
A course in

projective geometry

Projektif geometri dersi

David Pierce
Matematik Bölümü

Mimar Sinan Güzel Sanatlar Üniversitesi
mat.msgsu.edu.tr/~dpierce/

dpierce@msgsu.edu.tr

September –, 
Last edited January , 

Nesin Matematik Köyu
Şirince, Selçuk, İzmir





Preface

This is about a two-week course called Geometriler at the
Nesin Mathematics Village. In the first week we read, in my
Turkish translation, some of the lemmas for Euclid’s Porisms

in Book VII of the Collection of Pappus. Students presented
the lemmas at the board, and I lectured on modern develop-
ments due to Desargues and others. In the following week,
we read Lobachevski’s “Geometrical Researches on the Theory
of Parallels” in Halstead’s English translation. Again students
presented propositions at the board; but curved space turned
out to be a more difficult concept than points at infinity. That
week is covered only briefly here, in the Introduction.

I had given a similar Geometriler course in my department
at Mimar Sinan. That course met two hours a week for the
 weeks of the fall semester of –. I kept a record like
the present one. Class at the Math Village met two hours
a day the first week, an hour and a half the second, Monday
through Sunday, except Thursday. In the second week, I ended
on Friday, so that I could participate in the Thales Buluşması
in Milet the next day.

I thank the staff of the Village, notably Aslı Can Korkmaz,
for having Pappus and Lobachevski printed and coil-bound
for distribution to students. I thank all of the workers of the
Village, from Ali Nesin on down, for making it an excellent
place to continue and develop the thoughts begun more than
 years ago, elsewhere in Ionia, by Thales.


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Introduction

Overview

Of Pappus’s lemmas for Euclid’s Porisms, students presented
six: VIII, IV, III, X, XI, and XII, in that order. Lemmas VIII,
XII, and XIII are cases of what is now known as Pappus’s
Theorem, while Lemmas III, X, and XI are needed to prove
XII and XIII. We skipped Lemma XIII in class, its proof being
similar to that of XII. Lemma IV is effectively what I shall
call the Quadrangle Theorem, although Coxeter gives it no
name [, ., p. ]. There is a related theorem called
Desargues’s Involution Theorem by Field and Gray [, p. ];
Coxeter describes this as “the theorem of the quadrangular set”
[, ., p. ].

Two students volunteered to present the first two (VIII and
IV) of Pappus’s lemmas above. For the next two lemmas (III
and X), volunteers were not forthcoming, and so I picked two
more students. When they had fulfilled their assignments, only
two more students were still in class; I asked them to prepare
the last two lemmas (XI and XII) for the next day. Class met
at  a.m., a difficult time for many. Nonetheless, some absent
students did return the next day.

Every presenter of a lemma came more or less prepared for
the job, though sometimes needing help from the audience.
Class was mostly in Turkish, except on the last day or two,
when only I was speaking: with the remaining students’ per-
mission, I switched mostly to English.





In the following week, class was in the afternoon, as one re-
turning student had begged for it to be. Most students in the
second week were new. With a couple of notable exceptions,
they did not prepare their presentations well. Some of them
left the Village early, earlier than I did, without telling me,
and having accepted assignments for the day (Friday) when
they would be gone. I have doubts about how well even the
remaining students understood Lobachevski’s non-Euclidean
conception of parallelism: they seemed to persist in their Eu-
clidean notions.

On the first day of that second week, I reviewed the Eu-
clidean geometry not requiring the Fifth Postulate that Loba-
chevski summarizes in his Theorems –. This is the geome-
try of Propositions – of Book I of the Elements. There is
also some solid geometry from Book XI, though I did not go
into this. I do not know how much the review of Euclidean ge-
ometry meant to students who, unlike those at Mimar Sinan,
had not read Euclid in the first place. I gave away the plot
by describing the Poincaré half-plane model for Lobachevskian
geometry; but given the quality of later student presentations,
I have doubts that the model made much sense. I shall not
say more about that second week, except that, if that part of
the course is repeated, it should probably be coupled with a
reading of Euclid; and then it would need a full week, if not
two.

Details

One may refer to Pappus’s Theorem more precisely as Pap-
pus’s Hexagon Theorem. It is the theorem that, if the ver-
tices of a hexagon lie alternately on two straight lines, then
the intersection points of the three pairs of opposite sides of
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Figure . Pappus’s Hexagon Theorem

the hexagon lie on a straight line. See for example Figure ,
which is the same as Figure  on page . Pappus’s theo-
rem remains true if some of the opposite sides of the hexagon
are parallel, provided one allows that parallel lines meet on
the “line at infinity”; See Figure  on page  and Figure 
on page . In any case, the two straight lines holding the
six vertices between them can be considered as a degenerate
conic section. Pascal generalized to an arbitrary conic section,
though without proof [, ].

The Quadrangle Theorem is that if a straight line intersects
six straight lines, each of which passes through two of four
given points, no three of the four being collinear, then five of
the intersection points determine the sixth, regardless of the
choice of the four given points. Thus in Figure , which is the
same as Figure  on page , the points A, B, C, D, and E
on the same straight line determine the point L on that line,
provided it is understood that L is found by first picking a
point F not on the line AB, then picking a point G on the
straight line AF , letting GC and GE intersect FB and FD

 Geometries
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Figure . The Quadrangle Theorem

respectively at H and K, and letting HK intersect the original
line AB.

In class, after we saw Pappus’s treatment of the Quadrangle
and Hexagon Theorems, I sketched a proof of all cases of the
latter by passing to a third dimension and projecting. I gave
another proof by introducing projective coordinates.

Desargues’s Theorem is that if the straight lines through
corresponding vertices of two triangles intersect at one point,
then the intersection points of the corresponding sides of the
triangles lie on one straight line. For example, if the triangles
are ABC and DEF as in Figure , which is the same as Fig-
ure  on page , then HKL is straight. I gave the proof
attributed to Hessenberg from , using three applications
of Pappus’s Theorem, as sketched in Figure  on page .
Strictly, this proof assumes that all points named in the dia-
gram are distinct; in the other case, Cronheim gave in 
[] the argument sketched in Figure , where, by applying
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Figure . Desargues’s Theorem

Pappus’s Theorem to hexagons GCELBA, GAELBC, and
SRDCAF in turn, we have that FHS, DKR and finally LKH
are straight.

In class, using Desargue’s Theorem and its dual, which is its
converse, I proved again the Quadrangle Theorem.

Pappus’s proofs rely heavily on the proposition known in
modern times, in some countries, as Thales’s Theorem []:
a straight line cutting two sides of a triangle cuts them pro-
portionally if and only if it is parallel to the base. This is
“equation” () on page  with respect to Figure . Euclid
proves this theorem at the beginning of Book VI of the Ele-

ments, using the theory of proportion developed in Book V.
This theory relies on the so-called Archimedean Axiom, that
of two line segments, either can be multiplied so as to ex-
ceed the other. In fact one does not need this axiom, but one
can develop a theory of proportion, sufficient for establishing
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Figure . Degenerate case of Desargues’s Theorem
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Thales’s Theorem, on the basis of Book I of the Elements. One
can take Thales’s Theorem as a definition of proportion, ex-
cept that one should fix one of the base angles of the triangle.
But then one can prove, as I did in class, that the base an-
gles do not matter. A neat way of proving this is Desargues’s
Theorem, applied to Figure  on page . In short, Thales
proves Pappus, which proves Desargues, which proves Thales.

In modern axiomatic projective plane geometry, the theo-
rems of Pappus and Desargues are not equivalent. In class we
proved, not exactly their equivalence with Thales’s Theorem,
but simply their truth in the geometry of Book I of Euclid’s
Elements. They are true in the projective plane over a com-
mutative field; but the ancient proofs use not just the algebra
of fields, but the geometry of areas. In Lemma VIII, for exam-
ple, which is the case of the Hexagon Theorem when two pairs
of opposite sides are parallel, Pappus’s proof relies on adding
and subtracting triangles that are equal because they are on
the same base and between the same parallels.

