namely

(mg)(nh) = (m · gng−1)(gh),

can be rewritten as

(mg)(nh) = (m · σg(n))(gh).

Theorem . Suppose N and H are groups, and g 7→ σg is a
homomorphism from H to Aut(N). Then the set N ×H becomes
a group when multiplication is defined by

(m, g)(n, h) = (m · σg(n), gh).

The group given by the theorem is the semidirect product of
N and H with respect to σ; it can be denoted by

N ⋊σ H.

The bijection in Theorem  is an isomorphism from N ⋊σ H to
NH when σ is the homomorphism in Theorem .

Now recall from Theorem  (p. ) that for every associative ring
(R, 1, ·), the function x 7→ λx embeds the ring in (End(R), idR, ◦).
From this we obtain the following.

Theorem . For every associative ring (R, 1, ·), the function

x 7→ λx

embeds (R, ·)× in Aut(R).

The embedding is sometimes an isomorphism:
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Theorem . For all n in N, the function

x 7→ λx

is an isomorphism from Zn× to Aut(Zn).

Theorem . If p and q are primes such that

q | p− 1,

then there is an embedding σ of Zq in Aut(Zp), and hence there is
a semidirect product

Zp ⋊σ Zq,

which is not abelian. If τ is another embedding of Zq in Aut(Zp),
then for some n in Zq, the map

(y, x) 7→ (y, nx)

is an isomorphism from Zp ⋊τ Zq to Zp ⋊σ Zq.

Proof. The prime p has a primitive root a by Theorem  (p. ).
Letting b = a(p−1)/q, we have an isomorphism x 7→ bx from Zq to
〈b〉, and 〈b〉 is the unique subgroup of Zp× of order q (Theorem ,
p. ). By the last theorem, the map x 7→ λbx is an embedding of
Zq in Aut(Zp). Calling this embedding σ, we can form

Zp ⋊σ Zq.

Now suppose τ is an arbitrary embedding of Zq in Aut(Zp). By
uniqueness of 〈b〉 as a subgroup of Zp× of order q, the images of τ
and σ must be the same, and so τ1 = λbn for some n in Zq×, and
hence

τx = σnx.

The function f from Zp × Zq to itself given by

f(y, x) = (y, nx)
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is a bijection. If we denote multiplication in Zp ⋊τ Zq by ·τ , and
likewise with σ for τ , then

f
(
(c, b) ·τ (y, x)

)
= f(c+ τb(y), b+ x)

= (c+ σnb(y), n(b+ x))

= (c+ σnb(y), nb+ nx)

= (c, nb) ·σ (y, nx)
= f(c, b) ·σ f(y, x).

Thus f is an isomorphism from Zp ⋊τ Zq to Zp ⋊σ Zq.

In case q = 2, the group in the theorem is isomorphic to Dih(p).
We investigate groups of order pq a bit more in the next section.
The final classification of them will be Theorem  on p. .

.. Cauchy’s Theorem

We can partition a group G into subsets {a, a−1}. Many of these
may indeed have size 2; but {e, e−1} = {e}. Hence, if G is finite of
even order, we must have {a, a−1} = {a} for some a other than e.
In this case, a has order 2.

We can recast this argument as follows. The function x 7→ x−1 is
a permutation σ of G as a set. The function f from Z2 to Sym(G)
given by

f0 = idG, f1 = σ

is a homomorphism. Then G is partitioned by the sets {fx(a) : x ∈
Z2}. The size of such a set is 1 or 2. Hence the number of such
sets of size 1 is congruent modulo 2 to the order of G.

Now we can generalize by replacing 2 with an arbitrary prime.
Thus we obtain the first promised partial converse of the Lagrange
Theorem (p. ). Galois apparently used the following in –;
Cauchy published a proof in  [, pp. –].
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Theorem  (Cauchy). For all primes p, every finite group whose
order is a multiple of p has an element of order p.

Proof (J. H. McKay []). Suppose G is a finite group whose order
is divisible by p. Let A be the range of the map

(x0, . . . , xp−2) 7→
(
x0, . . . , xp−2, (x0 · · ·xp−2)

−1
)
.

from Gp−1 to Gp. Thus

A =

{

(xi : i < p) ∈ Gp :
∏

i<p

xi = e

}

, |A| = |Gp−1|.

If (xi : i < p) ∈ A and 0 < k < p− 1, then

(x0 · · ·xk−1)
−1 = xk · · ·xp−1,

and so (xk, . . . , xp−1, x0, . . . , xk−1) ∈ A. Thus we have a homomor-
phism f from Zp to Sym(A) given by

fk(x0, . . . , xk−1, xk, . . . , xp−1) = (xk, . . . , xp−1, x0, . . . , xk−1).

Then

fk(x) = fℓ(x) ⇐⇒ fk−ℓ(x) = x,

{k ∈ Zp : fk(x) = x} < Zp.

Subgroups of Zp have order 1 or p, and so the set {fk(x) : k ∈ Zp}
has size p or 1. Such subsets partition A. One of the subsets,
namely {(e, . . . , e)}, has size 1. Since |A| is a multiple of p, there
must be x in A different from (e, . . . , e) such that fk(x) = x for all
k in Zp. In this case, x must be (x, . . . , x) for some x in G r {e}.
Thus x has order p.

A p-group is a group the order of whose every element is a power
of p.
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Corollary .. A finite group is a p-group if and only if its
order is a power of p.

Proof. Let ℓ be a prime different from p. if ℓ divides |G|, then G
has an element of order ℓ, so G is not a p-group. Conversely, if
g ∈ G and ℓ divides |g|, then ℓ divides |G|.

For example, the trivial group {e} is a p-group for every prime
p. All groups Zpk , and direct sums of them, are p-groups. If n > 1,
then Dih(2n) is a nonabelian 2-group.

By Cauchy’s Theorem, the hypothesis of the following is always
satisfied.

Theorem . Suppose p and q are distinct primes, and G is a
group of order pq. If a and b are elements of G of orders p and q
respectively, then

〈a〉 ∩ 〈b〉 = {e}, G = 〈a〉〈b〉.

In the theorem, if 〈a〉 is a normal subgroup of G, then G is a
semidirect product, by Theorem  on p. . If also 〈b〉 ⊳ G, then
G is actually a direct product, isomorphic to Zp × Zq. Otherwise,
G is not abelian, and by Theorem  there is only one possibility.
With Theorem  on p. , we shall show that one of 〈a〉 and 〈b〉
must be a normal subgroup of G, and so G is indeed either a direct
or a semidirect product.

.. Actions of groups

A homomorphism from a group G to the symmetry group of a set
A is called an action of G on A. An alternative characterization
of actions is given by the following.

Theorem . Let G be a group, and A a set. There is a one-to-
one correspondence between

. homomorphisms g 7→ (a 7→ ga) from G into Sym(A), and
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. functions (g, a) 7→ ga from G×A into A such that

ea = a, (gh)a = g(ha) (.)

for all h and h in G and a in A.

Proof. If g 7→ (a 7→ ga) maps G homomorphically into Sym(A),
then the identities in (.) follow. Suppose conversely that these
hold. Then, in particular,

g(g−1a) = (gg−1)a = ea = a

and likewise g−1(ga) = a, so a 7→ g−1a is the inverse of a 7→
ga, and the function g 7→ (a 7→ ga) does map G into Sym(A),
homomorphically by (.).

Usually it is a function (g, a) 7→ ga from G × A to A as in the
theorem that is called an action of G on A. So in the notation
of the proof of Cauchy’s Theorem, the function (k,x) 7→ fk(x) is
an action of Zp on A. Immediately, for any set A, the function
(σ, x) 7→ σ(x) from Sym(A) × A to A is an action of Sym(A) on
A. Other examples that will be of interest to us are given by the
following.

Theorem . Let G be a group and H < G. Then G acts:
a) on itself by (g, x) 7→ λg(x) (left multiplication),
b) on G/H by (g, xH) 7→ gxH (left multiplication),
c) on itself by (g, x) 7→ gxg−1 (conjugation),
d) on {xHx−1 : x ∈ G} by (g,K) 7→ gKg−1 (conjugation).

Suppose (g, x) 7→ gx is an arbitrary action of G on A. If a ∈ A,
then the subset {g : ga = a} of G is the stabilizer of a, denoted
by

Ga;

the subset {ga : g ∈ G} of A is the orbit of a, denoted by

Ga.
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The subset {x : Gx = G} of A can be denoted by

A0.

Note how all of these were used in the proof of Cauchy’s Theo-
rem. Also, in the proof we established the appropriate case of the
following.

Theorem . Suppose a group G acts on a set A. Then the orbits
of the elements of A under the action are a partition of A, that is,

Ga 6= Gb =⇒ Ga ∩Gb = ∅,
⋃

a∈A

Ga = A.

Moreover, for all a in A,

Ga < G, [G : Ga] = |Ga|.
Proof. Let the action be (g, x) 7→ gx. for the last equation, we
establish a bijection between G/Ga and Ga by noting that

gGa = hGa ⇐⇒ h−1g ∈ Ga ⇐⇒ ga = ha;

so the bijection is gGa 7→ ga.

Corollary .. If there are only finitely many orbits in A under
G, then

|A| = |A0|+
∑

a∈X

[G : Ga] (.)

for some set X of elements of A whose orbits are nontrivial.

Equation (.) is called the class equation. We used it implic-
itly in the proof of Cauchy’s Theorem. In fact we used it to derive
the appropriate case of the following.

Theorem . If A is acted on by a finite p-group, then

|A| ≡ |A0| (mod p)

Proof. In the class equation, [G : Ga] is a multiple of p in each
case.
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... Centralizers

Suppose G acts on itself by conjugation, and a ∈ G. Then Ga is the
conjugacy class of a, while Ga is the centralizer of a, denoted
by

CG(a). (.)

Finally, G0 is the center of G, denoted by

C(G);

this is a normal subgroup of G. The class equation for the present
case can now be written as

|G| = |C(G)|+
∑

a∈X

[G : CG(a)].

Theorem . All groups of order p2 are abelian.

Proof. Let G have order p2. In particular, G is a p-group. By
Theorem , either C(G) = G, in which case G is abelian, or else
|C(G)| = p. In the latter case, let a ∈ Gr CG(a). Then

G = C(G)〈a〉.
But elements of C(G) commute with all elements of G; and a com-
mutes with itself. If the generators commute with one another, the
whole group is abelian. Therefore G must be abelian.

Porism .. Every nontrivial p-group has nontrivial center.

... Normalizers

If H < G, let G act on the set of conjugates of H by conjugation.
The stabilizer of H under this action is called the normalizer of
H in G and is denoted by

NG(H).

More generally, if H < G, then CH(g) = {h ∈ H : hgh−1 = g}.
More generally, if also K < G, then NK(H) = {k ∈ K : kHk−1 = H}.
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Explanation of the name is given by the following.

Theorem . If H < K < G, then

H ⊳ K ⇐⇒ K < NG(H).

We establish some technical results for the sake of proving the
Sylow Theorems of the next subsection.

Lemma . Suppose H < G, and let H act on G/H by left mul-
tiplication. Then

(G/H)0 = NG(H)/H.

Proof. Supposing g ∈ G, we have gH ∈ (G/H)0 if and only if, for
all h in H,

hgH = gH,

g−1hgH = H,

g−1hg ∈ H.

Thus

gH ∈ (G/H)0 ⇐⇒ g−1Hg = H

⇐⇒ g−1 ∈ NG(H)

⇐⇒ g ∈ NG(H)

⇐⇒ gH ∈ NG(H)/H.

A p-subgroup of a group is a subgroup that is a p-group. Every
group has at least one p-subgroup, namely the trivial subgroup {e}.

Lemma . If H is a p-subgroup of G, then

[G : H] ≡ [NG(H) : H] (mod p).

Proof. Theorem  and the last lemma.
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Lemma . If H is a p-subgroup of G, and p divides [G : H], then
for some subgroup K of G,

H ⊳ K, [K : H] = p.

Proof. By the last lemma, p divides [NG(H) : H]. Since H ⊳

NG(H), the quotient NG(H)/H is a group. By Cauchy’s Theorem
(Theorem ), this group has an element gH of order p. Then
H〈g〉 is the desired group K.

Now can start proving the Sylow Theorems.

... Sylow subgroups

A Sylow p-subgroup of a group is a maximal p-subgroup. Then
every p-subgroup of a finite group G is a subgroup of a Sylow p-
subgroup of G. In particular, since G does have the p-subgroup
{e}, it has at least one Sylow p-subgroup. We now establish that
the order of every Sylow p-subgroup of a finite group is as large as
Lagrange’s Theorem (p. ) allows it to be.

Theorem  (Sylow I). If G is a finite group of order pnm, where
gcd(p,m) = 1, then every Sylow p-subgroup of G has order pn.

Proof. Use the last lemma repeatedly.

Porism .. If |G| = pnm, where p ∤ m, then there is a chain

H0 < H1 < · · · < Hn

of p-subgroups of G, where

H0 = {e}, Hi ⊳ Hi+1, [Hi+1 : Hi] = p.

In particular, Hn is a Sylow p-subgroup of G. Every p-subgroup of
G appears on such a chain.

The same is true for infinite groups G, by the version of the Axiom of Choice
known as Zorn’s Lemma; but we shall not make use of this result.
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In the notation of the porism, although Hi ⊳ Hi+1 and Hi+1 ⊳

Hi+2, we need not have Hi ⊳ Hi+2. For a counterexample, consider
Dih(4):

〈(1 3)〉 ⊳ 〈(1 3), (0 2)〉, 〈(1 3), (0 2)〉 ⊳ Dih(4),

but 〈(1 3)〉 ⋪ Dih(4) since

(0 1 2 3) ∈ Dih(4), (3 2 1 0)(1 3)(0 1 2 3) = (0 2).

The following is as close as can be to a converse of Lagrange’s
Theorem.

Corollary .. Suppose G is a finite group. Then G has a
subgroup of every order that divides |G|, provided that order is a
prime power.

The converse of the first part of the following will be the Second
Sylow Theorem.

Corollary .. Every conjugate of every Sylow p-subgroup of a
finite group is also a Sylow p-subgroup. Thus if a finite group has
a unique Sylow p-subgroup, this must be a normal subgroup.

To prove the Second Sylow Theorem, we shall use a generalization
of Lemma .

Lemma . Suppose G is a group with subgroups H and K. Under
the action of H on G/K by left multiplication,

gK ∈ (G/K)0 ⇔ H < gKg−1.

Proof. The first part of the proof of Lemma  shows this. Indeed,
for all g in G, we have gK ∈ (G/K)0 if and only if, for all h in H,

hgK = gK,

g−1hgK = K,

g−1hg ∈ K,

h ∈ gKg−1.
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Theorem  (Sylow II). All Sylow p-subgroups of finite groups
are conjugate.

Proof. Say H and K are Sylow p-subgroups of G. Then H acts on
the set G/K by left multiplication. By Theorem , since [G : K]
is not a multiple of p, the set (G/K)0 has an element aK. By
the lemma, H < aKa−1. Then H = aKa−1 by the First Sylow
Theorem.

Theorem  (Sylow III). If |G| = pnm, where gcd(p,m) = 1,
and A is the set of Sylow p-subgroups of G, then

|A| ≡ 1 (mod p), |A| divides m.

Proof. G acts on A by conjugation, by the First Sylow Theorem
(more precisely, Corollary .). Let H ∈ A. By the Second Sylow
Theorem, the orbit of H is just A. The stabilizer of H is NG(H).
Since by Theorem  the index of the stabilizer is the size of the
orbit, we have

[G : NG(H)] = |A|,

and so |A| divides |G|. Now suppose also K ∈ A. Then K must be
the unique Sylow p-subgroup of NG(K). Considering H as acting
on A by conjugation, we have

K ∈ A0 ⇐⇒ H < NG(K)

⇐⇒ H = K.

Therefore A0 = {H}, so by Theorem ,

|A| ≡ 1 (mod p).

It now follows that |A| divides m.

 . Finite groups



.. *Classification of small groups

We can now complete the work, begun in §. (p. ), of classifying
the groups of order pq for primes p and q.

Theorem . Suppose p and q are distinct primes, with q < p,
and G is a group of order pq. Either

G ∼= Zp × Zq,

which is cyclic, or else p ≡ 1 (mod q) and

G ∼= Zp ⋊σ Zq

for some embedding σ of Zq in Aut(Zp). In particular, if q = 2,
then

G ∼= Dih(p).

Proof. By Cauchy’s Theorem, G has elements a and b, of orders
p and q respectively. Then 〈a〉 and 〈b〉 are Sylow subgroups of G.
Let A be the set of Sylow p-subgroups of G. By the Third Sylow
Theorem, |A| divides q. Since p ∤ q − 1, we must have |A| = 1.
Thus 〈a〉 is the unique Sylow p-sugroup of G, and so it is a normal
subgroup. By Theorems  and  (pages  and ), G is
the semidirect product of 〈a〉 and 〈b〉. If it is not actually a direct
product, then 〈b〉 must not be a normal subgroup of G, and so q
does divide p− 1, and the rest follows.

We now know all groups of order less than 36, but different from
8, 12, 16, 18, 20, 24, 27, 28, 30, and 32.

Theorem . Every group of order 8 is isomorphic to one of

Z8, Z2 ⊕ Z4, Z2 ⊕ Z2 ⊕ Z2, Dih(4), Q8.
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Proof. Say |G| = 8. If G is abelian, then its possibilities are given
by the classification of finitely generated abelian groups (Theo-
rem , p. ). Suppose G is not abelian. Then G has an element
a of order greater than 2 by Theorem  (p. ), and so |a| = 4
(since G ≇ Z8). Then 〈a〉 ⊳ G by Theorem  (p. ). Let
b ∈ G r 〈a〉. Then b2 is either e or a2 (since otherwise b would
generate G). In the former case, G = 〈a〉⋊ 〈b〉, so G ∼= Dih(4). In
the latter case, G ∼= Q8.

Theorem . The subgroup of Sym(3)×Z4 generated by the two
elements

(
(0 1 2), 2

)
,

(
(0 1), 1

)

has order 12 and has the presentation

〈a, b | a6, a3b2, bab−1a〉.

Lemma . If H < G, and σ is the homomorphism g 7→ (xH 7→
gxH) from G to Sym(G/H), then

ker(σ) < H.

Theorem . Every group of order 12 is isomorphic to one of

Z12, Z2 ⊕ Z6, Alt(4), Dih(6), 〈a, b | a6, a3b2, bab−1a〉.

Proof. Suppose |G| = 12. By Cauchy’s Theorem, G has an ele-
ment c of order 3. Then G acts on G/〈c〉 by left multiplication,
which gives us a homomorphism from G to Sym(G/〈c〉). Since
[G : 〈c〉] = 4, there is a homomorphism from G to Sym(4). If this
is an embedding, then G ∼= Alt(4) by Theorem  (p. ). Oth-
erwise, by the lemma, the kernel of the homorphism must be 〈c〉.
In this case,

〈c〉 ⊳ G.
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Now let H be a Sylow 2-subgroup of G. Having order 22, it is
abelian (Theorem , p. ). If G is not abelian, then the ac-
tion of H on 〈c〉 by conjugation must be nontrivial. But since
|Aut(〈c〉)| = 6, which is indivisible by the order of H, there must
be some d in H that commutes with c. Then 〈c, d〉 ∼= Z6. Let
a = cd, so 〈a〉 = 〈c, d〉. Let b ∈ Gr 〈a〉, so

G = 〈a, b〉.
If |b| = 2, then G ∼= Dih(6). In any case, conjugation by b is a non-
trivial automorphism of 〈a〉, and in particular bab−1 is a generator
of 〈a〉 different from a. There is only one of these, namely a−1, so

bab−1 = a−1. (.)

Also b2 = ak for some k in Z6. If k = ±1, then G = 〈b〉. Suppose
k = ±2. Then |b| = 6, so 〈b〉 ⊳ G, and therefore

ab−1a−1 = b. (.)

From (.) we have

ab−1 = b−1a−1, ba = a−1b. (.)

From (.) we have ab−1 = ba, so all members of the equations
in (.) are equal to one another. In particular,

ab−1 = a−1b, ba = b−1a−1,

which yield a2 = b2 and b2 = a−2 respectively, contradicting that
|a| = 6. The only remaining possibility is k = 3, which yields the
last group listed.

.. Nilpotent groups

For a group, what is the next best thing to being abelian? A group
G is abelian if and only if C(G) = G. To weaken this condition, we
define the commutator of two elements a and b of G to be

aba−1b−1;
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this can be denoted by
[a, b].

Then
C(G) =

{
g ∈ G : ∀x (x ∈ G⇒ [g, x] = e)

}
.

We now generalize this by defining

C0(G) = {e},
Cn+1(G) =

{

g ∈ G : ∀x
(
x ∈ G⇒ [g, x] ∈ Cn(G)

)}

.

Then C(G) = C1(G). Also,

Cn(G) =

{

g ∈ G : ∀x
(

x ∈ Gn ⇒

[[

. . .
[
[g, x0], x1

]
, · · ·

]

, xn−1

]

= e

)}

.

The following general result will now be useful.

Theorem . Suppose N ⊳ G. Every subgroup H of G/N is of
the form K/N for some subgroup K of G of which N is a normal
subgroup. Moreover,

K/N ⊳ G/N ⇐⇒ K ⊳ G.

Theorem . For all groups G, for all n in ω,

Cn(G) ⊳ G, (.)

Cn(G) < Cn+1(G), (.)

Cn+1(G)/Cn(G) = C(G/Cn(G)). (.)

Proof. We use induction. Trivially, (.) holds when n = 0. Sup-
pose it holds when n = k. Then the following are equivalent:

g ∈ Ck+1(G),
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∀x
(
x ∈ G⇒ [g, x] ∈ Ck(G)

)
,

∀x
(
x ∈ G⇒ [g, x] Ck(G) = Ck(G)

)
,

∀x
(
x ∈ G⇒ [gCk(G), xCk(G)] = Ck(G)

)
,

gCk(G) ∈ C(G/Ck(G)).

Thus (.) and (.) hold when n = k. In particular,

Ck+1(G)/Ck(G) ⊳ G/Ck(G),

and so, by the last theorem, (.) holds when n = k + 1.

The sequence (Cn(G) : n ∈ ω) may be written out as

{e} ⊳ C(G) ⊳ C2(G) ⊳ C3(G) ⊳ · · ·

although strictly this expression is not a noun, but the conjunction
of the statements {e} ⊳ C(G), C(G) ⊳ C2(G), C2(G) ⊳ C3(G),
and so on. By the last theorem (and Theorem  on p. ), the
relation ⊳ on the set {Cn(G) : n ∈ ω} is indeed transitive. A group
is called nilpotent if for some n in ω,

Cn(G) = G.

So an abelian group is nilpotent, since its center is itself. Other
examples of nilpotent groups are given by:

Theorem . Finite p-groups are nilpotent.

Proof. If G is a p-group and Ck(G) � G, then G/Ck(G) is a non-
trivial p-group, so by Porism . it has a nontrivial center. By
Theorem  then, Ck(G) � Ck+1(G).

The converse fails, because of:

Apparently the term nilpotent arises for the following reason. If Cn(G) = G
and, for some g in G, f is the element x 7→ [g, x] of the monoid (GG, idG, ◦),
then fn is the constant function x 7→ e.
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Theorem . The direct product of a finite family of nilpotent
groups is nilpotent.

Proof. Use Theorem  (p. ) and

C(G×H) = C(G)× C(H).

If Cn(G) = G and Cm(H) = H, then Cmax{n,m}(G × H) = G ×
H.

Thus, if all Sylow subgroups of a finite group G are normal sub-
groups, then G must be nilpotent. We now proceed to a partial
converse of this result. Given that G is a finite nilpotent group
with a Sylow p-subgroup P for some prime p, we want to show
P ⊳ G, that is, NG(P ) = G.

Lemma . If G is a finite group with Sylow p-subgroup P , then

NG(NG(P )) = NG(P ).

Proof. Let N = NG(P ). Supppose g ∈ NG(N), that is,

gNg−1 = N.

Since P < N , we have also gPg−1 < N . But P ⊳ N , so P is
the unique Sylow p-subgroup of N . Since gPg−1 is also a Sylow
p-subgroup of N , we must have gPg−1 = P . Thus

g ∈ N.

We have now proved NG(N) < N .

Now, in the notation of the lemma, we want to show that, if N �
G, then either N � NG(N), or else G is not finite and nilpotent.
We shall use the following.

Lemma . If Cn(G) < H, then Cn+1(G) < NG(H).
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Proof. Say g ∈ Cn+1(G); we show gHg−1 ⊆ H. But if h ∈ H,
then [g, h] ∈ Cn(G), so ghg−1 ∈ Cn(G)h ⊆ H. Therefore gHg−1 ⊆
H.

Lemma . If G is nilpotent, and H � G, then H � NG(H).

Proof. Let n be maximal such that Cn(G) < H. Then Cn+1(G)r
H is non-empty, but, by the last lemma, it contains members of
NG(H).

Theorem . A finite nilpotent group is the direct product of its
Sylow subgroups.

Proof. SupposeG is a finite nilpotent group. By Lemmas  and ,
every Sylow subgroup of G is a normal subgroup. Suppose the Sy-
low subgroups of G compose a list (Pi : i < n), where each Pi is a
pi-group, and pi 6= pj when i 6= j. If, for some i in n, the product
P0 · · ·Pi−1 is an internal direct product, then its order is indivisi-
ble by pi, and so P0 · · ·Pi−1 ∩ Pi = {e}. Hence, by Theorem 
(p. ) and induction, each product P0 · · ·Pi is an internal direct
product. Then also the order of P0 · · ·Pn−1 is the order of G, so
the two groups are the same.

Theorems , , and  give us a classification of the finite
nilpotent groups.

.. Soluble groups

Having defined the commutator of two elements of a group, we de-
fine the commutator subgroup of a group G to be the subgroup

〈[x, y] : (x, y) ∈ G2〉
generated by the commutators of all pairs of elements of G. We
denote this subgroup by

G′.

Its interest arises from the following.
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Theorem . G′ is the smallest of the normal subgroups N of G
such that G/N is abelian.

Proof. If f is a homomorphism defined on G, then

f([x, y]) = [f(x), f(y)].

Thus, if f ∈ Aut(G), then f(G′) < G′. In particular, xG′x−1 < G′

for all x in G; so G′ ⊳ G. Suppose N ⊳ G; then the following are
equivalent.

. G/N is abelian.
. N = [x, y]N for all (x, y) in G2.
. G′ < N .

We now define the derived subgroups G(n) of G by

G(0) = G, G(n+1) = (G(n))′.

We have a descending sequence

G ⊲ G′ ⊲ G(2) ⊲ · · ·

The group G is called soluble or solvable if this sequence reaches
{e} (after finitely many steps). Immediately, abelian groups are
soluble. For more examples, let K be a field, and if n ∈ N, let
G be the subgroup of GLn(K) consisting of upper triangular
matrices. So G comprises the matrices






a0 ∗
. . .

0 an−1






If f is a polynomial in one variable over Q, let A be the set of its zeros in
the field C, and let G = {σ ↾ A : σ ∈ Aut(C)}. Then G < Sym(A), and G
is soluble if and only if the elements of A can be obtained from Q by the
field operations and taking nth roots for arbitrary n in N.
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where a0 · · · an−1 6= 0. We have






a0 ∗
. . .

0 an−1











b0 ∗
. . .

0 bn−1




 =






a0b0 ∗
. . .

0 an−1bn−1






and therefore every element of G′ is unitriangular, that is, it takes
the form of 




1 ∗
. . .

0 1




 .

We also have








1 a1 ∗
1

. . .

. . . an−1

0 1

















1 b1 ∗
1

. . .

. . . bn−1

0 1









=









1 c1 ∗
1

. . .

. . . cn−1

0 1









where ci = ai+ bi in each case, so the elements of G′′ take the form
of 







1 0 ∗
1

. . .

. . . 0
0 1









.

Proceeding, we find G(n+1) = {e}.

Theorem . Nilpotent groups are soluble.

Proof. Each quotient Ck+1(G)/Ck(G) is the center of some group,
namely G/Ck(G), so it is abelian. By Theorem  then,

Ck+1(G)
′ < Ck(G).
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Suppose G is nilpotent, so that G = Cn(G) for some n in ω. Then

G(0) < Cn(G).

If G(k) < Cn−k(G), then

G(k+1) < (Cn−k(G))
′ < Cn−k−1(G).

By induction, G(n) < C0(G) = {e}.