Following first Descartes [] and then Hilbert [], we can
obtain a field from Euclid’s geometry. This may not be the
best way to think about that geometry.

Origins

The origin of this course is my interest in the origins of mathe-
matics. This interest goes back at least to a tenth-grade geom-
etry class in –, where we students were taught to write
proofs in the two-column, statement–reason format. I did not
much care for our textbook, which, for an example of congru-
ence, used a photo of a machine stamping out foil trays for
TV dinners [, p. ]. In “Commensurability and Symmetry”

 Geometries



[], I mention how the Weeks–Adkins text confuses equality
with sameness. A geometrical equation like AB = CD means
not that the segments AB and CD are the same, but that
their lengths are the same. Length is an abstraction from a
segment, as ratio is an abstraction from two segments. This is
why Euclid uses “equal” to describe two equal segments, but
“same” to describe the ratios of segments in a proportion. One
can maintain the distinction symbolically by writing a propor-
tion as A : B :: C : D, rather than as A/B = C/D. I noticed
the distinction many years after high school; but even in tenth
grade I thought we should read Euclid. I went on to read him,
along with Homer and Aeschylus and Plato and others, at St
John’s College [].

In , the first course I taught at the Nesin Mathematics
Village was an opportunity to review something I had read at
St John’s. Called “Conic Sections à la Apollonius of Perga,”
my course reviewed the propositions of Book I of the Conics

[, ] that pertained to the parabola. I shall say more about
this later; for now I shall note that, while the course was great
for me, I don’t think it meant much for the students who just
sat and watched me at the board. One has to engage with
the mathematics for oneself, especially when it is something
so unusual for today as Apollonius. A good way to do this is
to have to go to the board and present the mathematics, as at
St John’s.

In  at METU in Ankara, I taught the course called His-
tory of Mathematical Concepts in the manner of St John’s.
We studied Euclid, Apollonius, and (briefly) Archimedes in
the first semester; Al-Khwārizmı̄, Thābit ibn Qurra, Omar
Khayyám, Cardano, Viète, Descartes, and Newton in the sec-
ond [].

Introduction 



At METU I loved the content of the course called Funda-
mentals of Mathematics, which was required of all first-year
students. I even wrote a text for the course, a rigorous text
that might overwhelm students, but whose contents I thought
at least teachers should know. In the end I didn’t think
it was right to try to teach equivalence-relations and proofs
to beginning students, independently from a course of real
mathematics. Moving to Mimar Sinan in , I was able
(in collaboration) to develop a course in which first-year stu-
dents read and presented the proofs that taught mathematics
to practically all mathematicians until about a century ago.
Among other things, students would learn the non-trivial (be-
cause non-identical) equivalence-relation of congruence. I did
not actually recognize this opportunity until I had seen the
way students tended to confuse equality of line-segments with
sameness.

Our first-semester Euclid course is followed by an analytic
geometry course. Pondering the transition from the one course
to the other led to some of the ideas about ratio and proportion
that are worked out in the present course. My study of Pap-
pus’s Theorem arose in this context, and I was disappointed
to find that the Wikipedia article called “Pappus’s Hexagon
Theorem” did not provide a precise reference to its namesake.
I rectified this condition on May , , when I added to
the article a section called “Origins,” giving Pappus’s proof.

In order to track down that proof, I had relied on Heath, who
in A History of Greek Mathematics summarizes most of Pap-
pus’s lemmas for Euclid’s lost Porisms [, p. –]. In this
summary, Heath may give the serial numbers of the lemmas as
such: these are the numbers given above as Roman numerals.
Heath always gives the numbers of the lemmas as propositions
within Book VII of Pappus’s Collection, according to the enu-
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meration of Hultsch []. Apparently this enumeration was
made originally in the th century by Commandino in his
Latin translation [, pp. –, ].

According to Heath, Pappus’s Lemmas XII, XIII, XV, and
XVII for the Porisms, or Propositions , , , and 
of Book VII, establish the Hexagon Theorem. The latter two
propositions can be considered as converses of the former two,
which consider the hexagon lying respectively between parallel
and intersecting straight lines.

In Mathematical Thought from Ancient to Modern Times,

Kline cites only Proposition  as giving Pappus’s Theorem
[, p. ]. This proposition, Lemma XIII, follows from Lem-
mas III and X, as XII follows from XI and X. For Pappus’s
Theorem in the most general sense, one should cite also Propo-
sition , Lemma VIII, which, as we have noted, is the case
where two pairs of opposite sides of the hexagon are paral-
lel: the conclusion is then that the third pair are also parallel.
Heath’s summary does not seem to mention this lemma at all.
The omission must be a simple oversight.

In the catalogue of my home department at Mimar Sinan,
there is an elective course called Geometries, meeting two
hours a week. The course had last been taught in the fall
of  when I offered it in the fall of . For use in the
course, I translated the first  of Pappus’s  lemmas for Eu-

Searching for Commandino’s name in Jones’s book reveals an in-
teresting tidbit on page : Book III of the Collection is addressed to
an otherwise-unknown teacher of mathematics called Pandrosion. She
must be a woman, since she is given the feminine form of the adjec-
tive κράτιστος, -η, -ον (“most excellent”); but “in Commandino’s Latin
translation her name vanishes, leaving the absurdity of the polite epithet
κρατίστη being treated as a name, ‘Cratiste’; while for no good reason
Hultsch alters the text to make the name masculine.”

Introduction 



clid’s Porisms. I had not thought there was an English version;
but at the end of my work, I found Jones’s. This helped me
to parse a few confusing words. What I found first, on Library

Genesis, was the first volume of Jones’s work []; Professor
Jones himself supplied me with Volume II, the one with the
commentary and diagrams [].

Book VII of Pappus’s Collection is an account of the so-
called Treasury of Analysis (ἀναλυόμενος τόπος). This Trea-

sury consisted of works by Euclid, Apollonius, Aristaeus, and
Eratosthenes, most of them now lost. As a reminder of the
wealth of knowledge that is no longer ours, I ultimately wrote
out, on the back of my Pappus translation, a table of the
contents of the Treasury. Pappus’s list of the contents is in-
cluded by Thomas in his Selections Illustrating the History

of Greek Mathematics in the Loeb series [, pp. –].
Thomas’s anthology includes more selections from Pappus’s
Collection, but none involving the Hexagon Theorem. He does
provide Proposition  of Book VII, that is, Lemma IV for
the Porisms of Euclid, the lemma that I am calling the Quad-
rangle Theorem.

Additions

Here are some further developments of topics of the course.

Involutions

Lemma IV is that if the points ABCDEL in Figure  above
(or in Figure  on page ) satisfy the proportion

AL · BC : AB · CL :: AL ·DE : AD · EL, ()

 Geometries



then HKL is straight. Chasles [, p. ] rewrites the condi-
tion in the form

BC · AD · EL = AB ·DE · CL.

We can also write

BC ·AD : AB ·DE :: CL : EL;

this makes it easier to see that, when ABCDE are given,
then some unique L exists so as to satisfy (). As L varies,
the ratio CL : EL takes on all possible values but unity. If
BC ·AD = AB ·DE, that is,

AB : BC :: AD : DE,

then HK ‖ AE by Lemma I. Otherwise, by Lemma IV, HK
must pass through the L that satisfies (). Thus the converse
of the lemma holds as well. We might speculate whether this
converse was one of Euclid’s original porisms. Chasles seems
to think it was.

Thomas observes [, pp. –] that

[the converse of Lemma IV] is one of the ways of expressing
the proposition enunciated by Desargues: The three pairs

of opposite sides of a complete quadrilateral are cut by any

transversal in three pairs of conjugate points of an involution.