The foregoing argument might be summarized in the following
commutative diagram, which is built up from left to right, the
arrows being inclusions:

G

��

G′oo

��

G(2)oo

��

G(3)oo

��

G(n)oo

��
G

��

Cn(G)
′oo

��

Cn−1(G)
′oo

��

Cn−2(G)
′oo

��

oo C(G)′oo

��
Cn(G) Cn−1(G)oo Cn−2(G)oo Cn−3(G)oo {e}oo

Since Sym(3)/Alt(3) is abelian, we have

Sym(3)′ < Alt(3), Sym(3)′′ < Alt(3)′ = {e},

so Sym(3) is soluble. However,

Sym(3) = Alt(3)⋊ 〈(0 1)〉,

the semidirect product of its Sylow subgroups; but the product is
not direct, so Sym(3) is not nilpotent.

Theorem . Let H < G and N ⊳ G.
. If G is soluble, then so are H and G/N .
. If N and G/N are soluble, then so is G.
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Proof. . H(k) < G(k) and (G/N)(k) = G(k)N/N .
. If G/N is soluble, then G(n) < N for some n. If also N is

soluble, thenN (m) = {e} for somem, soG(n+m) < N (m) = {e}.

Theorem . Groups with non-abelian simple subgroups are not
soluble.

Proof. Suppose H is simple. Since H ′ ⊳ H, we have either H ′ =
{e} or H ′ = H. In the former case, H is abelian; in the latter, H
is insoluble.

In particular, Sym(5) is not soluble if n > 5.

.. Normal series

A normal series for a group G is a list (G0, . . . , Gn) of subgroups,
where

G = G0 ⊲ G1 ⊲ . . . ⊲ Gn = {e}.
We do not require Gk ⊲ Gk+2.

 The quotients Gk/Gk+1 are called
the factors of the normal series. The series is called

) a composition series, if the factors are simple;
) a soluble series, if the factors are abelian.

Theorem . A group is soluble if and only if it has a soluble
series.

Proof. If G(n) = {e}, then (G(0), . . . , G(n)) is a soluble series for
G, by Theorem . Suppose conversely (G0, . . . , Gn) is a soluble
series for G. Again by Theorem , we have Gk

′ < Gk+1 for each
k in n. Since also H < K implies H ′ < K ′, we have

G′ < G1,

This is why the general 5th-degree polynomial equation is insoluble by radi-
cals.

One may call a normal series a subnormal series, reserving the term normal

series for the case where G ⊲ Gk for each k. However, we shall not be
interested in the distinction recognized by this terminology.
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G′′ < G1
′ < G2,

. . . . . . . . . . . . . . . . . . . . . . . . . . ,

G(n) < G1
(n−1) < . . . < Gn−1

′ < Gn = {e}.

Since not every finite group is soluble, not every finite group has
a soluble series. However:

Theorem . Every finite group has a composition series.

Proof. Trivially ({e}) is a composition series. Every nontrivial fi-
nite group G has at least one proper normal subgroup, namely {e}.
Being finite, G has only finitely many normal subgroups. Therefore
G has a maximal proper normal subgroup, G∗ (which need not be
unique). Then G/G∗ is simple, by Theorem  (p. ): every
normal subgroup of G/G∗ is K/G∗ for some normal subgroup K of
G such that G∗ < K, and therefore K is either G∗ or G, so K/G∗

is either {e} or G/G∗.
Now let G0 = G, and let Gk+1 = Gk

∗ unless Gk = {e}. Since G
is finite and Gk 	 Gk+1, we must have Gn = {e} for some n. Then
(G0, . . . , Gn) is the desired composition series.

Two normal series are equivalent if they have the same multiset
of (isomorphism classes of) nontrivial factors. A multiset is a set in
which repetitions of members are allowed. For a formal definition,
we can say a multiset is a pair (A, f), where A is a set and f : A→
N. For example, the two series

(Z60, 〈2〉, 〈6〉, 〈12〉, {e}), (Z60, 〈3〉, 〈15〉, 〈15〉, 〈30〉, {e})

are equivalent, because the factors of the first are isomorphic to
Z2, Z3, Z2, and Z5 respectively, and the factors of the second are
isomorphic Z3, Z5, {e}, Z2, and Z2 respectively, so each series has
the same multiset of factors, namely

{Z2,Z2,Z3,Z5}.
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These series are not equivalent to (Z30, 〈2〉, 〈6〉, {e}), whose factors
are Z2, Z3, and Z5.

If, from a normal series for a group, another normal series for
the group can be obtained by deleting some terms, then the for-
mer series is a refinement of the latter. For example, the series
(Z60, 〈2〉, 〈4〉, 〈12〉, {e}) is a refinement of (Z60, 〈4〉, 〈12〉, {e}). Ev-
ery normal series is a refinement of a normal series with no trivial
factors, and these two series are equivalent. Among normal series
with no trivial factors, composition series are maximal in that they
have no proper refinements. If

G = G0(0) ⊲ G0(1) ⊲ G0(2) ⊲ · · · ⊲ G0(n0) = {e},
G = G1(0) ⊲ G1(1) ⊲ G1(2) ⊲ · · · ⊲ G1(n1) = {e},

and the two normal series are equivalent and have no trivial factors,
this means n0 = n1, and there is σ in Sym(n0) such that

G0(i)/G0(i+ 1) ∼= G1(σ(i))/G1(σ(i) + 1)

for each i in n0.

Theorem . A soluble series for a finite group has a refinement
in which the nontrivial factors are cyclic of prime order.

We now aim to prove Theorem  below. The proof will use
the following, which is known as the Butterfly Lemma, because the
groups that it involves form the commutative diagram in Figure .
(in which arrows are inclusions).

Lemma  (Zassenhaus). For a group G, suppose

N0 ⊳ H0 < G, N1 ⊳ H1 < G,

and let

K = (H0 ∩N1)(H1 ∩N0), H = H0 ∩H1.
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H0 H1

N0H

OO

N1H

OO

H

ff▲▲▲▲▲▲▲▲▲▲▲

88rrrrrrrrrrr

N0(H0 ∩N1)

OO

N1(H1 ∩N0)

OO

N0

88rrrrrrrrrrr
K

ee▲▲▲▲▲▲▲▲▲▲▲

99rrrrrrrrrrr

OO

N1

ff▲▲▲▲▲▲▲▲▲▲▲

H1 ∩N0

ff▲▲▲▲▲▲▲▲▲▲▲

99rrrrrrrrrrr
H0 ∩N1

ff▲▲▲▲▲▲▲▲▲▲▲

88rrrrrrrrrrr

Figure .. The Butterfly Lemma

Then

K ⊳ H,

and for each i in 2, there is a well-defined epimorphism

nh 7→ Kh

from NiH to H/K with kernel Ni(Hi ∩N1−i). Hence:

) Ni(Hi ∩N1−i) ⊳ NiH for each i in 2, and
) the two groups NiH/Ni(Hi ∩ N1−i) are isomorphic to one

another.

Proof. For each i in 2, we have Hi∩N1−i ⊳ H by Theorem  (p.
). Hence K ⊳ H. If n, n′ ∈ N0 and h, h′ ∈ H and nh′ = n′h,
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then
h′h−1 = n−1n′,

which is in N0 ∩ H and hence in K, so that Kh = Kh′. Thus
nh 7→ Kh (where n ∈ N0 and h ∈ H) is indeed a well-defined ho-
momorphism f from N0H into H/K. It is clear that f is surjective.

Now let n ∈ N0 and h ∈ H, and suppose nh ∈ ker(f), that is,

h ∈ K.

Then h = n0n1 for some n0 in H1 ∩N0 and n1 in H0 ∩N1. Hence
nh = nn0n1, which is in N0(H0 ∩N1). Thus

nh ∈ N0(H0 ∩N1).

Conversely, suppose this last condition holds. Since h = n−1nh, we
now have also

h ∈ N0(H0 ∩N1).

so h = n′h′ for some n′ in N0 and some h′ in H0 ∩ N1. Then
n′ = h(h′)−1, which is in H(H0 ∩ N1); but this is a subgroup of
H1. So n′ ∈ N0 ∩H1, and therefore n′h′, which is h, is in K, and
so nh ∈ ker(f). Thus ker(f) = N0(H0 ∩N1).

Theorem  (Schreier). Any two normal series have equivalent
refinements.

Proof. Suppose

G = Gi(0) ⊲ Gi(1) ⊲ · · · ⊲ Gi(ni) = {e},

where i < 2. In particular then,

G0(j + 1) ⊳ G0(j) < G, G1(k + 1) ⊳ G1(k) < G.

Define

G0(j, k) = G0(j + 1) ·
(
G0(j) ∩G1(k)

)
,
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G1(j, k) = G1(k + 1) ·
(
G0(j) ∩G1(k)

)
,

where (j, k) ∈ n0 × n1. Then by the Butterfly Lemma

G0(j) = G0(j, 0) ⊲ · · · ⊲ G0(j, n1) = G0(j + 1),

G1(k) = G1(0, k) ⊲ · · · ⊲ G1(n0, k) = G1(k + 1),

giving us normal series that are refinements of the original ones,
and also

G0(j, k)/G0(j, k + 1) ∼= G1(j, k)/G1(j + 1, k),

so that the two refinements are equivalent.

Theorem  (Jordan–Hölder). Any two composition series of a
group are equivalent.

Proof. By Schreier’s Theorem, any two composition series of a
group have equivalent refinements; but every refinement of a com-
position series is already equivalent to that series.

Combining this with Theorem , we have that every finite
group determines a multiset of finite simple groups, and these are
just the nontrivial factors of any composition series of the group.
Hence arises the interest in the classification of the finite simple
groups: it is like studying the prime numbers.
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Rings





. Rings

.. Rings

We defined associative rings in §. (p. ). Now we define rings
in general. If E is an abelian group (written additively), then a
multiplication on E is a binary operation · that distributes in
both senses over addition, so that

x · (y + z) = x · y + x · z, (x+ y) · z = x · z + y · z.

A ring is an abelian group with a multiplication. In particular, if
(R, 1, ·) is an associative ring, then (R, ·) is a ring. However, rings
that are not (reducts of) associative rings are also of interest: see
the next section.

Theorem . Every ring satisfies the identities

(x− y) · z = x · z − y · z, x · (y − z) = x · y − x · z.

Hence, in particular,

0 · x = 0 = x · 0,
(−x) · y = −(x · y) = x · (−y).

By Theorem  (p. ), given an abelian group E, we have a
homomorphism n 7→ (x 7→ nx) from the monoid (Z, 1, ·) to the
monoid (EE , idE , ◦). This is actually a homomorphism of associa-
tive rings:

Theorem . For every abelian group E,

n 7→ (x 7→ nx) : (Z, 0,−,+, 1, ·) → (End(E), idE , ◦).





In particular,

0x = 0, 1x = x, (−1)x = −x.
In the theorem, if the abelian group has a multiplication, then

0 · x = 0x,

where the zeros come from the ring and from Z respectively. If,
further, the multiplication has the identity 1, then

1 · x = 1x.

More generally, we have

Theorem . For every integer n, every ring satisfies the iden-
tities

(nx) · y = n(x · y) = x · ny.
The kernel of the homomorphism in Theorem  is 〈k〉 for some

k in ω, by Theorem  (p. ). Then k can then be called the
characteristic of E. For example, if n ∈ N, then Zn has charac-
teristic n, while Z has characteristic 0.

Theorem . If (E, 1, ·) is a ring with a multiplicative identity
1, then

n 7→ n1: (Z, 0,−,+, 1, ·) → (E, 1, ·).
The kernel of this homomorphism is 〈k〉, where k is the character-
istic of E.

Theorem . Every ring embeds in a ring with identity having
the same characteristic, and in a ring with identity having charac-
teristic 0.

Proof. Suppose R is a ring of characteristic n. Let A be Z or Zn,
and give A⊕R the multiplication defined by

(m,x)(n, y) = (mn,my + nx+ xy);

then (1, 0) is an identity, and x 7→ (0, x) is an embedding.
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.. Examples

The continuous functions on R with compact support compose a
ring with respect to the operations induced from R. Multiplication
in this ring is associative, but there is no identity.

If n > 1, then 〈n〉 is a sub-ring of Z with no identity.

On p.  we obtained H as the sub-ring of M2×2(C) that is the
image of C⊕ C under the group-homomorphism

(x, y) 7→
(
x y
−ȳ x̄

)

.

We also defined

j =

(
0 1
−1 0

)

,

so that every element of H is z + wj for some unique (z, w) in C2.
Then H has the automorphism z + wj 7→ z + wj , where

z + wj = z̄ − wj .

then the same construction that creates H out of C can be applied
to H itself, yielding the ring O of octonions; but this ring is not
associative.

In any ring (E, ·), we define

[x, y] = x · y − y · x;

Then the binary operation (x, y) 7→ [x, y] is also a multiplication
on E. This operation can be called the Lie bracket. We have

[x, x] = 0. (.)

Theorem . In an associative ring,

[
[x, y], z

]
=
[
x, [y, z]

]
−
[
y, [x, z]

]
. (.)
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The identity (.) is called the Jacobi identity. A Lie ring is
a ring whose multiplication has the properties of the Lie bracket
given by the identities (.) and (.). if (E, 1, ·) is an associative
ring, and b is the Lie bracket in this ring, then (E, b) is a Lie ring.
However, we shall see presently that there are Lie rings that do not
arise in this way.

If (E, ·) is a ring, and D is an element of End(E) satisfying the
Leibniz rule

D(x · y) = Dx · y + x ·Dy,

then D is called a derivation of (E, ◦). For example, let C∞(R)
be the set of all infinitely differentiable functions from R to itself.
This is an associative ring in the obvious way. Then differentiation
is a derivation of C∞(R).

Theorem . The set of derivations of a ring (E, ·) is the uni-
verse of an abelian subgroup of End(E) and is closed under the
bracket

(X,Y ) 7→ X ◦ Y − Y ◦X.

The abelian group of derivations of a ring (E, ·) can be denoted
by

Der(E, ·).

Then (Der(E, ·), b) is a sub-ring of End(E), b), but is not generally
closed under ◦.

.. Associative rings

We know from Theorem  (p. ) that an associative ring (R, 1, ·)
has a group of units, R×. In particular, in an associative ring,
when an element has both a left and a right inverse, they are equal.
However, the example on p.  shows that some ring elements can
have right inverses that are not units.
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A zero-divisor of the ring R is a nonzero element b such that
the equations

bx = 0, yb = 0

have nonzero solutions in R. So zero-divisors are not units. For
example, if m > 1 and n > 1, then m + 〈mn〉 and n + 〈mn〉 are
zero-divisors in Zmn. The unique element of the trivial ring Z1 is
a unit, but not a zero-divisor.

A commutative ring is an integral domain if it has no zero-
divisors and 1 6= 0. If n ∈ N, the ring Zn is an integral domain
if and only if n is prime. Hence the characteristic of an integral
domain must be prime or 0. Fields are integral domains, but Z
is an integral domain that is not a field. If p is prime, then, by
Theorem  (p. ), Zp is a field, and as such it is denoted by

Fp.

An arbitrary associative ring R such that RrR× = {0} is a divi-
sion ring. So fields are division rings; but H is a non-commutative
division ring.

If R is an associative ring, and G is a group, we can form the
direct sum

∑

g∈GR, which is, first of all, an abelian group. It
becomes a module over R (in the sense of sub-§.., p. ) when
we define

r · (xg : g ∈ G) = (r · xg : g ∈ G)

for all r in R and (xg : g ∈ G) in
∑

g∈GR. If g ∈ G, we have the
canonical injection ιg of R in

∑

g∈GR as defined on p. . Let us
denote ιg(1) also by

g.

Lang refers to integral domains as entire rings [, p. ]. It would appear
that integral domains were originally subgroups of C that are closed under
multiplication and that include the integers [, p. ].
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Then
(rg : g ∈ G) =

∑

g∈G

rg · g.

Thus an element of
∑

g∈GR becomes a formal R-linear combi-
nation of elements of G. Then multiplication on

∑

g∈GR is defined
in an obvious way: if ri ∈ R and gi ∈ G for each i in 2, then

(r0 · g0)(r1 · g1) = r0r1 · g0g1.
The definition extends to all of

∑

g∈GR by distributivity. The
resulting ring can be denoted by

R(G);

it is the group ring of G over R.
We can do the same construction with monoids, rather than

groups. For example, if we start with the free monoid generated by
a symbol X, we get a polynomial ring in one variable, denoted
by

R[X];

this is the ring of formal R-linear combinations of powers of X.
Such combinations can be written as

∑

k<n

akX
k,

where (ak : k < n) ∈ Rn, where n ∈ ω. In case n = 0, the indicated
combination is 0; in case n = m+1, the combination can be written
as one of

m∑

k=0

akX
k, a0 + a1X + a2X

2 + · · ·+ amX
m.

This combination too is 0 when each ak is 0. We could use a
second variable, getting for example R[X,Y ], which is just R[X][Y ].
Usually R here is commutative and is in particular a field or at least
an integral domain. We shall develop the theory of polynomial rings
in §. (p. ), but shall use them meanwhile as examples.
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.. Ideals

Suppose (R, 0,−,+, ·) is a ring, and ∼ is a congruence-relation on
(R,+, ·). By Theorem  on p. , ∼ is a congruence-relation on
the ring. (The theorem is stated for associative rings, but does
not require the associativity.) If A = {x ∈ R : x ∼ 0}, then by
Theorem  (p. ), A is a subgroup of R, that is,

(A, 0,−,+) < (R, 0,−,+).

Similarly, A is even a sub-ring of R, that is, in addition to being a
subgroup, it is closed under multiplication. We have

b ∼ x ⇐⇒ b− x ∼ 0

⇐⇒ b− x ∈ A

⇐⇒ b+A = x+A.

In short,
b ∼ x ⇐⇒ b+A = x+A.

Conversely, given a sub-ring A of R, we can use the last equivalence
as a definition of ∼. Then ∼ is an equivalence-relation on R by
Corollary . (p. ), and by this and Theorem  (p. ), ∼
is even a congruence-relation on R as a group. However, ∼ need
not be a congruence-relation on R as a ring. That is, it may not
be possible to define a multiplication on R/A by

(x+A)(y +A) = xy +A. (.)

For example, we cannot use this to define a multiplication on Q/Z,
since for example

1

2
+ Z =

3

2
+ Z,

1

4
+ Z 6= 3

4
+ Z.

Theorem . Suppose R is a ring and A is a sub-ring. The group
R/A expands to a ring with multiplication as in (.) if and only if

r ∈ R & a ∈ A =⇒ ra ∈ A & ar ∈ A. (.)
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Proof. If R/A does expand to a ring, and a ∈ A, then a+A is 0 in
this ring, and hence so are ra+A and ar +A by Theorem , so
that (.) holds. Conversely, suppose this holds. If a+A = x+ A
and b+A = y+A, then A contains a− x and b− y, so A contains
also

(a− x) · y + a · (b− y),

which is ab− xy, so ab+A = xy +A.

Under the equivalent conditions of the theorem, A is called an
ideal of R. The historical reason for the name is suggested in
§. (p. ). Meanwhile, he have the following counterpart of
Theorem  (p. ).

Theorem . A sub-ring of a ring R is an ideal of R if and only
if it is the kernel of a homomorphism on R.

We can express (.) as

RA ⊆ A, AR ⊆ A.

If only one of these holds, then A is called respectively a left ideal
of R or a right ideal of R. However, left ideals and right ideals
are not kinds of ideals; rather, an ideal is a left ideal that is also a
right ideal. One may therefore refer to ideals as two-sided ideals.

For example, the set of matrices






∗ 0 . . . 0
...

...
...

∗ 0 . . . 0






is a left ideal of Mn×n(R), but not a right ideal unless n = 1. Also,
for every element a of an associative ring R, the subset Ra is a left
ideal of R, while RaR is a two-sided ideal.

We have the following counterpart to Theorem  for groups.
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Theorem . If f is a homomorphism from a ring R to a ring
S, and I is a two-sided ideal of R included in ker(f), then there is
a unique homomorphism f̃ from R/I to S such that f = f̃ ◦ π.

Hence the isomorphism theorems, as for groups.
Suppose (Ai : i ∈ I) is an indexed family of left ideals of a ring

R. Let the abelian subgroup of R generated by
⋃

i∈I Ai be denoted
by

∑

i∈I

Ai;

this is the sum of the left ideals Ai. This must not be confused
with the direct sums defined in §. (p. ).

Given a finite indexed family (A0, . . . , An−1) of left ideals of an
associative ring R, we let the abelian subgroup of R generated by

{a0 · · · an−1 : ai ∈ Ai}

be denoted by
A0 · · ·An−1;

this is the product of the left ideals Ai.

Theorem . Sums and finite products of left ideals are left ide-
als; sums and products of two-sided ideals are two-sided ideals. Ad-
dition and multiplication of ideals are associative; addition is com-
mutative; multiplication distributes over addition.

Theorem . If A and B are left ideals of a ring, then so is
A ∩B. If they are two-sided ideals, then AB ⊆ A ∩B.

Usually AB does not include A ∩B, since for example A2 might
not include A; such is the case when A = 2Z, since then A2 = 4Z.
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. Commutative rings

Throughout this chapter, “ring” means commutative ring. We shall
often identify properties of Z and then consider arbitrary rings with
these properties. If R is a ring (that is, a commutative ring) with
an ideal I, and a+ I = b+ I, we may write this as

a ≡ b (mod I).

.. Commutative rings

A subset A of a ring R determines the ideal denoted by

(A),

namely the smallest ideal including A. This consists of the R-
linear combinations of elements of A, namely the well-defined
sums ∑

a∈A

raa,

where ra ∈ R; in particular, ra = 0 for all but finitely many a. If
A = {ai : i < n}, then (A) can be written as one of

(ai : i < n), Ra0 + · · ·+Ran−1.

In particular, if A = {a}, then (A) is denoted by one of

(a), Ra

and is called a principal ideal. Then

(ai : i < n) = (a0) + · · ·+ (an−1).





In Z, the ideal (a) is the same as the subgroup 〈a〉. Therefore every
ideal of Z is principal, by Theorem  (p. ). A principal ideal
domain or pid is an integral domain whose every ideal is principal.
Thus Z is a pid, but the polynomial ring Q[X,Y ] is not, since the
ideal (X,Y ) is not principal.

An ideal of a ring is proper if it is not the whole ring. A ring
has a unique improper ideal, namely itself, which can be written as

(1).

Thus an ideal is proper if and only if it does not contain 1. When
A is the empty subset of a ring, then the ideal (A), which is {0},
is usually denoted by

(0).

This can be counted as a principal ideal. Considering Euclid’s
Lemma (Theorem , p. ), and noting that, in Z,

a | b ⇐⇒ b ∈ (a),

we refer to a proper ideal P of a ring R as

• prime, if for all a and b in R,

ab ∈ P & a /∈ P =⇒ b ∈ P ; (.)

• maximal, if for all ideals J of R,

I ⊂ J =⇒ J = R.

Theorem . Let R be a ring.

. R is an integral domain ⇐⇒ (0) is a prime ideal.
. R is a field ⇐⇒ (0) is a maximal ideal.

More generally, for an arbitrary ideal I of R:

. R/I is an integral domain ⇐⇒ I is a prime ideal.
. R/I is a field ⇐⇒ I is a maximal ideal.
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Proof. . This is immediate from the definitions of integral do-
main and prime ideal, once we note that x ∈ (0) means x = 0.

. If R is a field and (0) ⊂ I, then I r (0) contains some a, and
then a−1 · a ∈ I, so I = R. Conversely, if (0) is maximal, then for
all a in Rr (0) we have (a) = (1), so a is invertible.

. The ideal (0) of R/I is {I}, and

(a+ I)(b+ I) = I ⇐⇒ ab ∈ I.

. By Theorem  (p. ), every ideal of R/I is J/I for some
subgroup J of R. Moreover, this J must be an ideal of R. In this
case, J is maximal if and only if J/I is a maximal ideal of R/I.

Corollary .. Maximal ideals are prime.

The prime ideals of Z are precisely the ideals (0) and (p), where
p is prime. Indeed, (0) is prime because Z is an integral domain,
and if p is prime, then Zp is the field Fp, so (p) is even maximal.
If n > 1 and is not prime, so that n = ab for some a and b in
{2, . . . , n − 1}, then a and b are zero-divisors in Zn, so (n) is not
prime.

The converse of the corollary fails easily, since (0) is a prime but
non-maximal ideal of Z. However, every prime ideal of Z other
than (0) is maximal. This is not the case for Q[X,Y ], which has
the prime but non-maximal ideal (X).

In some rings, every prime ideal is maximal. Such is the case for
fields, since their only proper ideals are (0). It is also the case for
Boolean rings. A ring is called Boolean if it satisfies the identity

x2 = x.

In defining ultraproducts in §. (p. ), we shall use the example
established by the following:

Theorem . if Ω is a set, then P(Ω) is a Boolean ring, where

X · Y = X ∩ Y, X + Y = (X r Y ) ∪ (Y rX).
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Theorem . Every Boolean ring in which 0 6= 1 has character-
istic 2.

Proof. In a Boolean ring, 2x = (2x)2 = 4x2 = 4x, so

2x = 0.

The following will be generalized by Theorem  (p. ).

Theorem . In Boolean rings, all prime ideals are maximal.

Proof. In a Boolean ring,

x · (x− 1) = x2 − x = x− x = 0,

so every x is a zero-divisor unless x is 0 or 1. Therefore there are no
Boolean integral domains besides {0, 1}, which is the field F2.

In Z, by Theorem  (p. ), the ideal (a, b) is the principal
ideal generated by gcd(a, b). So a and b are relatively prime if and
only if (a, b) = Z. We can write this condition as

(a) + (b) = Z.

Then the following generalizes Theorem  (p. ).

Theorem  (Chinese Remainder Theorem). Suppose R has an
indexed family (Ii : i < n) of ideals such that

i < j < n =⇒ Ii + Ij = R.

The monomorphism

x+
⋂

i<n

Ii 7→ (x+ Ii : i < n) (.)

from R/
⋂

i<n Ii to
∑

i<nR/Ii is an isomorphism. That is, every
system

(
x ≡ a0 (mod I0)

)
& · · · &

(
x ≡ an−1 (mod In−1)

)

of congruences has a solution in R, and the solution is unique mod-
ulo I0 ∩ · · · ∩ In−1.
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Proof. We proceed by induction. The claim is trivially true when
n = 1. In case n = 2, we have b0 + b1 = 1 for some b0 in I0 and b1
in I1. Then

b0 ≡ 0 (mod I0), b0 ≡ 1 (mod I1),

b1 ≡ 1 (mod I0), b1 ≡ 0 (mod I1).

Therefore

b1a0 + b0a1 ≡ a0 (mod I0), b1a0 + b0a1 ≡ a1 (mod I1).

Thus (a0 + I0, a1 + I1) is in the image of the map in (.).

Finally, if the claim holds when n = m, then it holds when n =
m+ 1 by the proof of the case n = 2, once we note that if

ai + bi = 1

for some ai in Ii and bi in Im for each i in m, then

∏

i<m

(ai + bi) = 1;

but this product is the sum of
∏

i<m ai and an element of Im, and

∏

i<m

ai ∈
⋂

i<m

Ii.

.. Division

As in Z (p. ), so in an arbitrary ring R, an element a is called a
divisor or factor of an element b, and a is said to divide b, and
we write

a | b,
The technique of multiplying elements of sums of ideals will be used also in

proving Lemma , p. .
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if the equation

ax = b

is soluble in R. Two elements of R that divide each other can be
called associates. Zero is an associate only of itself.

Theorem . In any ring:
. a | b ⇐⇒ (b) ⊆ (a);
. a and b are associates if and only if (a) = (b).

Suppose a = bx.
. If x is a unit, then a and b are associates.
. If b is a zero-divisor or 0, then so is a.
. If a is a unit, then so is b.

For example, in Z6, the elements 1 and 5 are units; the other non-
zero elements are zero-divisors. Of these, 2 and 4 are associates,
since

2 · 2 ≡ 4, 4 · 2 ≡ 2 (mod 6); (.)

but 3 is not an associate of these.
We now distinguish the properties of certain ring-elements that,

by Euclid’s Lemma (p. ), are the same in Z. In an arbitrary
ring R, an element π that is neither 0 nor a unit is called

• irreducible, if for all a and b in R,

π = ab & a /∈ R× =⇒ b ∈ R×;

• prime, if for all a and b in R,

π | ab & π ∤ a =⇒ π | b.

Theorem . A nonzero ring-element π is
) irreducible ⇐⇒ (π) is maximal among the proper principal

ideals;
) prime ⇐⇒ (π) is prime.
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For example, in Q[X,Y ], the element X is both irreducible and
prime, although (X) is not a maximal ideal. However, if (X) ⊆
(f) ⊂ Q[X,Y ], then f must be constant in Y , and then it must
have degree 1 in X, and then its constant term must be 0; so f is
just aX for some a in Q×, and thus (X) = (f).

If π is irreducible or prime, and π = ab, then π is an associate
of a or b. However, neither irreducibility nor primality implies
the other. For example, in Z6, the element 2 is prime. Indeed,
(2) = {0, 2, 4}, so Z6 r (2) = {1, 3, 5}, and the product of no two
of these elements is in (2). Similarly, 4 is prime. However, 2 and 4
are not irreducible, by (.) above.