Following Coxeter, I would call the “complete quadrilateral”
here a complete quadrangle (see Figure , page ). Desargues
proves the Involution Theorem in his Rough Draft of an

Essay on the results of taking plane sections of a cone [, p.
]. One way to interpret the theorem is to observe that, in
Figure  or , if the points BCDE are conceived of as fixed,
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A B C D F G H

Figure . Points in involution

then A determines L. Moreover, this operation transposes A
and L, and so it is an involution of the straight line BE.

Desargues proceeds towards the Involution Theorem by first
observing that if seven points ABCDFGH are arranged, as
in Figure , on a straight line so that

AB · AH = AC · AG = AD · AF, ()

then, without reference to A, we have [, p. ]

DG · FG : CD · CF :: BG ·GH : BC · CH. ()

Indeed, by second equation in (),

AG : AF :: AD : AC, ()

so by addition or subtraction of the terms of the first ratio to
or from the terms of the second,

AG : AF :: DG : CF. ()

Similarly, after alternating (), we obtain

AF : AC :: AG : AD,

AF : AC :: FG : CD.

Composing the latter with () yields

AG : AC :: DG · FG : CD · CF. ()
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Replacing D with B and F with H in the second equation of
() yields the first equation. Hence we can do the same in (),
obtaining

AG : AC :: BG ·GH : BC · CH.

Eliminating the common ratio from the last two proportions
yields (). For meeting this condition, the three pairs BH , CG
and DF of points are said to be in involution, by Desargues’s
definition.

Now suppose these pairs consist of those points where a
transversal cuts the pairs of opposite sides of a complete quad-
rangle, as in Thomas’s description. For example, the points
BCDFGH could be, respectively, the points ABCDEL in
Figure  or , or ΑΒΓ∆ΕΖ in Figure  on page . Then
the converse of Pappus’s Lemma IV, expressed in (), gives us
now

BH · CD : BC ·DH :: BH · FG : BF ·GH. ()

This proportion is equivalent to (). However, the best way to
show this may not be obvious. One approach is to introduce
the cross-ratio, though apparently Desargues does not do this
[, p. ]. Despite the misgivings expressed above (page ),
we turn to modern notation for ratios. If ABCD are points
on a straight line, we let

AB · CD

AD · CB
= (ABCD) ()

by definition. Note the pattern of repeated letters on the left.
We could use a different pattern; we just have to be consistent.
We take line segments to be directed, so that CB = −BC.
Then () is equivalent to

(BHDC) = (BHGF ), ()
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while, since () is, in modern notation,

DG · FG

CD · CF
=

BG ·GH

BC · CH
,

we obtain from this

DG · BC

CD · BG
=

CF ·GH

FG · CH
,

that is,

(DGBC) = (CFGH). ()

But (), obtained from Pappus, must still hold if we permute
the pairs BH , CG, and DF . Sending each pair to the next
(and the last to the first), we obtain from () the equivalent
equation

(CGBD) = (CGFH). ()

We shall have that this is equivalent to (), once we under-
stand how cross-ratios are affected by permutations of their
entries.

The cross-ratios that can be formed from ABCD are per-
muted transitively by a group of order 24. Then there are at
most 6 different cross-ratios, since

(CDAB) = (ABCD),

(BADC) = (ABCD).

Moreover, from () we can read off

(ADCB) =
1

(ABCD)
,
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while

(ACBD) =
AC · BD

AD ·BC
=

(AB +BC) · (BC + CD)

AD · BC

=
AC · BC +BC · CD

AD ·BC
− (ABCD)

= 1− (ABCD).

The involutions x 7→ 1/x and x 7→ 1 − x of the set of ratios
generate a group of order 6. (Here we either exclude the ratios
0 and 1, or allow them along with ∞.) Now we have accounted
for all permutations of points. We have

(CGBD) = (CGFH) ⇐⇒ (CBGD) = (CFGH)

⇐⇒ (BCDG) = (CFGH)

⇐⇒ (DGBC) = (CFGH),

that is, () and () are equivalent, as desired.
The involution of the straight line BE in Figure  or 

that transposes A and L will transpose B and E, and also
C and D. Following Coxeter [, ., p. ], we obtain
this transposition as in Figure , as a composition of three
projections of one straight line onto another. In Coxeter’s no-

tation, ABEL
G
=
∧

FBNM means AGF , EGN , and LGM are

all straight (and implicitly ABEL and FBNM are straight).
It follows from Lemma IV that this transformation is an invo-
lution and is uniquely determined by the pairs AL and BE.

Locus problems

Thomas’s anthology [, –] includes the account by Pap-
pus of five- and six-line locus problems that Descartes quotes
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Figure . An involution
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ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

Figure . A five-line locus

in the Geometry [, pp. –]. Pappus suggests no solution to
such problems; but later in the Geometry, Descartes solves a
special case of the five-line problem, where four of the straight
lines—say ℓ0, ℓ1, ℓ2, and ℓ3—are parallel to one another, each
a distance a from the previous, while the fifth line—ℓ4—is per-
pendicular to them. What is the locus of points such that the
product of their distances to ℓ0, ℓ1, and ℓ3 is equal to the prod-
uct of a with the distances to ℓ2 and ℓ4? One can write down
an equation for the locus, and Descartes does. Effectively let-
ting the x- and y-axes be ℓ2 and ℓ4, the positive direction of
the latter being from ℓ3 towards ℓ0, Descartes obtains

y3 − 2ay2 − a2y + 2a3 = axy.

This may allow us to plot points on the desired locus, as in
Figure ; but we could already do that. The equation is thus
not a solution to the locus problem, since it does not tell us
what the locus is. But Descartes shows that the locus is traced
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bc

Figure . Solution of the five-line locus problem

by the intersection of a moving parabola with a straight line
passing through one fixed point and one point that moves with
the parabola. See Figure . The parabola has axis sliding
along ℓ2, and a is its latus rectum. The straight line passes
through the intersection of ℓ0 and ℓ4 and through the point
on the axis of the parabola whose distance from the vertex is
a.

Descartes’s solution is apparently one that Pappus would
recognize as such. Thus Descartes’s algebraic methods would
seem to represent an advance, and not just a different way of
doing mathematics.

See my article “Abscissas and Ordinates” [] for more than you ever
imagined wanting to know about the term latus rectum.
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Ancients and moderns

Modern mathematics is literal in the sense of relying on the
letters that might appear in a diagram, rather than the dia-
gram itself. The diagram is an integral part of ancient proofs.
Pappus may put points of a diagram in a list, without giving
all of their relations. For example, the enunciation of Lemma
I of our text is,

῎Εστω καταγραφὴ Let the diagram be
ἡ ΑΒΓ∆ΕΖΗ, ΑΒΓ∆ΕΖΗ,
καὶ ἔστω and let it be that
ὡς ἡ ΑΖ πρὸς τὴν ΖΗ, as ΑΖ is to ΖΗ,
οὕτως ἡ Α∆ πρὸς τὴν ∆Γ, so is Α∆ to ∆Γ;
καὶ ἐπεζεύχθω ἡ ΘΚ· and let ΘΚ have been joined;
ὅτι [I say] that
παράλληλός ἐστιν ἡ ΘΚ τῇ ΑΓ. ΘΚ is parallel to ΑΓ.

Reconstruct the diagram from that! One needs to know, first
of all, that ΑΖΗ∆Γ are on a straight line. ΑΒΕ are also on a
straight line, and one needs to know that Λ is to be on this
line when ΖΛ is constructed parallel to Β∆. We can infer the
locations of Θ and Κ from Pappus’s assertion that, as ΕΒ is
to ΒΛ, so are ΕΚ to ΚΖ and ΕΘ to ΘΗ; but still we must
understand that each ratio involves collinear points. In his
diagrams, Hultsch gives five possible configurations meeting
these conditions; my translation gives a sixth, as in Figure
, where ΒΕΚΘ is emboldened to indicate that the lemma is
a version of the Quadrangle Theorem where one of the six
straight lines through the vertices of the quadrangle is parallel
to a straight line cutting the others.