Also, in C we have

2 · 3 = (1 +
√
−5)(1−

√
−5). (.)

The factors 2, 3, and 1 ±
√
−5 are all irreducible in the smallest

sub-ring of C that contains
√
−5, but none of these factors divides

another, and so these factors cannot be prime. Details are worked
out in the next section.

.. *Quadratic integers

Every subfield of C includes Q, and every sub-ring of C includes Z.
If ω ∈ C, then the smallest subfield of C that contains ω is denoted
by

Q(ω),

and the smallest sub-ring of C that contains ω is denoted by

Z[ω].

A squarefree integer, is an element of Z different from 1 that is
not divisible by the square of a prime number. Suppose D is such.
As groups,

• Z[
√
D] is the free abelian group 〈1,

√
D〉,
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• Q(
√
D) is the image of Q⊕Q under (x, y) 7→ x+ y

√
D.

If x = k + n
√
D for some k and n in Z, then

(x− k)2 = n2D,

x2 − 2kx+ k2 − n2D = 0.

Thus all elements of Z[
√
D] are solutions in Q(

√
D) of quadratic

equations

x2 + bx+ c = 0, (.)

where b and c are in Z, and there is no leading coefficient. Con-
versely, from school the solutions of (.) are

x =
−b±

√
b2 − 4c

2
.

Suppose one of these is in Q(
√
D). Then b2 − 4c = a2D for some a

in Z, so that

x =
−b± a

√
D

2
.

If b is odd, then b2 − 4c ≡ 1 (mod 4), so a must be odd and D ≡ 1
(mod 4). If b is even, then b2 − 4c ≡ 0 (mod 4), so a is even.
Assume now

D 6≡ 1 (mod 4).

Then Z[
√
D] consists precisely of the solutions in Q(

√
D) of equa-

tions of the form (.). Therefore the elements of Z[
√
D] are called

the integers of Q(
√
D). In this context, the elements of Z are the

integers of Q, or the rational integers. Note that Z[
√
D]∩Q = Z.

If ξ is a solution of such an equation, so that ξ2 = −bξ − c, David Hilbert
referred to the group 〈1, ξ〉 as a number ring (Zahlring) [, p. ]. This is
apparently the origin of our term ring.

In case D ≡ 1 (mod 4), the integers of Q(
√
D) constitute the ring Z[(1 +√

D)/2].
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The field Q(
√
D) has one nontrivial automorphism, namely z 7→

z′, where

(x+ y
√
D)′ = x− y

√
D.

In case D < 0, this automorphism is complex conjugation. In any
case, we next define a function N from Q(

√
D) to Q by

N(z) = zz′.

Here N(z) can be called the norm of z. The function N is multi-
plicative, that is,

N(αβ) = N(α) ·N(β).

Also,

N(x+
√
Dy) = x2 −Dy2,

soN maps Z[
√
D] into Z. In particular, if α is a unit of Z[

√
D], then

N(α) must be a unit of Z, namely ±1. Conversely, if N(α) = ±1,
this means α · (±α′) = 1, so α is a unit.

If D < 0, then N maps Z[
√
D] into N, and so α is a unit in

Z[
√
D] if and only if N(α) = 1. Also, α in Z[

√
D] is irreducible if

and only if it has no divisor β such that 1 < N(β) < N(α) and
N(β) | N(α).

In case D = −5 we have

x 2 3 1±
√
−5

N(x) 4 9 6
. (.)

Since no elements of Z[
√
−5] have norm 2 or 3, the elements 2, 3,

and 1±
√
−5 are irreducible. However, they are not prime, because

each of them divides the product of two of the others, but it does
not divide one of the others, since if α | β, then N(α) | N(β), but
no norm in (.) divides another.

There are however factorizations of the relevant ideals. For ex-
ample,
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(2, 1 +
√
−5)(2, 1 +

√
−5) = (2, 1 +

√
−5)(2, 1−

√
−5)

= (4, 2 + 2
√
−5, 6) = (2).

Similarly,

(3) = (3, 1 +
√
−5)(3, 1−

√
−5),

(1 +
√
−5) = (2, 1 +

√
−5)(3, 1 +

√
−5),

(1−
√
−5) = (2, 1 +

√
−5)(3, 1−

√
−5).

These factorizations are prime factorizations. We show this as fol-
lows. Every subgroup of 〈1,

√
D〉 has at most two generators, by

Porism . (p. ). When that subgroup is a nonzero ideal I
of Z[

√
D], then it must have more than one generator as a group,

since a cyclic subgroup will not be closed under multiplication by√
D. For example, since

(a+ b
√
D) ·

√
D = bD + a

√
D,

the ideal (a+ b
√
D) is the group

〈a+ b
√
D, bD + a

√
D〉.

Let G be the map

(
a b
c d

)

7→ 〈a+ b
√
D, c+ d

√
D〉

from Mn×n(Z) to the set of subgroups of Z[
√
D]. If G(X) is an

ideal, then det(X) 6= 0. Also, G(X) < G(Y ) if and only if X = ZY
for some Z such that det(Z) 6= 0. Hence G(X) = G(Y ) if and only
if X = ZY for some Z in GL2(Z). By the methods of the proof of
Theorem  (p. ), every ideal of Z[

√
D] has the form

〈a, b+ c
√
D〉,
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where a > b > 0. (This is not a sufficient condition for being an
ideal, however.) We have a well-defined function N from the set of
subgroups of Z[

√
D] to N given by

N
(
G(X)

)
= |det(X)| .

In case D < 0, this new function N agrees with the earlier function
called N in the sense that

N
(
(a+ b

√
D)
)
= N

(
〈a+ b

√
D, bD + a

√
D〉
)

=
∣
∣a2 − b2D

∣
∣ = a2 − b2D = N(a+ b

√
D).

If I and J are ideals of Z[
√
D] such that I ⊂ J ⊂ Z[

√
D], then we

must have

N(J) | N(I), N(I) > N(J) > 1.

In case d = −5, we compute

(2, 1 +
√
−5) = 〈2, 2

√
−5, 1 +

√
−5,

√
−5− 5〉 = 〈2, 1 +

√
−5〉,

(3, 1±
√
−5) = 〈3, 3

√
−5, 1±

√
−5,

√
−5∓ 5〉 = 〈3, 1±

√
−5〉,

hence
I (2, 1 +

√
−5) (3, 1±

√
−5)

N(I) 2 3
.

So these ideals are maximal, hence prime. Ideals of the rings Z[
√
D]

were originally called ideal numbers.

.. Integral domains

We now consider some rings that are increasingly close to having
all of the properties of Z. We start with arbitrary integral domains.
We have noted in effect that the following fails in Z6.
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Lemma . In an integral domain, if a and b are non-zero asso-
ciates, and

a = bx,

then x is a unit.

Proof. We have also, for some y,

b = ay = bxy, b · (1− xy) = 0, 1 = xy,

since b 6= 0 and we are in an integral domain.

Theorem . In an integral domain, prime elements are irre-
ducible.

Proof. If p is prime, and p = ab, then p is an associate of a or b, so
the other is a unit.

By this and Euclid’s Lemma (p. ), the irreducibles of Z are
precisely the primes.

Recall from p.  that a multiset is a pair (A, f), where f : A→
N. If A here is a finite subset of a ring, then the product

∏

a∈A

af(a)

is well-defined (see p. ) and can be called the product of the
multiset. The components of the proof of the following are found
in Euclid, although Gauss’s version [, ¶] seems to be the first
formal statement of the theorem [, p. ].

Theorem  (Fundamental Theorem of Arithmetic). Every ele-
ment of N has a unique prime factorization. That is, every natural
number is the product of a unique multiset of prime numbers.

Proof. We first show that every integer greater than 1 has a prime
factor: this is Propositions VII.– of the Elements. Suppose
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m > 1, and let p be the least integer a such that a | m and 1 < a.
Then p must be prime.

Now suppose n > 1, and every m such that 1 < m < n has a
prime factorization. If n is prime, then it is its own prime factor-
ization. If n is not prime, then n = pm for some prime p, where
also 1 < m < n. By hypothesis m has a prime factorization, and
hence so does n. Therefore, by induction, every element of N has
a prime factorization.

Prime factorizations are unique by Euclid’s Lemma.

A unique factorization domain or ufd is an integral domain
in which the appropriate formulation of the result of the foregoing
theorem holds. Thus, in a ufd, by definition,

) every nonzero element has an irreducible factorization, that
is, every nonzero element is the product of a multiset of irre-
ducibles; and

) that multiset is unique up to replacement of elements by as-
sociates, so that, if

∏

i<n

πi =
∏

i<n′

π′i,

where the πi and π′i are irreducible, then n = n′ and, for some
σ in Sym(n), for all i in n, πi and π′σ(i) are associates.

Existence of irreducible factorizations in Z, along with Euclid’s
Lemma, ensures that those factorizations are unique, so that Z is
a ufd. Conversely, the definition of a ufd is enough to give us
Euclid’s Lemma:

Theorem . In a ufd, irreducibles are prime.

As for Z (p. ), so for any ring, a greatest common divisor of
elements a and b is a common divisor of a and b that is a maximum
with respect to dividing: that is, it is some c such that c | a and c | b,
and for all x, if x | a and x | b, then x | c. There can be more than
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one greatest common divisor, but they are all associates. Every
element of a ring is a greatest common divisor of itself and 0.

Theorem . In a ufd, any two nonzero elements have a great-
est common divisor.

Proof. We can write the elements as

u
∏

i<n

πi
a(i), v

∏

i<n

πi
b(i),

where u and v are units and the πi are irreducibles; then the product

∏

i<n

πi
min(a(i),b(i))

is a greatest common divisor of the first two elements.

As in Z, so in an arbitrary pid, more is true, and we shall use
this to show that every pid is a ufd. If a and b have a common
divisor d, then

(a, b) ⊆ (d),

but we need not have the reverse inclusion, even if d is a greatest
common divisor. For example, Q[X,Y ] will be a ufd by Theo-
rem  (p. ), and in this ring, X and Y have the greatest
common divisor 1, but (X,Y ) 6= 1. For a pid however, we have the
following generalization of Theorem  (p. ).

Theorem . In a pid, any two elements a and b have a greatest
common divisor d, and

(a, b) = (d),

so that the equation
ax+ by = d

is soluble in the ring.
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Now we can generalize Euclid’s Lemma.

Theorem . In a pid, irreducibles are prime.

Proof. Suppose the irreducible π divides ab but not a. Then 1 is
a greatest common divisor of π and a, and so by the last theorem,
πx+ay = 1 for some x and y in the ring. Now the proof of Euclid’s
Lemma goes through.

So now, in a pid, if an element has an irreducible factorization,
this factorization is unique. Now, our proof that elements of N
have prime factorizations has two parts. The first part is that every
non-unit has a prime factor. The second part can be understood
as follows. Suppose some n0 does not have a prime factorization.
But n0 = p0 · n1 for some prime p0 and some n1. Then n1 in turn
must have no prime factorization. Thus n1 = p1n2 for some prime
p1 and some n2, and so on. We obtain

n0 > n1 > n2 > · · · , (.)

which is absurd in N. It follows that n0 must have had a prime
factorization.

An arbitrary ring will not have an ordering as N does, but the
relation of divisibility will be an adequate substitute, at least in a
pid. Indeed, with the ni as above, we have

(n0) ⊂ (n1) ⊂ (n2) ⊂ · · · (.)

This is a strictly ascending chain of ideals. A ring is called Noethe-
rian if its every strictly ascending chain of ideals is finite.

Theorem . Every pid is Noetherian.

Proof. If I0 ⊆ I1 ⊆ · · · , then
⋃

i∈ω Ii is an ideal (a); then a ∈ In
for some n, so the chain cannot grow beyond In.
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Now we can adapt to an arbitrary pid the foregoing argument
that elements of N have prime factorizations. In fact that argument
can be streamlined. If n0 has no prime factorization, then n0 =
m0 · n1 for some non-units m0 and n1, where at least n1 has no
prime factorization. Again we obtain a descending sequence as
in (.), hence an ascending sequence as in (.).

Theorem . Every pid is a ufd.

Proof. By Theorem , irreducibles in a pid are prime, and there-
fore irreducible factorizations are unique when they exist. Indeed,
if

∏

i<n

πi =
∏

i<n′

π′i,

where the πi and π′i are irreducible, then, since it divides the right
side, π0 must divide one of the π′i (because π0 is prime). Thus π′i =
u · π0 for some u. Also u must be a unit (because π′i is irreducible
and also, being irreducible, π0 is not a unit). We may assume i = 0.
The product u · π′1 is an associate of π′1 (by Theorem ) and is
therefore also irreducible. Replacing π′1 with u · π′1, we have

∏

16i<n

πi =
∏

16i<n′

π′i,

since a pid is an integral domain. By induction, n = n′, and for
some σ in Sym(n), for all i in n, πi and π′σ(i) are associates.

It remains to show that irreducible factorizations exist in a pid.
By the Axiom of Choice, we can well-order the pid. Suppose, if
possible, a 6= 0 and has no irreducible factorization. Then a = b · c
for some non-units b and c, where c has no irreducible factorization.
We have

(a) ⊂ (c).

Now let us denote by a′ the least such c in the well-ordering. Then
we can produce a sequence (ai : i ∈ ω), where a0 has no irre-
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ducible factorization and, assuming ai has no irreducible factoriza-
tion, ai+1 = ai

′. By induction, each ai does have no irreducible
factorization, and so

(a0) ⊂ (a1) ⊂ (a2) ⊂ · · · ,
which is contrary to the last theorem. Thus every nonzero element
of a pid has an irreducible factorization, and this is unique.

We have thus shown that the Fundamental Theorem of Arith-
metic can be founded solely on the status of Z as a pid. We may
now ask further how Z gets this status. The proof of Theorem 
can be worked out as follows. The function x 7→ |x| from Z to ω
(as defined on p. ) is such that

x = 0 ⇐⇒ |x| = 0.

Given an ideal I of Z that is different from (0), we let a be a nonzero
element such that |a| is minimal. If b ∈ I, then

|b− ax| < |a|
for some x (as for example the x that minimizes |b− ax|), and then
|b− ax| = 0 (since b − ax ∈ I). Then b = ax, and hence b ∈ (a).
Therefore I = (a).

A Euclidean function on an integral domain R is a function ∂
from the ring to ω such that

∂(x) = 0 ⇐⇒ x = 0

and, for all a in Rr {0} and b in R, the inequality

∂(b− ax) < ∂(a)

is soluble in R. Thus x 7→ |x| is a Euclidean function on Z. Actually
we need not require the range of a Euclidean function to be a subset
of ω; it could be any well-ordered set.

A Euclidean domain or ed is an integral domain with a Eu-
clidean function. We now have:
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Theorem . Every ed is a pid.

Other examples of Euclidean domains include the following.
For any field K, the function f on K given by

f(x) =

{

1, if x 6= 0,

0, if x = 0,

is a Euclidean function.
If f is a polynomial

∑m
i=0 aiX

i, where am 6= 0, then m is deg(f),
the degree of f . The function f 7→ deg f on K[X] will be Euclidean
by Theorem  (p. ).

The Gaussian integers are the elements of Z[
√
−1], that is, the

integers of Q(
√
−1) (see §., p. ). Writing i for

√
−1 as usual,

we have that the norm function z 7→ |z|2 on Z[ i ] is Euclidean,
where

|x+ y i |2 = x2 + y2.

Indeed, if a ∈ Z[ i ]r{0} and b ∈ Z[ i ], then b/a is an element s+ t i
of Q( i ). There are elements x and y of Z such that

|s− x| 6 1

2
, |t− y| 6 1

2
.

Let q = x+ y i ; then
∣
∣
∣
∣

b

a
− q

∣
∣
∣
∣
= |s− x+ (t− y) i | 6

√
2

2
< 1

and so |b− aq| < |a| (and hence |b− aq|2 < |a|2).

.. Localization

We shall now generalize the construction of Q from Z that is sug-
gested by Theorem  (p. ). A nonempty subset of a ring is called
multiplicative if it is closed under multiplication. For example,
Z r {0} is a multiplicative subset of Z, and more generally, the
complement of any prime ideal of any ring is multiplicative.
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Lemma . If S is a multiplicative subset of a ring R, then on
R× S there is an equivalence-relation ∼ given by

(a, b) ∼ (c, d) ⇐⇒ (ad− bc) · e = 0 for some e in S. (.)

If R is an integral domain and 0 /∈ S, then

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

Proof. Reflexivity and symmetry are obvious. For transitivity, note
that, if (a, b) ∼ (c, d) and (c, d) ∼ (e, f), so that, for some g and h
in S,

0 = (ad− bc)g = adg − bcg, 0 = (cf − de)h = cfh− deh,

then

(af − be)cdgh = afcdgh− becdgh

= adgcfh− bcgdeh = bcgcfh− bcgcfh = 0,

so (a, b) ∼ (e, f).

In the notation of the lemma, the equivalence-class of (a, b) is
denoted by a/b or

a

b
,

and the quotient R× S/∼ is denoted by

S−1R.

If 0 ∈ S, then S−1R has exactly one element. An instance where
R is not an integral domain will be considered in the next section
(§.).

Theorem . Suppose R is a ring with multiplicative subset S.
. In S−1R, if c ∈ S,

a

b
=
ac

bc
.
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. S−1R is a ring in which the operations are given by

a

b
· c
d
=
ac

bd
,

a

b
± c

d
=
ad± bc

bd
.

. There is a ring-homomorphism ϕ from R to S−1R where, for
every a in S,

ϕ(x) =
xa

a
.

If 1 ∈ S, then ϕ(x) = x/1.

Suppose in particular R is an integral domain and 0 /∈ S.

. S−1R is an integral domain, and the homomorphism ϕ is an
embedding.

. If S = R r {0}, then S−1R is a field, and if If ψ is an
embedding of R in a field K, then there is an embedding ψ̃ of
S−1R in K such that ψ̃ ◦ ϕ = ψ.

When S is the complement of a prime ideal p, then S−1R is called
the localization of R at p and can be denoted by

Rp.

(See Appendix B, p. , for Fraktur letters like p.) If R is an
integral domain, so that (0) is prime, then localization R(0) (which
is a field by the theorem) is the quotient-field of R. In this case,
the last part of the theorem describes the quotient field in terms of
a universal property in the sense of p. . However, it is important
to note that, ifR is not an integral domain, then the homomorphism
x 7→ x/1 from R to Rp might not be an embedding. The following
will be generalized as Theorem  (p.  below).

Theorem . For every Boolean ring R, for every prime ideal p
of R, the homomorphism x 7→ x/1 from R to Rp is surjective and
has kernel p. Thus

F2
∼= R/p ∼= Rp.
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A local ring is a ring with a unique maximal ideal. The connec-
tion between localizations and local rings is made by the theorem
below.

Lemma . An ideal m of a ring R is a unique maximal ideal of
R if and only if

R× = Rrm.

Theorem . The localization Rp of a ring R at a prime ideal p
is a local ring whose unique maximal ideal is

pRp,

namely the ideal generated by the image of p.

Proof. The ideal pRp consists of those a/b such that a ∈ p. In this
case, if c/d = a/b, then cb = da, which is in p, so c ∈ p since p is
prime and b /∈ p. Hence for all x/y in Rp,

x/y /∈ Rpp ⇐⇒ x /∈ p

⇐⇒ x/y has an inverse, namely y/x.

By the lemma, we are done.

.. *Ultraproducts of fields

An ultraproduct of fields is the quotient of the direct product of a
family of fields by a maximal ideal. An algebraic investigation of
this construction will involve maximal ideals, prime ideals, local-
izations, and our theorems about them. First we shall establish
the usual tool by which the very existence of maximal ideals is
established:
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... Zorn’s Lemma

On p.  we established a Recursion Theorem for N as an alge-
bra, and hence for ω. Now we establish another such theorem,
for arbitrary ordinals, not just ω; but the ordinals are now to be
considered as well-ordered sets, not algebras.

Theorem  (Transfinite Recursion). For all sets A, for all or-
dinals α, for all functions f from

⋃{Aβ : β < α} to A, there is a
unique element

(aβ : β < α)

of Aα such that, for all β in α,

f(aγ : γ < β) = aβ .

Proof. We first prove uniqueness. Suppose, if possible, (a′β : β < α)
is another element of Aα as desired, and let β be minimal such that
aβ 6= a′β. Then

(aγ : γ < β) = (a′γ : γ < β),

so by definition aβ = a′β . We now prove existence. If the the-
orem fails for some α, let α be minimal such that it fails. Say
f :
⋃{Aβ : β < α} → A. By hypothesis, for each β in α, there is a

unique element (aγ : γ < β) of Aβ such that, for all γ in β,

f(aδ : δ < γ) = aγ .

As before, aγ is independent of the choice of β such that γ < β < α.
Then for all β in α we are free to define

aβ = f(aγ : γ < β).

Then the element (aβ : β < α) of Aα shows that the theorem does
not fail for α.
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Our proof used the method of the minimal counterexample:
we showed that there could not be such a counterexample.

We now proceed to Zorn’s Lemma. Suppose Ω is a set and A ⊆
P(Ω). Then proper inclusion (⊂) is a transitive irreflexive relation
on A and on each of its subsets (see Theorems  and , p. ).
A subset C of A is called a chain in A if proper inclusion is also a
total relation on C, so that C is linearly ordered by proper inclusion
(see Theorem ). An upper bound of C is a set that includes
each element of C. In particular,

⋃
C is an upper bound, and every

upper bound includes this union. A maximal element of A is an
element that is not properly included in any other element.

The union of every chain of proper ideals of a ring is itself a proper
ideal of the ring. A maximal ideal of the ring is more precisely a
maximal element of the set of proper ideals of the ring. By the
following, rings do have maximal ideals.

Theorem  (Zorn’s Lemma). For all sets Ω, for all subsets A
of P(Ω), if A contains an upper bound for each of its chains, then
A has a maximal element.

Proof. By the Axiom of Choice, there is a bijection α 7→ Bα from
some cardinal κ to A. By the Recursion Theorem, there is a func-
tion α 7→ Cα from κ to A such that, for all α in κ, if {Cβ : β < α}
is a chain, and if γ is minimal such that Bγ is an upper bound of

In , Zorn [] presented this statement for the case where the upper
bounds of the chains are actually the unions of the chains. He called the
statement the “maximum principle” and suggested that using it would make
proofs more algebraic than when the “well-ordering theorem” is used. Proba-
bly this theorem is what we have called the Axiom of Choice. Zorn promised
to prove, in a later paper, that the maximum principle and the Axiom of
Choice are equivalent; but it seems such a paper never appeared. Earlier,
in , Kuratowski [, (), p. ] proved “Zorn’s Lemma” for the case
where the chains in question are well-ordered.

.. *Ultraproducts of fields 



this chain, then

Cα =

{

Bγ , if Bγ 6⊆ Bα,

Bα, if Bγ ⊆ Bα;

in particular, {Cβ : β 6 α} is a chain. If {Cβ : β < α} is not a
chain, then we can define Cα = B0. But we never have to do this:
for all α in κ, the set {Cβ : β < α} is a chain, since there can be no
minimal counterexample to this assertion. Indeed, if α is minimal
such that {Cβ : β < α} is not a chain, there must be β and γ in
α such that γ < β and neither of Cβ and Cγ includes the other.
But by assumption {Cδ : δ < β} is a chain, and so by definition
{Cδ : δ 6 β} is a chain, and in particular one of Cβ and Cγ must
include the other.

By a similar argument, {Cα : α < κ} is a chain, so it has an
upper bound D in A. Suppose for some α we have D ⊆ Bα. Then
Cα = Bα, since otherwise, by definition, Cα = Bγ for some γ such
that Bγ 6⊆ Bα: in this case Cα 6⊆ Bα, so Cα 6⊆ D, which is absurd.
Thus Cα = Bα, and hence Bα ⊆ D, so D = Bα. Therefore D is a
maximal element of A.

As we said, it follows that rings have maximal ideals. We shall
use Zorn’s Lemma further to show that there are ideals that are
maximal with respect to having certain properties. In our exam-
ples, these ideals will turn out to be prime.

... Boolean rings

Recall that all rings now are commutative rings. For every such
ring R, the set of its prime ideals is called its spectrum and can
be denoted by

Spec(R).

If a ∈ R, let us use the notation

[a] = {p ∈ Spec(R) : a /∈ p}.
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Theorem . For every ring R, for all a and b in R,

[a] ∩ [b] = [ab].

Proof. Since every p in Spec(R) is prime, we have

p ∈ [a] ∩ [b] ⇐⇒ a /∈ p & b /∈ p

⇐⇒ ab /∈ p

⇐⇒ p ∈ [ab].

As a consequence of the theorem, the spectrum of a ring can be
given the Zariski topology, in which the sets [a] are basic open
sets. This topology is used in algebraic geometry, especially when
the ring is one of the polynomial rings defined below in sub-§...
We are now interested in the case of Boolean rings. We showed
in Theorem  (p. ) that the power set of every set can be
understood as a Boolean ring in which the operations are defined
by

X · Y = X ∩ Y, X + Y = (X r Y ) ∪ (Y rX).

We may abbreviate (X r Y ) ∪ (Y rX) by

X △ Y ;

it is the symmetric difference of X and Y . Immediately from the
definition, every sub-ring of a Boolean ring is a Boolean ring. We
now show that every Boolean ring embeds in a Boolean ring whose
underlying set is the power set of some set. This is an analogue of
Cayley’s Theorem for groups (p. ) and Theorem  for associative
rings (p. ).

Theorem  (Stone []). For every Boolean ring R, for all a
and b in R,

[a] △ [b] = [a+ b],

and the map x 7→ [x] is an embedding of R in P(Spec(R)).
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Proof. By Theorem  (p. ), the characteristic of R is at most
2, and so for all a in R we have

a · (1 + a) = 0.

Suppose p ∈ Spec(R). Since p is prime and (like every ideal) con-
tains 0, it must contain a or 1 + a. If p contains neither a nor b,
then it contains the sum of 1+a and 1+b, which is a+b. Since the
sum of any two elements of the subset {a, b, a+ b} of R is equal to
the third element, every p in Spec(R) contains either one element
or all elements of this set. Therefore

p ∈ [a+ b] ⇐⇒ a+ b /∈ p

⇐⇒ (a ∈ p ⇔ b /∈ p)

⇐⇒ (p /∈ [a] ⇔ p ∈ [b])

⇐⇒ p ∈ [a] △ [b].

By this and the previous theorem, x 7→ [x] is a homomorphism
of Boolean rings. It remains to show that this homomorphism is
injective. Say x ∈ Rr{0}. The union of a chain of ideals of R that
do not contain x is an ideal of R that does not contain x. Therefore,
by Zorn’s Lemma, there is an ideal m of R that is maximal among
those ideals that do not contain x. If a and b are not in m, then by
maximality

x ∈ m+ (a), x ∈ m+ (b),

and therefore
x2 ∈ m+ (ab).

(We made a similar computation in proving the Chinese Remainder
Theorem, p. .) Since x2 /∈ m, we must have ab /∈ m. Thus m is
prime, and so m ∈ [x]. In particular, [x] 6= ∅.

Equipped with the Zariski topology, the spectrum of a Boolean
ring is the Stone space of the ring.
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... Regular rings

The Boolean rings are members of a larger class of rings that satisfy
the conclusion of Theorem  (p. ). We can establish this by
first noting that, for every set Ω, there is an isomorphism U 7→ χU
from the Boolean ring P(Ω) to the direct power F2

Ω, where

χU (i) =

{

1, if i ∈ U,

0, if i ∈ Ωr U.

Here χU can be called the characteristic function of U (as a sub-
set of Ω). The power F2

Ω is a special case of the product
∏

i∈ΩKi,
where each Ki is a field. If a ∈ ∏i∈ΩKi, there is an element a∗ of
the product given by

πi(a
∗) =

{

πi(a)
−1, if πi(a) 6= 0,

0, if πi(a) = 0.

Then
aa∗a = a.

In particular, for every x in the ring
∏

i∈ΩKi there is y in the ring
such that

xyx = x.

Therefore the ring
∏

i∈ΩKi is called a (von Neumann) regular
ring. Thus Boolean rings are also regular rings in this sense, since
xxx = x in a Boolean ring. A regular ring can also be understood
as a ring in which

x ∈ (x2)

for all x in the ring. The following generalizes Theorem  (p.
).

Theorem . In regular rings, all prime ideals are maximal.

In general, a regular ring need not be commutative; see [, IX., ex. ,
p. ].

.. *Ultraproducts of fields 



Proof. If R is a regular ring, and p is a prime ideal, then for all x
in R, for some y in R,

(xy − 1) · x = 0, (.)

and so at least one of xy − 1 and x is in p. Hence if x+ p is not 0
in R/p, then x+ p has the inverse y + p. Thus R/p is a field, so p

is maximal.