Netz observes that Greek mathematics never simply declares
what letters in a diagram stand for [, pp. –]:
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Ζ Η

Θ Κ

Λ

Figure . A diagram for Lemma I of Pappus

Nowhere in Greek mathematics do we find a moment of spec-
ification per se, a moment whose purpose is to make sure that
the attribution of letters in the diagram is fixed.

It may well be Descartes, he says, who first fixes such attribu-
tions. I note an early passage in La Géométrie [, p. ]:

Mais souvent on n’a pas besoin de tracer ainsi ces lignes
sur le papier, et il suffit de les désigner par quelques lettres,
chacune par une seule. Comme pour ajouter la ligne BD à
GH, je nomme l’une a et l’autre b, et écris a + b; et a − b

pour soustraire b de a; et ab pour les multiplier l’une par
l’autre . . .

We have already seen how Descartes’s abbreviations make so-
lutions to ancient unsolved problems possible.

Nonetheless, it it possible to take cleverness with notation
too far. The third proof of Pappus’s Theorem given in the
course is taken from Coxeter [, p. ], and it may appeal
to modern Cartesian sensibilities; but it gives less sense of
why the theorem is true than the second proof, which involves
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Figure . Pappus’s Theorem in modern notation

passing to a third dimension and projecting, starting from the
diagram of Lemma VIII. Coxeter’s diagram for Pappus’s The-
orem is labelled as in Figure ; it allows us to observe, once
for all, that AiBjCk is straight whenever {i, j, k} = {1,2,3}.
If one is going to be this clever, it seems to me, one might as
well go all the way and let the indices be 0, 1, and 2, so that
one can use for the set of them the notation 3.

I do not know whether Pappus (or Euclid) recognized a single
theorem lying behind Lemmas VIII, XII, and XIII. He may
have recognized a similarity between the lemmas, but not a
satisfactory way to prove the lemmas once for all. He may
have thought it important to treat each case individually.

There is a point of view that blurs the distinctions between
the three conic sections; but it not necessarily the best point of
view. When Omar Khayyām used conic sections to solve what
we should call cubic equations, he had to consider several cases,
depending on what we should call the signs of the coefficients
of the equations [, pp. –]. For example, for the case
where “a cube and sides are equal to squares and numbers,”
we can write the problem as the equation

x3 + b2x = cx2 + b2d,
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which we manipulate into

x2

b2
=

d− x

x− c
.

We can define y in terms of a solution so that

x

b
=

y

x− c
=

d− x

y
.

Thus we solve the original equation by finding the intersection
of the two conics given by

x2 − cx = by, y2 + (x− c) · (x− d) = 0.

These are normally a parabola and a circle; however, if we
have allowed negative coefficients, then we may have had to
let b be imaginary. This matters if we want to construct real
solutions.

In Rule Four of the posthumously published Rules for the
Direction of the Mind [, , p. ], Descartes writes of a
method that is

so useful . . . that without it the pursuit of learning would, I
think, be more harmful than profitable. Hence I can readily
believe that the great minds of the past were to some ex-
tent aware of it, guided to it even by nature alone . . . This
is our experience in the simplest of sciences, arithmetic and
geometry: we are well aware that the geometers of antiquity
employed a sort of analysis which they went on to apply to
the solution of every problem, though they begrudged reveal-
ing it to posterity. At the present time a sort of arithmetic
called “algebra” is flourishing, and this is achieving for num-
bers what the ancients did for figures.
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We have already observed that Book VII of Pappus’s Collec-

tion concerned the Treasury of Analysis. The term “treasury”
is a modern flourish; but our word “analysis” is a translitera-
tion of the Greek of writers like Pappus. It means freeing up,
or dissolving. As Pappus describes it, mathematical analysis
is assuming what you are trying to find, so that you can work
backwards to see how to get there. We do this today by giving
what we want to find a name x.

Today we think of conic sections as having axes: one for
the parabola, and to each for the ellipse and hyperbola. The
notion comes from Apollonius; but for him, an axis is just
a special case of a diameter. A diameter of a conic section
bisects the chords of the section that are parallel to a cer-
tain straight line. This straight line is the tangent drawn at a
point where the diameter meets the section. Apollonius shows
that every straight line through the center of an ellipse or hy-
perbola is a diameter in this sense; and every straight line
parallel to the axis is a diameter of a parabola. As far as I can
tell, it is difficult to show this by the method’s of Descartes’s
analytic geometry. Like Euclid’s and Pappus’s proofs, Apollo-
nius’s proofs rely on areas. There are areas of scalene triangles
and non-rectangular parallelograms. Earlier I discussed a lo-
cus problem in terms of distances from several given straight
lines. For Pappus, what is involved is not distances as such,
but the lengths of segments drawn to the given lines at given
angles, which are not necessarily right angles. The apparently
greater generality is trivial. This is why Descartes can solve
a five-line problem using algebra. But if one is going to prove
that a straight line parallel to the axis of a parabola is a di-
ameter, one cannot just treat all angles as right. Apollonius
may have had a secret weapon in coming up with his proposi-
tions about conic sections; but I don’t think it was Cartesian
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analysis. Such at least was my impression when going through
Apollonius for my course in Şirince, in .
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Monday, September , 

Statement of the Quadrangle Theorem

Suppose five points, A through E, fall on a straight line as in
Figure a, and F is a random point not on the straight line.
Join FA, FB, and FD. Now let G be a random point on FA,
as in Figure b, and join GC and GE. Supposing these two
straight lines cross FB and FD at H and K respectively, join
HK as in Figure . If this straight line crosses the original
straight line AB at L, then L depends only on the original five
points, not on F or G. Let us call this result the Quadrangle

Theorem. It is about how the straight line AB crosses the six
straight lines that pass through pairs of the four points F , G,
H , and K. Any such collection of four points, no three of which
are collinear, together with the six straight lines that they

A
B

DC
E

b

b

b
b

b

F
bc

(a) Point F is chosen

A
B

DC
E

b

b

b
b

b

F

G

bc

bc

(b) Point G is chosen

Figure . The Quadrangle Theorem set up
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Figure . The Quadrangle Theorem

determine, as in Figure a, is called a complete quadrangle

(tam dörtgen). Similarly, any collection of four straight lines,
no three passing through the same point, together with the six
points at the intersections of pairs of these six straight lines, as
in Figure b, is a complete quadrilateral (tam dörtkenar).

As stated, the Quadrangle Theorem is a consequence of
Lemma IV of our text of Pappus. Lemmas I, II, V, VI, and
VII treat other cases, such as when HK in Figure  is parallel
to AE.

Statement of Desargues’s Theorem

There is an alternative proof of the Quadrangle Theorem based
on Desargues’s Theorem. Desargues was a contemporary of
Descartes, and the theorem named for him is that, if the
straight lines through corresponding vertices of two triangles
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(b) A complete quadrilateral

Figure . “Complete” figures

intersect at a common point, as AD, BE, and CF meet at
H in Figure , then the intersection points of corresponding
sides of the triangles lie in a single straight line. If two pairs
of corresponding sides are parallel, this means the third pair
must be parallel as well.

Statement of Pappus’s Theorem

We shall prove Desargues’s Theorem by means of Pappus’s

Hexagon Theorem. This is the theorem that if the vertices
of a hexagon lie alternately on two straight lines, as do the
vertices of ABCDEF in Figure , then the points of inter-
section, as G, H , and K, of the three pairs of opposite sides of
the hexagon also lie on a straight line. Again there are other
cases, as when two of the pairs of opposite sides are parallel;
here the third pair must be parallel as well.

Pappus’s Theorem is Lemmas VIII, XII and XIII in our text.
In the proofs of XII and XIII, Lemmas III, X, and XI are used.
Lemma VIII needs only the theorem of Euclid (namely I.
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Figure . Desargues’s Theorem
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Figure . Pappus’s Hexagon Theorem
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A B

C D

Figure . Triangles on the same base

and  of the Elements []) that when two triangles have the
same base, as in Figure , then the triangles are equal to one
another just in case the straight line joining the apices of the
triangles is parallel to their common base.

Equality and sameness

Equality of triangles means not congruence of the triangles,
but sameness of their areas. In fact Euclid’s proof that paral-

lelograms on the same base and in the same parallels are equal
is by cutting the parallelograms into congruent pieces, as in
Figure , where parallelograms ABDC and ABFE are equal,
because, when CH = DG and FL = EG, while CK and FM
are both equal to DE, then triangles CHK and MLF are
congruent to one another (and to DGE), and the pentagons
AGDKH and BLMEG are congruent to one another. Being
half of equal parallelograms, triangles ABC and ABE are now
equal to one another.
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Figure . Equal parallelograms

Statement of Thales’s Theorem

After Lemma VIII, Pappus’s proofs of other cases of the Hexa-
gon Theorem use what is known as Thales’s Theorem. This
is that if the straight line DE cuts the sides of triangle ABC
as in Figure , then

DE ‖ BC ⇐⇒ AD : DB :: AE : EC. ()

A

B C

D E

F

Figure . Thales’s Theorem
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We obtain the alternative formulation

DE ‖ BC ⇐⇒ AD : AB :: DE : BC

by drawing DF parallel to AC and using a rule like

a : b :: c : d ⇐⇒ a+ b : b :: c+ d : d

The proportion AD : DB :: AE : EC is an expression not of
the equality of the ratios AD : DB and AE : EC, but of their
sameness. An equation of bounded straight lines, like CH =
DG earlier, says that the lengths of the straight lines are the
same. But the length of a line cannot be drawn in a diagram;
it is an abstraction from the line itself. Equality of bounded
straight lines is an equivalence relation, and for the sake of
having a formal definition, we can understand the length of
CH as the corresponding equivalence class, consisting of all of
the straight lines that are equal to CH . Similarly, the ratio
of two straight lines is abstract and cannot be drawn in a
diagram. We shall discuss proportions later today and more
formally on Wednesday.

Thales himself

There is little evidence that Thales knew, in full generality, the
theorem named for him. I have learned this while preparing for
the Thales Meeting to be held on Saturday, September , in
Thales’s home town of Miletus. Thales supposedly measured
the heights of the Pyramids by considering their shadows; but
he may have done this just when his own shadow was as long
as a person is tall, since in this case the height of the pyra-
mid would be the same as the length of its own shadow (as
measured from the center of the base of course).
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 b.c.e. Thales
 Euclid
 c.e. Diogenes Laërtius
 Pappus
 Proclus

Figure . Dates of some ancient writers and thinkers

Thales may have recognized that two triangles are congruent
if they have two angles equal respectively to two angles and
the common sides equal. (This is the so-called Angle-Side-
Angle or ASA Theorem.) According to Proclus, who wrote a
commentary on the Book I of Euclid’s Elements [], Thales
also knew the following three theorems found in that book:

) the diameter of a circle divides the circle into two equal
parts,

) vertical angles formed by intersecting straight lines are
equal to one another;

) the base angles of an isosceles triangle are equal to one
another.

According to Diogenes Laërtius [, i.–] (who wrote biogra-
phies of philosophers, starting with Thales), Thales also knew
that

) the angle inscribed in a semicircle is right.
Dates of activity for the persons we have named are roughly as
in Figure . All four of the listed theorems can be understood
to be true by symmetry. For example, the equation

∠ABC = ∠CBA

basically establishes the equality of vertical angles. Also, sup-
pose we complete the diagram of an angle inscribed in a semi-
circle as in Figure . Here the quadrilateral BCDE has four
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Figure . The angle in a semicircle

equal angles. If it follows that those angles must be right, then
the theorem of the semicircle is proved.

Those four equal angles are right in Euclidean geometry.
Here, by Euclid’s fifth postulate, if the angles at DCB and
CBE are together less then two right angles, then CD and
BE must intersect when extended. In that case, for the same
reason, they intersect when extended in the other direction;
but this would be absurd.

Non-Euclidean planes

In Lobachevski’s geometry, Euclid’s fifth postulate is denied.
In this case, if AB is perpendicular to AC as in Figure ,
there will be an angle ABD, less than a right angle, such that
BD never intersects AC, no matter how far extended, though
straight lines through B making with BA an angle less than
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C

DE

Figure . Straight lines in the hyperbolic plane

ABD will meet AC. If EBA = ABD, then BE too will never
meet AC, though BE and BD are different straight lines.

Lobachevski’s geometry may be understood as taking place
in the hyperbolic plane. We can understand Pappus’s ge-
ometry as taking place in the projective plane. Here the
several cases of (for example) the Hexagon Theorem can be
given a single expression, because formerly parallel straight
lines are now allowed to intersect “at infinity.” We obtain the
projective plane from the Euclidean plane by adding,

) for each family of parallel straight lines, a new point
common to all of them, namely their point at infinity,

and
) a new straight line, the straight line at infinity, which

consists precisely of all of the points at infinity.

In the projective plane,

) any two distinct points lie on a single straight line, as in
Euclidean geometry; but now also

) any two distinct straight lines intersect at a single point
(which could be at infinity).
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Figure . For a definition of proportion

Proportions

We said that Pappus’s proof of the Hexagon Theorem used
Thales’s Theorem. How can we prove Thales’s Theorem? We
first have to define proportions. One approach is to say that,
by definition, in Figure , where angles ABC and ADE are
right, we have

AB : BC :: AD : DE.

But then, if BF = BC and DG = DE, and BF is parallel
to DG, we want to show that AFG is a straight line. This
is a consequence of Desargues’s Theorem. Indeed, in place of
the assumption that DG = DE, assume that AFG is straight.
Since BC ‖ DE and BF ‖ DG, it follows by Desargues that
CF ‖ EG. In that case, since in triangle BCF the angles at C
and F are equal to one another, the same is true of the angles
at E and G in triangle DEG. (This uses the consequence of
Euclid’s fifth postulate that parallel straight lines make equal
angles with the same straight line.) As a result, DE = DG.
Thus, if this equation is true by construction, then AFG must
be straight.
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Figure . A circle of implications

In the end, we shall have the implications in Figure , at
least with the assumption of a certain part of Book I of Euclid’s
Elements.

In fact the theorems of Desargues, Pappus, and Thales are all
simply true in the full geometry of Book I of Euclid’s Elements.
We shall show this for Thales’s Theorem on Wednesday.
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Tuesday, September , 

The parallel case of Pappus’s Theorem

We can understand Pappus’s Theorem (or the Hexagon
Theorem) as having the six cases depicted in Figure . In
each case, the vertices of hexagon ABCDEF lie alternately
on two straight lines; but these may be parallel or not, and
of the pairs (AB,DE) and (BC,EF ) of opposite sides of the
hexagon, two, one, or none may be parallel.

Pappus’s Lemma VIII is the case where the two straight
lines intersect, and the two pairs of opposite sides of the hexa-
gon are parallel. In particular, letting the hexagon be ΒΓΗΕ∆Ζ
in Figure a, we suppose

ΒΓ ‖ ∆Ε, ΗΕ ‖ ΖΒ.