Now we can generalize Theorem  (p. ).

Theorem . If p is a prime ideal of a regular ring R, then there
is a well-defined isomorphism

x+ p 7→ x/1

from R/p to Rp.

Proof. If a ∈ R and b ∈ R r p, and bcb = b, then the elements a/b
and ac/1 of Rp are equal since

(a− bac)b = ab− abcb = ab− ab = 0.

Thus the homomorphism x 7→ x/1 from R to Rp guaranteed by
Theorem  is surjective. By the last theorem, p is maximal, and
hence Rp is a field. Supposing x ∈ p, as in that theorem we have
(.) for some y, but 1−xy /∈ p. This shows x/1 = 0/1. Hence, if
y + p = z + p for some y and z, so that y − z ∈ p, then y/1 = z/1.
Thus the epimorphism x+ p 7→ x/1 is well-defined. Its kernel then
cannot be all of the field R/p, so the epimorphism must also be an
embedding.

The foregoing two theorems turn out to characterize regular
rings. That is, every ring of which the conclusions of these theo-
rems hold must be regular. In fact a somewhat stronger statement
is true; this is the next theorem below. For the sake of the theo-
rem, we make the following definitions. An element x of a ring R
is called nilpotent if xn = 0 for some n in N.
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Lemma . The ideal
⋂
Spec(R) of a ring R is precisely the set

of nilpotent elements of R.

Proof. Let N be the set of nilpotent elements of R. Easily N ⊆
⋂
Spec(R). Now suppose x ∈ R r N ; we show x /∈ ⋂ Spec(R).

Using Zorn’s Lemma, we may let p be an ideal of R that is maximal
among those ideals that contain no power of x. We show p ∈
Spec(R). Suppose neither a nor b is in p. Then both p + (a) and
p+ (b) contain powers of x. Hence the product p+ (ab) contains

a power of x. Therefore p is prime, although x /∈ p.

The ideal
⋂
Spec(R) of a ring R is called the nilradical of R. A

ring is reduced if its nilradical is (0).

Theorem . The following are equivalent conditions on a ring
R.

. R is regular.
. Every prime ideal of R is maximal, and R is reduced.
. The localization Rm is a field for all maximal ideals m of R.

Proof. . In regular rings, prime ideals are maximal by Theo-
rem . Also, if xyx = x, but x2 = 0, then x = x2y = 0; so
regular rings are reduced.

. Now suppose every prime ideal of R is maximal, and R is
reduced. Let m be a maximal ideal of R. By Theorem  (p. ),
mRm is the unique maximal ideal of Rm. By Zorn’s Lemma, every
prime ideal P of Rm is included in a maximal ideal, which must
be mRm. Now, the intersection mRm ∩ R is a proper ideal of R
that includes m, so it is m. Hence P∩R is a prime ideal of R that

A similar idea was used in the proof of the Chinese Remainder Theorem, p.
, to reduce the case n = m+ 1 to the case n = 2.

The equivalence of these conditions is part of [, Thm ., p. ]. This
theorem adds a fourth equivalent condition: “All simple R-modules are
injective.” The proofs given involve module theory, except the proof that, if
all prime ideals are maximal, and the ring is reduced, then each localization
at a maximal ideal is a field. That proof is reproduced below.
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is included in m, so it is m, and therefore P = mRm. Thus this
maximal ideal is the unique prime ideal of Rm. By the lemma, this
ideal is the nilradical of the ring. Thus for all r/s in mRm, for some
n in N, we have (r/s)n = 0, so rn/sn = 0, and therefore trn = 0 for
some t in R r m. In this case, (tr)n = 0, so tr = 0, and therefore
r/s = 0. In short, mRm = (0). Therefore Rm is a field.

. Finally, suppose Rm is a field for all maximal ideals m of R.
If x ∈ R, define

I = {r ∈ R : rx ∈ (x2)}.
This is an ideal of R containing x. We shall show that it contains
1. We do this by showing that it is not included in any maximal
ideal m. If x /∈ m, then I * m. If x ∈ m, then x/1 /∈ (Rm)

×, so,
since Rm is a field, we have x/1 = 0/1, and hence

rx = 0

for some r in Rrm; but r ∈ I. Again I * m. Thus I must be (1),
so x ∈ (x2). Therefore R is regular.

We again consider the special case of a product
∏K, where K is

an indexed family (Ki : i ∈ Ω) of fields. Here
∏K is a regular ring,

and xx∗x = x when x∗ is defined as above. Hence every sub-ring
of
∏K that is closed under the operation x 7→ x∗ is also a regular

ring. We now prove the converse: every regular ring is isomorphic
to such a ring.

Theorem . For every regular ring R, the homomorphism

x 7→
(
x+ p : p ∈ Spec(R)

)

is an embedding of R in the product

∏

p∈Spec(R)

R/p

of fields. The image of this embedding is closed under x 7→ x∗.
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Proof. The indicated map is an embedding, just as the map x 7→ [x]
in Stone’s Theorem (p. ) is an embedding. Indeed, suppose R
is a regular ring, and x ∈ Rr {0}. Let m be maximal among those
ideals of R that do not contain x. If a and b are in Rrm, then

x ∈
(
m+ (a)

)
∩
(
m+ (b)

)
,

x2 ∈ m+ (ab),

x ∈ m+ (ab),

so ab /∈ m. Thus m is a prime ideal, and x + m 6= 0 in R/m.
Therefore the map x 7→

(
x+ p : p ∈ Spec(R)

)
is an embedding.

Let this embedding be called f . Given x in R, we have to show
that f(x)∗ is in the image of f . Now, there is y in R such that
xyx = x, and therefore

f(x)f(y)f(x) = f(x).

For each p in Spec(R), by applying the canonical projection πp, we
obtain

(x+ p)(y + p)(x+ p) = x+ p.

If x+ p 6= 0, we can cancel it, obtaining

y + p = (x+ p)−1 = πp(f(x)
∗).

However, possibly x+p = 0, while y+p 6= 0, so that f(y) 6= f(x)∗.
In this case, letting z = yxy, we have

xzx = xyxyx = xyx = x, zxz = yxyxyxy = yxyxy = yxy = z.

In short, xzx = x and zxz = z. Then

x ∈ p ⇐⇒ z ∈ p, x /∈ p =⇒ (z + p)−1 = x+ p,

so f(z) = f(x)∗.

.. *Ultraproducts of fields 



... Ultraproducts

If R is a Boolean ring, then by Stone’s Theorem (p. ), R embeds
in P(Spec(R)). We have also shown

P(Spec(R)) ∼= F2
Spec(R).

Finally, for each p in Spec(R), by Theorem  (p. ), the quo-
tient R/p is isomorphic to F2, and so

F2
Spec(R) ∼=

∏

p∈Spec(R)

R/p.

In this way, Stone’s Theorem becomes a special case of the foregoing
theorem.

The field F2 can be considered as a subset of each every field,
although not a subfield (unless the field has characteristic 2). This
observation gives rise to the following.

Theorem . For every indexed family (Ki : i ∈ Ω) of fields, each
ideal I of

∏

i∈ΩKi is generated by the set

{aa∗ : a ∈ I}.

This set is itself an ideal, when considered as a subset of F2
Ω. Hence

the map I 7→ {aa∗ : a ∈ I} is a bijection from the set of ideals of
∏

i∈ΩKi to the set of ideals of F2
Ω.

Proof. We need only check that {aa∗ : a ∈ I} is closed under addi-
tion in F2

Ω. If a and b are in I, then aa∗ = χA and bb∗ = χB for
some subsets A and B of Ω. In F2

Ω, the sum aa∗ + bb∗ is χA△B,
which can be computed in

∏

i∈ΩKi as

χA△B · (a+ b)(a+ b)∗;

and this is in I.
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If K is an indexed family (Ki : i ∈ Ω) of fields, Let P be a prime
ideal of

∏K. Then the quotient
∏K/P is a field, and this field

is called an ultraproduct of K. The ideal P could be a principal
ideal (a). This ideal is equal to (aa∗) and therefore to (χU ) for some
subset U of Ω. But (a) is maximal, and therefore U = Ωr {i} for
some i in Ω. In this case,

∏

K/P ∼= Ki.

However, if Ω is infinite, then P(Ω) has the proper ideal I consist-
ing of the the finite subsets of Ω. Then {χU : U ∈ I} generates a
proper ideal of

∏K. If P includes this ideal, then P is not princi-
pal, and the field

∏K/P is called a nonprincipal ultraproduct
of K. Such ideals P exist by Zorn’s Lemma.

If a ∈ ∏K, the subset {i ∈ Ω: ai 6= 0} of Ω can be called the
support of a and be denoted by

supp(a).

In particular, supp(χU ) = U . By the last theorem, we have a
bijection

P 7→ {supp(x) : x ∈ P}
from Spec(

∏K) to Spec(P(Ω)). Suppose the image of P under
this map is p. Then for all a and b in

∏K we have, modulo P,

a ≡ b ⇐⇒ {i ∈ Ω: πi(a) 6= πi(b)} ∈ p.

We may think of the elements of p as “small” sets; their complements
are “large.” Then every subset of Ω is small or large. Two elements
of
∏K are congruent modulo P if and only if they agree on a large

set of indices in Ω. If P is the principal ideal (Ω r {i}), then the
large subsets of Ω are just those that contain i.

Suppose however P is nonprincipal. Then all finite subsets of
Ω are small, and all cofinite subsets of Ω are large, and each map
x 7→ ιi(x) + P from Ki to

∏K/P is the zero map. Thus no one
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field Ki affects the ultraproduct
∏K/P. Rather, the ultraproduct

is a kind of “average” of all of the fields Ki. Say for example Ω is
the set of prime numbers in N, and for each p in Ω, the field Kp is
Fp. Then

∏K/P has characteristic 0, since for each prime p, the
element p · 1 of

∏

ℓ∈Ω Fℓ disagrees with 0 on a large set.
Since in general an ultraproduct

∏

i∈ΩKi/P of fields depends
only on (Ki : i ∈ Ω) and a prime ideal of P(Ω), we can replace the
fields Ki with arbitrary structures (all having the same signature).
The notion that a nonprincipal ultraproduct is an average of the
factors is made precise by the result known as Łoś’s Theorem, be-
cause it can be extracted from Łoś’s  paper []. The proof is
straightforward, but requires careful attention to logic.

.. Polynomial rings

... Universal property

Given a ring R, we defined the polynomial ring R[X] on p.  as
the set of formal sums ∑

i<m

aiX
i,

where (ai : i < m) ∈ Rm, wherem ∈ ω. This means that, assuming
m 6 n, we have

∑

i<m

aiX
i =

∑

i<n

biX
i

⇐⇒ (ai : i < m) = (bi : i < m) & bm = 0 & · · · & bn−1 = 0.

We understand
∑

i<1 aiX
i to be a0, an element of R. Thus R is

included in R[X].
We can now define recursively the family of polynomial rings

R[X0, . . . , Xn−1]:

R[X0, . . . , Xn−1] =

{

R, if n = 0,

R[X0, . . . , Xk−1][Xk], if n = k + 1.
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These polynomial rings have a certain universal property in the
sense of p. :

Theorem . For all rings R, for all n in ω, for all rings S,
for all homomorphisms ϕ from R to S, for all a in Sn, there is a
unique homomorphism H from R[X0, . . . , Xn−1] to S such that

H ↾ R = ϕ, (H(Xi) : i < n) = a.

Proof. We use induction. The claim is trivially true when n = 0.
When n = 1, given a in S, we must have H ↾ A = ϕ and H(X) = a
and therefore

H

(
∑

k<m

bkX
k

)

=
∑

k<m

ϕ(bk) · ak

for all (bi : i < m) in Rm, for all m in ω. Thus H is determined on
all of R[X]. The general inductive step follows in the same way.

In the notation of the theorem, if f ∈ R[X0, . . . , Xn−1], then we
may denote H(f) by

fϕ(a).

if also ϕ = idR, then H(f) is just

f(a).

Given a ring R, we can define a category (in the sense of §., p.
) whose objects are pairs (S, ϕ), where S is a ring and ϕ is a
homomorphism from R to S. If (T, ψ) is also in the category, then
a morphism from (S, ϕ) to (T, ψ) is a homomorphism h from S to
T such that h ◦ ϕ = ψ.

S

h

��

R

ϕ
;;✈✈✈✈✈✈

ψ ##❍
❍❍

❍❍
❍

T
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Then for each n inω, the pair (R[X0, . . . , Xn−1], idR) is an object in
this category, and by the last theorem, in the sense of sub-§.. (p.
), it is a free object on n, with respect to the map i 7→ Xi on n.
Then R[X0, . . . , Xn−1] is uniquely determined (up to isomorphism)
by this property, by Theorem .

... Division

If R is a ring, and f is the element
∑n

i=0 aiX
i of R[X], and an 6= 0,

then:
• n is called the degree of f , and we may write

deg(f) = n;

• each ai is a coefficient of f and is the coefficient of Xi;
• an is the leading coefficient of f ;
• if this leading coefficient is 1, then f is called monic.

We define also
deg(0) = −∞,

and for all k in ω,

−∞+ k = −∞ = k −∞,

so that the next lemma makes sense in all cases. We said in §. (p.
) that, if K is a field, then f 7→ deg(f) is a Euclidean function
on K[X]. We now prove this.

Lemma . Suppose f and g are polynomials in one variable X
over a ring R. then

deg(f + g) 6 max(deg f, deg g),

with equality if deg(f) 6= deg(g). Also

deg(f · g) 6 deg f + deg g,

with equality if the product of the leading coefficients of f and g is
not 0. In particular, if R is an integral domain, then so is R[X].
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Theorem  (Division Algorithm). If f and g are polynomials
in X over a ring R, and the leading coefficient of g is 1, then

f = q · g + r (.)

for some unique q and r in R[X] such that deg(r) < deg(g).

Proof. To prove uniqueness, we note that if for each i in 2 we have

fi = qi · g + ri,

where q0 6= q1, and deg(r0) and deg(r1) are less than deg(g), then
by the lemma

deg(f0 − f1) = deg
(
(q0 − q1) · g + r0 − r1

)
> deg g > 0,

so f0 6= f1. To prove existence, if deg(f) < deg(g), we let q = 0.
Suppose deg(g) 6 deg(f). Given an arbitrary polynomial h over R
with leading coefficient a such that deg(g) 6 deg(f), we define

h∗ = h− aXdeg(h)−deg(g) · g.

Then deg(h∗) < deg(h) and

h = aXdeg(h)−deg(g) · g + h∗.