We prove ΓΗ ‖ ∆Ζ using several equations of triangles:

) ∆ΒΕ = ∆ΓΕ, [Elements I., since ΒΓ ‖ ∆Ε]

) ΑΒΕ = Γ∆Α, [add ∆ΑΕ]

) ΒΖΕ = ΒΖΗ, [Elements I., since ΒΖ ‖ ΕΗ]

) ΑΒΕ = ΑΗΖ, [subtract ΑΒΖ]

) ΑΓ∆ = ΑΗΖ, [steps  and ]

) Γ∆Η = ΓΖΗ, [add ΑΓΗ]

) ΓΗ ‖ ∆Ζ. [Elements I.]

In fact, if Pappus’s figure were more like those in Figure , it
might be as in Figure b; and then the proof would have to
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Figure . Cases of Pappus’s Theorem

 Geometries



Α

Β Γ

∆ Ε

Ζ

Η

(a) Lemma VIII itself

Α

Η
Ε

∆

ΖΒ

Γ

(b) Another version of Lemma VIII

Figure . A case of Pappus’s Theorem
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Figure . Lemma IV

be adjusted by, for example, subtracting ΒΖΕ and ΒΖΗ from

ΑΒΖ in step .

Pappus’s proof of the Quadrangle Theorem

Lemma IV is that if, as in Figure , the given points Α, Β,
Γ, ∆, Ε, and Ζ along a straight line satisfy the proportion

ΑΖ · ΒΓ : ΑΒ · ΓΖ :: ΑΖ · ∆Ε : Α∆ · ΕΖ, ()

then Θ, Η, and Ζ are in a straight line. To prove this, by
alternation of (), we obtain

ΑΖ · ΒΓ : ΑΖ · ∆Ε :: ΑΒ · ΓΖ : Α∆ · ΕΖ. ()

 Geometries



Considering first the left-hand member, we have by simplifi-
cation

ΑΖ · ΒΓ : ΑΖ · ∆Ε :: ΒΓ : ∆Ε,

and we write the latter ratio as a composition of three ratios:

ΒΓ : ∆Ε :: ΒΓ : ΚΝ & ΚΝ : ΚΜ & ΚΜ : ∆Ε.

Now we analyze the right-hand member of () as a composite:

ΑΒ · ΓΖ : Α∆ · ΕΖ :: ΒΑ : Α∆ & ΓΖ : ΖΕ.

Assuming ΚΜ is drawn parallel to ΑΖ, by Thales’s Theorem
we have

ΝΚ : ΚΜ :: ΒΑ : Α∆.

Eliminating this common ratio from either member of (),
and reversing the order of the new members, we obtain

ΓΖ : ΖΕ :: ΒΓ : ΚΝ & ΚΜ : ∆Ε,

and therefore, by Thales’s Theorem applied to each ratio in
the compound,

ΓΖ : ΖΕ :: ΘΓ : ΚΘ & ΚΗ : ΗΕ. ()

Pappus says now that ΘΗΖ is indeed straight. Although he
provides a reminder, he may expect his readers to know, as
some students today know from high school, the generalization
of Thales’s Theorem known as Menelaus’s Theorem whose
diagram is in Figure . Here ΕΞ ‖ ΘΓ, and ΘΗ is extended

Menelaus’s Sphaerica survives in Arabic translation [, p. ]; but
we also have Menelaus’s Theorem in Ptolemy, where I read it as a student
at St John’s College, just before Toomer’s  translation [] came out;
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ΓΖ : ΖΕ :: ΓΘ : ΘΚ & ΚΗ : ΗΕ ⇐⇒ ΘΗΖ is straight

Figure . Lemma from Lemma IV

to Ξ. Then from () we have

ΓΖ : ΖΕ :: ΘΓ : ΚΘ & ΚΘ : ΕΞ

:: ΘΓ : ΕΞ.

we used the translation that Taliaferro had made for the College [, I.,
p. ]. Thomas also puts Menelaus’s Theorem in his anthology [, pp.
 ff.]. In the commentary for their translation of Desargues, Field and
Gray remark that Pappus’s Lemma IV is proved by “chasing ratios much
in the fashion Desargues was later to use. In this case collinearity could
have been established by appealing to the converse of Menelaus’ theorem,
but when Pappus reached that point he missed that trick and continued
to chase ratios until the conclusion was established—in effect, proving the
converse of Menelaus’ theorem without saying so” [, pp. –]. I would
add that the similarity of “fashion” in Pappus and Desargues is probably
due to the latter’s having studied the former. Moreover, Pappus seems
not to have “missed the trick,” since he asserts the desired collinearity at a
point when it can be recognized only by somebody who knows Menelaus’s
Theorem.
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Figure . The Quadrangle Theorem

By Thales’s Theorem again, the points Θ, Ξ, and Ζ must be
collinear, and therefore the same is true for Θ, Η, and Ζ. This
completes the proof of Lemma VIII.

The steps of the proof are reversible. Thus, if we are given
the complete quadrangle ΗΘΚΛ of Figure  and the points
Α, Β, Γ, ∆, Ε, and Ζ where its sides cross a given straight line,
the proportion () must be satisfied. Therefore if five sides of
another complete quadrangle, as ΠΡΣΤ in Figure , should
pass through the points Α, Β, Γ, ∆, and Ε, then the sixth side
must pass through Ζ. This is the Quadrangle Theorem.
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Wednesday, September , 

Euclid’s proof of Thales’s Theorem

Suppose in Figure , DE ‖ BC. Then △DEB = △DEC, so

AD : DB :: △ADE : △DBE

:: △ADE : △ECD :: AE : EC.

Conversely, if AD : DB :: AE : EC, then

△ADE : △DBC :: AD : DB

:: AE : EC :: △ADE : △BCE,

and so △BCD = △BCE, which gives us DE ‖ BC. This is
Euclid’s proof of Thales’s Theorem.

In any proportion, any of the four terms, be it a straight
line, a plane figure, or a solid, can be replaced by a term of

A

B C

D E

Figure . Thales’s Theorem
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a b

c d

Figure . A proportion of lengths and areas

the same kind. Beyond this, the foregoing proof relies on two
properties of proportions:

. If a and b are bounded straight lines, and c and d are
plane figures, then the proportion

a : b :: c : d

is true if and only if there is a rectangle as in Figure .

. Sameness of ratio is indeed an equivalence relation. In
particular, it is transitive.

These properties follow from Euclid’s definition of proportion,
found in Book V of the Elements. But this definition relies on
the Archimedean Axiom, that for any two magnitudes that
have a ratio, some multiple of either of them must exceed the
other.

A simple definition of proportion

We can avoid using the Archimedean Axiom by, first of all,
letting Property  above be a definition. Moreover, if a, b, c,
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and d are all straight lines, we define

a : b :: c : d

if, for some plane figures e and f ,

a : b :: e : f, c : d :: e : f.

But we must check the following. Suppose this condition is
met, and also g and h are plane figures such that

a : b :: g : h.

Does it follow that c : d :: g : h ? It does, as is shown in Figure
a, which can be completed as in Figure b. Here the line
across the big parallelogram (which may not be a rectangle)
really is straight, so that the the smaller parallelograms are
equal in pairs, as shown.

Cross ratio in Pappus

In Lemma III, the straight lines ΘΕ and Θ∆ cut the straight
lines ΑΒ, ΓΑ, and ∆Α as in Figure . The diagram is com-
pleted by making

ΚΛ ‖ ΖΓΑ, ΛΜ ‖ ∆Α.

We first have
ΕΖ : ΖΑ :: ΕΘ : ΘΛ,

ΑΖ : ΖΗ :: ΘΛ : ΘΜ;
()

so ex aequali,

ΕΖ : ΖΗ :: ΕΘ : ΘΜ,

ΘΕ · ΗΖ = ΕΖ ·ΘΜ.
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Figure . A definition of proportion
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Figure . Lemma III

Being equal, these areas have the same ratio to ΕΖ ·ΘΗ, and
so

ΘΕ · ΗΖ : ΕΖ ·ΘΗ :: ΕΖ ·ΘΜ : ΕΖ ·ΘΗ

:: ΘΜ : ΘΗ

:: ΛΘ : ΘΚ. ()

The ratio ΛΘ : ΘΚ is independent of the choice of the straight
line through Θ that cuts the three straight lines that pass
through Α. In particular, we can conclude immediately

ΘΕ · ΗΖ : ΕΖ ·ΘΗ :: ΘΒ · ∆Γ : ΒΓ ·Θ∆,

which is the theorem.
The ratio ΘΕ · ΗΖ : ΕΖ · ΘΗ can be called the cross ratio

(çapraz oran) of the points Θ, Ε, Ζ, and Η. By the lemma,
if four straight lines in a plane intersect at a point, then the
cross ratio of the four points where some other straight line
crosses the lines is always the same. We can see this using
Figure .
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Figure . Invariance of cross ratio in Pappus
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Figure . Lemma X
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Figure . Lemma III reconfigured

Lemma X is a converse to Lemma III. The diagram is as
in Figure , where the hypothesis is

Θ∆ · ΒΓ : ∆Γ · ΒΘ :: ΘΗ · ΖΕ : ΘΕ · ΖΗ. ()

We make ΚΛ parallel to ΓΑ, and then extend ΑΒ and Α∆
to meet ΚΛ at two points, which Pappus writes as Κ and Λ,
though today we might say this is the wrong order. We ensure
ΛΜ ‖ Α∆ and ΚΝ ‖ ΑΒ, with ΕΘ extended to Μ, and ∆Θ
to Ν. Now we repeat part of the proof of in Lemma III, at
least in the configuration of Figure , with two of the three
concurrent straight lines interchanged. That is, using only the
part of the diagram shown in Figure a, we have

∆Θ : ΘΝ :: ∆Γ : ΓΒ,

∆Θ · ΓΒ = ∆Γ ·ΘΝ,

∆Θ · ΒΓ : ∆Γ · ΒΘ :: Γ∆ ·ΘΝ : ∆Γ · ΒΘ

:: ΘΝ : ΘΒ

:: ΚΘ : ΘΛ.
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Figure . Lemma X: two halves of the proof

Now we move to the part of the diagram shown in Figure b,
where we have proportions corresponding to the last two:

ΚΘ : ΘΛ :: ΗΘ : ΘΜ

:: ΘΗ · ΖΕ : ΘΜ · ΖΕ.

In sum, we have shown

∆Θ · ΒΓ : ∆Γ · ΒΘ :: ΘΗ · ΖΕ : ΘΜ · ΖΕ.

But the left member already appears in (). Hence the right
members of the two proportions are the same, that is,

ΘΗ · ΖΕ : ΘΕ · ΖΗ :: ΘΗ · ΖΕ : ΘΜ · ΖΕ,

ΘΕ · ΖΗ = ΘΜ · ΖΕ,

ΘΜ : ΘΕ :: ΗΖ : ΖΕ.

Thus what we did in Figure a, we have done in reverse in
Figure b. It remains to draw the conclusion ΑΖ ‖ ΚΛ, cor-
responding to the hypothesis ΑΓ ‖ ΚΛ. Pappus argues as
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follows (the bracketed proportions replaced with a reference
to addition and alternation):

[

ΘΜ+ΘΕ : ΘΕ :: ΗΖ+ ΖΕ : ΖΕ,

ΜΕ : ΘΕ :: ΗΕ : ΖΕ,

]

ΜΕ : ΕΗ :: ΘΕ : ΕΖ,

ΛΕ : ΕΑ :: ΘΕ : ΕΖ,

and so ΑΖ ‖ ΚΛ, which means ΓΑΖ must be straight.
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Friday, September , 

Addition and multiplication

In Euclid, a bounded straight line (sınırlanmış doğru çizgi)
is called more simply a straight line (doğru çizgi), and more
simply still, a “straight” (doğru). In English, this is usually
called a line segment (doğru parçası), although for Euclid,
and sometimes in English too, a line (çizgi) may be curved.
For example, a circle is a certain kind of line. For us though,
henceforth lines will always be straight and unbounded.

It is clear how to add the lengths of two line segments: place
the segments end to end in one straight line. Thus in Figure
,

AB +BC = AC.

It is implicit in Euclid and Pappus, and we are making it
explicit now, that AB, for example, can be reversed and placed
on itself so that A is on B and B is on A: briefly, AB = BA.
Then

BC + AB = CB +BA = CA = AC,

so addition is commutative.
We can consider addition in another way. We select a point

A on a Euclidean unbounded straight line. If B and C are

b b b

A B C

Figure . Addition of line segments
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b b b b

C A D B

A C B D

Figure . Sum of two points with respect to a third

also points on the line, distinct from one another and from A,
then there are two points D on the line such that

BD = AC,

but for only one of them do we also have

CD = AB.

See Figure . We may refer to this D as the sum of B and

C with respect to A, writing

D = B +A C = C +A B.

If B and C are the same point, then B +A C is the unique
point D different from A such that AB = BD. Finally, if one
of B and C is the same as A, then B +A C is the same as the
other. Thus defined, the operation +A makes the points of the
line into an abelian group with neutral element A.

Can we define a multiplication that makes this group into
a field? We have already treated the product of two line seg-
ments as a rectangle having sides equal to those two segments.
But now we should like the product of line segments to be an-
other segment.

If a and b are points on the real number line as studied in
calculus, then a+ b and a · b are also points on that line. The
directed segment from a to a+ b is equal to that from 0 to b.
But how is a · b defined?

 Geometries



1 b

a

a · b

Figure . Descartes’s definition of multiplication

Descartes showed the way []. The position of 1 on the real
line must be known. More generally, on our Euclidean straight
line with point A chosen, let us select another point B. We
can then denote by 1 the length of AB. If a and b are two
lengths, then by the proportion

1 : a :: b : a · b,

we can define the length a · b. To be more precise, since this
length depends on the segment AB, we might write the length
as

a ·AB b.

We can construct a line segment having this length by means
of Thales’s Theorem, as in Figure .

Why is the multiplication ·AB commutative? We do know
from Thales’s Theorem that if A, B, C, and D are now arbi-
trary line segments, and A : B :: C : D, then A · D = B · C,
where the products are rectangles as before. Since then B ·C =
C · B, we obtain A : C :: B : D. Therefore

1 : b :: a : a · b,
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Figure . Commutativity of Descartes’s multiplication

and so, by interchanging a and b,

1 : a :: b : b · a,

b · a = a · b.

For an alternative proof of commutativity of multiplication, we
can apply the case of Pappus’s Theorem established in Lemma
VIII, as in Figure .

We can do Euclidean geometry in the set R2 of ordered pairs
of real numbers. We can do some geometry in K2 for any field
K. We can even allow K to be a non-commutative field (also
known as a division ring); but then Pappus’s Theorem will
not be true in this geometry. We shall see this in more detail
tomorrow.

A non-commutative field

Meanwhile, an example of a non-commutative field is H, the
field, or rather skew field, of quaternions, discovered by
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Hamilton. We can obtain this field from the field C of com-
plex numbers roughly as C is obtained from R. Indeed, by one
definition,

C =

{(

x y
−y x

)

: x ∈ R & y ∈ R

}

.

We can write x for
(

x 0
0 x

)

and i for
(

0 1
−1 0

)

, so

(

x y
−y x

)

= x+ yi.

Now C is a commutative field, and it has the automorphism
z 7→ z given by

x+ yi = x− yi.

We define

H =

{(

z w
−w z

)

: z ∈ C & w ∈ C

}

.

One shows that this is an additive abelian group and is closed
under multiplication, and nonzero elements have multiplica-
tive inverses: it is a division ring. We can write z for

(

z 0
0 z

)

and j for
(

0 1
−1 0

)

, so

(

z w
−w z

)

= z + wj.