Now define f0 = f , and f1 = f0
∗, and so on until deg(fk) < deg(g).

Let ai be the leading coefficient of fi, and let ni = deg(fi)−deg(g).
Then (.) holds when r = fk and

q = a0X
n0 + · · ·+ ak−1X

nk−1 .

Corollary . (Remainder Theorem). If c ∈ R and f ∈ R[X],
then

f = q · (X − c) + f(c)

for some unique q in R[X].
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Proof. By the Division Algorithm, f = q · (X − c) + d for some
unique q in R[X] and d in R. Then f(c) = q(c) · (c−c)+d = d.

If f(c) = 0, then c is a zero of f .

Theorem . For every polynomial f over a ring, for every c in
the ring,

f(c) = 0 ⇐⇒ (X − c) | f.

If the ring an integral domain, and f 6= 0, then the number of
distinct zeros of f is at most deg(f).

Proof. By the Remainder Theorem, c is a zero of f if and only if
f = q · (X − c) for some q. In this case, if the ring is an integral
domain, and d is another zero of f , then, since d − c 6= 0, we
must have that d is a zero of q. Hence, if deg(f) = n, and f has
the distinct zeros r0, . . . , rm−1, then repeated application of the
Remainder Theorem yields

f = q · (X − r0) · · · (X − rm−1)

for some q. If f 6= 0, then q 6= 0, and deg(f) > m.

Recall however from the proof of Theorem  (p. ) that every
element of a Boolean ring is a zero of X · (1+X), that is, X +X2;
but some Boolean rings have more than two elements. In Z6, the
same polynomial X +X2 has the zeros 0, 2, 3, and 5.

Theorem . If K is a field, then f 7→ deg(f) is a Euclidean
function on K[X].

Proof. Over a field, the Division Algorithm does not require the
leading coefficient of the divisor to be 1.

Thus for all fields K, the ring K[X] is a ed, therefore a pid,
therefore a ufd.
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... *Multiple zeros

A zero c of a polynomial over an integral domain has multiplicity
m if the polynomial is a product g · (X − c)m, where c is not a
zero of g. A zero with multiplicity greater than 1 is a multiple
zero. Derivations were defined on p. ; they will be useful for
recognizing the existence of multiple roots.

Lemma . If δ is a derivation of a ring R, then for all x in R
and n in ω,

δ(xn) = nxn−1 · δ(x).

Proof. Since

δ(1) = δ(1 · 1) = δ(1) · 1 + 1 · δ(1) = 2 · δ(1),

we have δ(1) = 0, so the claim holds when n = 0. If it holds when
n = k, then

δ(xk+1) = δ(x) · xk + x · δ(xk)
= δ(x) · xk + kxk · δ(x) = (k + 1) · xk · δ(x),

so the claim holds when n = k + 1.

Theorem . On a polynomial ring R[X], there is a unique
derivation f 7→ f ′ such that

X ′ = 1, c′ = 0

for all c in R. This derivation is given by

(
n∑

k=0

akX
k

)′

=
n−1∑

k=0

(k + 1) · ak+1X
k. (.)

Proof. Let δ be the operation f 7→ f ′ on K[X] defined by (.).
By the lemma and the definition of a derivation, δ is the only
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operation that can meet the desired conditions. It remains to show
that δ is indeed a derivation. We have

δ

(
n∑

k=0

akX
k

)

=
n∑

k=0

ak · δ(Xk).

Also

δ(XkXℓ) = δ(Xk+ℓ) = (k + ℓ) ·Xk+ℓ−1

= kXk−1Xℓ + ℓXkXℓ−1 = δ(Xk) ·Xℓ +Xk · δ(Xℓ).

Therefore δ is indeed a derivation:

δ

(
∑

k<m

akX
k ·
∑

ℓ<n

bℓX
ℓ

)

= δ

(
∑

k<m

∑

ℓ<n

akX
k · bℓXℓ

)

=
∑

k<m

∑

ℓ<n

akbℓ · δ(XkXℓ)

=
∑

k<m

∑

ℓ<n

akbℓ ·
(
δ(Xk) ·Xℓ +Xk · δ(Xℓ)

)

=
∑

k<m

∑

ℓ<n

(
ak · δ(Xk) · bℓXℓ + akX

k · bℓ · δ(Xℓ)
)

=
∑

k<m

ak · δ(Xk) ·
∑

ℓ<n

bℓX
ℓ +

∑

k<m

akX
k ·
∑

ℓ<n

bℓ · δ(Xℓ)

= δ

(
∑

k<m

akX
k

)

·
∑

ℓ<n

bℓX
ℓ +

∑

k<m

akX
k · δ

(
∑

ℓ<n

bℓX
ℓ

)

.

In the notation of the theorem, f ′ is the derivative of f .

Lemma . Let R be an integral domain, and suppose f ∈ R[X]
and f(c) = 0. Then c is a multiple zero of f if and only if

f ′(c) = 0.
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Proof. Write f as (X − c)m · g, where g(c) 6= 0. Then m > 1, so

f ′ = m · (X − c)m−1 · g + (X − c)m · g′.

If m > 1, then f ′(c) = 0. If f ′(c) = 0, then m · 0m−1 · g(c) = 0, so
0m−1 = 0 and hence m > 1.

If L is a field with subfield K, then a polynomial over K may
be irreducible over K, but not over L. For example, X2 + 1 is
irreducible over Q, but not over Q( i ). Likewise, the polynomial
may have zeros from L, but not K. Hence it makes sense to speak
of zeros of an irreducible polynomial.

Theorem . If f is an irreducible polynomial with multiple zeros
over a field K, then K has characteristic p for some prime number
p, and

f = g(Xp)

for some polynomial g over K.

Proof. If f has the multiple zero c, then by the lemma X − c is a
common factor of f and f ′. Since f is irreducible, itself must be
a common factor of f and f ′, so f ′ can only be 0, since deg(f ′) <
deg(f). Say f =

∑n
k=0 akX

k, so f ′ =
∑n−1

k=0(k + 1) · ak+1X
k.

If f ′ = 0, but ak+1 6= 0, then k + 1 must be 0 in K, that is, its
image under the homomorphism from Z to K must be 0. Then this
homomorphism has a kernel 〈p〉 for some prime number p. Hence
ak = 0 whenever p ∤ k, so f can be written as

∑m
j=0 apjX

pj , which

is g(Xp), where g =
∑m

j=0 apjX
j .

... Factorization

Throughout this subsection, R is a ufd with quotient field K. We
know from Theorem  that K[X] is a Euclidean domain and
therefore a ufd. Now we shall show that R[X] too is a ufd. It will
then follow that each of the polynomial rings R[X0, . . . , Xn−1] is a
ufd.
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A polynomial over R is called primitive if 1 is a greatest common
divisor of its coefficients. Gauss proved a version of the following
for the case where R is Z [, ¶].

Lemma  (Gauss). The product of primitive polynomials over R
is primitive.

Proof. Let f =
∑m

k=0 akX
k and g =

∑n
k=0 bkX

k. Then

fg =

mn∑

k=0

ckX
k,

where

ck =
∑

i+j=k

aibj = a0bk + a1bk−1 + · · ·+ akb0.

Suppose f is primitive, but fg is not, so the coefficients ck have
a common prime factor π. There is some ℓ such that π | ai when
i < ℓ, but π ∤ aℓ. Then π divides

cℓ − (a0bℓ + · · ·+ aℓ−1b1),

which is aℓb0, so π | b0. Hence π divides

cℓ+1 − (a0bℓ+1 + · · ·+ aℓ−1b2)− aℓ+1b0,

which is aℓb1, so π | b1, and so on. Thus g is not primitive.

Lemma . Primitive polynomials over R that are associates over
K are associates over R.

Proof. Suppose f and g are polynomials that are defined over R
and are associates over K. Then uf = g for some u in K×, and
consequently bu = a for some a and b in R, so af = bg. If f and g
are primitive, then a and b must be associates in R, and therefore
u ∈ R×, so f and g are associates over R.
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Lemma . Primitive polynomials over R are irreducible over R
if and only if they are irreducible over K.

Proof. Suppose f and g are polynomials over K such that the prod-
uct fg is a primitive polynomial over R. For some a and b in K,
the polynomials af and bg have coefficients in R and are primitive
over R. By Gauss’s Lemma, abfg is primitive. Since fg is already
primitive, ab must be a unit in R. In particular, abu = 1 for some
u in R×. Then af and bug are primitive polynomials over R whose
product is fg.

Now, the units of K[X] are just the polynomials of degree 0, that
is, the elements of K×. In particular,

f ∈ K[X]× ⇐⇒ af ∈ K[X]×.

The unit primitive elements of R[X] are the elements of R×. Thus

af ∈ K[X]× ⇐⇒ af ∈ R[X]×.

Therefore fg is irreducible over K if and only if over R.

Note however that if f is primitive and irreducible over R, and a
in R is not a unit or 0, then af is still irreducible over K (since a
is a unit in K) but not over R.

Theorem . R[X] is a ufd.

Proof. Every nonzero element of R[X] can be written as af , where
a ∈ R r {0} and f is primitive. Then f has a prime factorization
over K (since K[X] is a Euclidean domain): say f = f0 · · · fn−1.
There are bk in K such that bkfk is a primitive polynomial over R.
The product of these is still primitive by Gauss’s Lemma, so the
product of the bk must be a unit in R. We may assume this unit is
1. Thus f has an irreducible factorization

(b0f0) · · · (bn−1fn−1)
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over R. Its uniqueness follows from its uniqueness over K and
Lemma . Since a has a unique irreducible factorization, we obtain
a unique irreducible factorization of af .

We end with a test for irreducibility.

Theorem  (Eisenstein’s Criterion). If π is an irreducible ele-
ment of R and f is a polynomial

a0 + a1X + · · ·+ anX
n

over R such that

π2 ∤ a0, π | a0, π | a1, . . . , π | an−1, π ∤ an,

then f is irreducible over K and, if primitive, over R.

Proof. Suppose f = gh, where

g =
n∑

k=0

bkX
k, h =

n∑

k=0

ckX
k,

all coefficients being from R. We may assume f is primitive, so g
and h must be primitive. We may assume π divides b0, but not
c0. Let ℓ be such that π | bk when k < ℓ. If ℓ = n, then (since
g is primitive) we must have bn 6= 0, so deg(g) = n. In this case
deg(h) = 0, so h is a unit. If ℓ < n, then, since π | aℓ, but

aℓ = b0cℓ + b1cℓ−1 + · · ·+ bℓc0,

we have π | bℓ. By induction, π | bk whenever k < n, so as before
deg(g) = n.

An application is the following.

Theorem . If p is a prime number, then the polynomial

1 +X + · · ·+Xp−1

is irreducible.
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Proof. It is enough to establish the irreducibility of
∑p−1

k=0(X+1)k.
We have

p−1
∑

k=0

(X + 1)k =

p−1
∑

k=0

k∑

j=0

(
k

j

)

Xj

=

p−1
∑

j=0

Xj
p−1
∑

k=j

(
k

j

)

=

p−1
∑

j=0

Xj

(
p

j + 1

)

,

which meets the Eisenstein Criterion since
(
p

1

)

= p,

(
p

j + 1

)

=
p!

(p− j − 1)!(j + 1)!
,

which is divisible by p if and only if j < p− 1.
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A. The Greek alphabet

In Figure A. are the Greek letters available in LATEX,
• in math mode (that is, in $...$), possibly with the upgreek

package, and
• in text mode with the gfsporson package of the Greek Font

Society.
A number of the Greek capitals, and one of the minuscules, are not
provided in math mode, because of their similarity to (or identity
with) Latin letters. As discussed in note , p. , one might use
the standard, slanted letters as variables, and the upright letters as
constants.

An example will show how the letters are obtained in the under-
lying LATEX file. The code for the line of forms of pi is

$\Pi$ & $\pi$ & $\varpi$ & $\uppi$ & \gk P & \gk p & pi

where the command \gk is defined in the preamble by means of

\usepackage[polutonikogreek,english]{babel}

\usepackage{gfsporson}

\newcommand{\gk}[1]{%

\foreignlanguage{polutonikogreek}{%

\textporson{#1}}}

In Figure A., the “value” of a letter is the Latin letter or letters
usually used to transcribe it. This is usually the code for the letter
in LATEX; if it is not, the code is given separately in the table. In
text, the two minuscule forms of sigma are used, within a word and
at the end of a word, respectively; for standalone σ, \gk{sv} can
be used.





math mode textmode
normal var. upgreek gfsporson name value code

α α Α α alpha a
β β Β β beta b

Γ γ γ Γ γ gamma g
∆ δ δ ∆ δ delta d

ǫ ε ǫ Ε ε epsilon e
ζ ζ Ζ ζ zeta z
η η Η η Eta ê h

Θ θ ϑ θ Θ θ theta th j
ι ι Ι ι iota i
κ κ Κ κ kappa k

Λ λ λ Λ λ lambda l
µ µ Μ μ mu m
ν ν Ν ν nu n

Ξ ξ ξ Ξ ξ xi x
Ο ο omicron o

Π π ̟ π Π π pi p
ρ ̺ ρ Ρ ρ rho r(h)

Σ σ ς σ Σ σ, ς sigma s
τ τ Τ τ tau t

Υ υ υ Υ υ upsilon u, y u
Φ φ ϕ φ Φ φ phi ph f

χ χ Χ χ chi ch q
Ψ ψ ψ Ψ ψ psi ps y
Ω ω ω Ω ω omega ô w

Figure A.. Greek letters





B. The German script

In his encyclopedic Model Theory of , Wilfrid Hodges observes
[, Ch. , p. ]:

Until about a dozen years ago, most model theorists
named structures in horrible Fraktur lettering. Recent
writers sometimes adopt a notation according to which
all structures are named M , M ′, M∗, M̄ , M0, Mi or
occasionally N . I hope I cause no offence by using a
more freewheeling notation.

For Hodges, structures (as defined in §. on p.  above) are de-
noted by the letters A, B, C, and so forth; he refers to their uni-
verses as domains and denotes these by dom(A) and so forth.
This practice is convenient if one is using a typewriter (as in the
preparation of another of Hodges’s books [], from ). In his
Model Theory: An Introduction of , David Marker [] uses
“calligraphic” letters to denote structures, as distinct from their
universes: so M is the universe of M, and N of N . I still prefer
the older practice of using capital Fraktur letters for structures:

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Here are the minuscule Fraktur letters, which are used in this text,
starting on p. , for denoting ideals:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

A way to write these letters by hand is seen on the page reproduced
in Figure B. from a  textbook [] on the German language:





Figure B.. The German alphabet
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