Then

ij =

(

i 0
0 −i

)(

0 1
−1 0

)

=

(

0 i

i 0

)

,

ji =

(

0 1
−1 0

)(

i 0
0 −i

)

=

(

0 −i

−i 0

)

.
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Figure . Lemma XI

Intersecting case of Pappus’s Theorem

Pappus’s Lemma XI is that, in Figure ,

∆Ε · ΖΗ : ΕΖ · Η∆ :: ΓΒ : ΒΕ.

Since ΓΘ is drawn parallel to ΑΕ, we have the two proportions

ΓΑ : ΑΗ :: ΓΘ : ΖΗ,

ΓΑ : ΑΗ :: Ε∆ : ∆Η,

and therefore

Ε∆ : ∆Η :: ΘΓ : ΖΗ,

Ε∆ · ΖΗ = ΓΘ · ∆Η,

Ε∆ · ΖΗ : ∆Η · ΕΖ :: ΓΘ · ∆Η : ∆Η · ΕΖ

:: ΓΘ : ΕΖ

:: ΓΒ : ΒΕ,
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Figure . Lemma XI variant

as desired. By Lemma III, if ΕΓ meets Α∆ at a point Κ, then

Ε∆ · ΖΗ : ΕΖ · Η∆ :: ΕΚ · ΓΒ : ΕΒ · ΓΚ

:: ΓΒ : ΕΒ & ΕΚ : ΓΚ.

In Lemma XI, the point K has been sent off to infinity, which
means ΕΚ : ΓΚ has become the unit ratio.

Pappus alludes to another case, presumably as in Figure .
There is no change in the proof.

Lemma XII is that, in Figure , the points Η, Μ, and Κ
are on a straight line. The proof considers the parts of the
diagram shown in Figure . Pappus’s argument is:

a) By Lemma XI,

∆Ζ : ΖΓ :: ΓΕ · ΗΘ : ΓΗ ·ΘΕ. ()

b) By Lemma XI again, inversion, and (),

ΓΖ : Ζ∆ :: ∆Ε · ΛΚ : ∆Κ · ΛΕ,

∆Ζ : ΖΓ :: ∆Κ · ΛΕ : ∆Ε · ΛΚ,

ΓΕ · ΗΘ : ΓΗ ·ΘΕ :: ∆Κ · ΛΕ : ∆Ε · ΚΛ.

Friday 



Α Β

Γ ∆

Ε

Ζ

Η

Θ

Κ

Λ

Μ

Figure . Lemma XII
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Figure . Steps of Lemma XII
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c) By Lemma X then, ΗΜΚ is straight.
Lemma XIII is similar, with Lemma III used in place of

Lemma XI. This gives us Pappus’s Theorem as proved by Pap-
pus, in the three cases labelled in Figure  on page .

A second proof of Pappus’s Theorem

Alternatively, from Lemma VIII, except for the easier case
where everything that might be parallel is parallel, all other
cases of Pappus’s Theorem can be derived by projection.

If a diagram is drawn on a transparent notebook cover, and
the cover is raised at an angle to the first page, and a shadow of
the diagram is cast on that page, all straight lines will remain
straight, but some parallel lines will cease to be so, and some
intersecting lines will become parallel.

Specifically, we can choose one straight line in a diagram
that will become the line at infinity for a new diagram. Call
this line in the original diagram A. All straight lines parallel
to A will remain parallel in the new diagram. Also, one line
parallel to these in the new diagram will represent the line at
infinity of the old diagram. Call this line in the new diagram
B. Lines that intersected on A become parallel in the new
diagram; lines that were parallel to one another, but not to A,
will intersect on B. See for example Figure .

Tomorrow we shall obtain a third proof of Pappus’s Theorem
by coordinatizing the projective plane.
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Figure . Pappus’s Theorem by projection
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Saturday, September , 

Cartesian coordinates

We saw yesterday that by choosing a point A on an infinite
straight line, we could make the points of the line into an
abelian group with the addition denoted by +A. By choos-
ing another point B on the line, we obtained a multiplication
·AB of lengths. This is not quite a multiplication of points.
However, given points C and D on the line, we can define

C ·AB D = E,

where E is a point on the line such that, if a and b are the
lengths of AC and AD, then a ·AB b is the length of AE, and
also A lies between B and E just in case it lies between C and
D. Equipped with addition and multiplication so defined, the
Euclidean line becomes a field.

We can obtain an isomorphic field by considering ratios of
line segments. On Wednesday we defined ratios of line seg-
ments and of rectangles. By this definition, any two line seg-
ments have the ratio of two rectangles. Conversely, for any two
rectangles, we can find line segments that have their ratio. For
example, in Figure ,

ABFE : DFKH :: AB : BC
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Figure . Line segments in the ratio of rectangles

since DFKH = BCGF . Ratios constitute a group, the oper-
ation being composition, since

(a : b & b : c) & c : d :: a : c & c : d :: a : d,

a : b & (b : c & c : d) :: a : b & b : d :: a : d.

Composition is commutative, since if

a : b :: c : d,

then by Thales’s Theorem

ad = bc, a : c :: b : d

(see Figure ), so that

a : b & b : c :: a : c,

b : c & a : b :: b : c & c : d :: b : d :: a : c.

We have defined the product of two line segments in two
different ways:

) as the rectangle bounded by them, or
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b

d

a c

bc

ad

Figure . Alternation of ratio

) as the straight line that has the same ratio to one of the
two segments that the other one has to some predeter-
mined segment.

In the former case, commutativity is immediate; in the latter
case, it follows from the theorems of Thales and Pappus, as
we showed. In either case, we can define sums of ratios of
line segments, through the usual process of finding a common
denominator:

(a : b) + (c : d) = ad+ bc : bd.

We get the same result, no matter which multiplication of
segments we use.

If we allow negative lengths and a zero length; then the ratios
of straight lines compose a field, which we shall call K.

We shall now work in the Euclidean plane: the plane in
which the propositions of Book I of the Elements are true. If
we choose a neutral point A, we obtain an additive abelian
group, as we did on a line. Associativity can be checked as
in Figure . The group can also be understood as a vector
space over the field K of ratios. Here if s is such an ratio, and
B is a point of the plane different from A, we define

s ·A B = C,
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A

B

C
D

B +A C

C +A D

B +A C +A D

Figure . Associativity of addition

where C is the point on AB such that

AC : AB = s.

Now suppose A, B, and C are vertices of a triangle, that
is, none of the three is on the straight line determined by the
other two. Then B and C compose a basis of the vector space
whose neutral point is A. In particular, for any point D of the
plane, there is a unique ordered pair (s, t) of ratios, meaning
(s, t) ∈ K2, such that

D = s ·A B +A t ·A C.

Here (s, t) is the pair of Cartesian coordinates of D with
respect to ABC. Conversely, every element of K2 corresponds
to a point of the plane in this way.
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Barycentric coordinates

Again, we have chosen triangle ABC, and for some D in the
same plane we have

D = s ·A B +A t ·A C.

This fails if we replace A with some other point. However, the
equations

D = A+A s ·A (B −A A) +A t ·A (C −A A)

= (1− s− t) ·A A+A s ·A B +A t ·A C

are still correct if the subscripts A are replaced with any other
point. Thus we may write simply

D = (1− s− t)A + sB + tC.

Conversely, if p, q, and r are three ratios whose sum is 1, then
the linear combination

pA + qB + rC

is unambiguous. Considering ABC as fixed, we may write the
same point pA+ qB + rC as

(p : q : r).

But now we can allow

(p : q : r) = (tp : tq : tr)

if t 6= 0. Thus, given arbitrary ratios p, q, and r whose sum is
not 0, we have

(p : q : r) =
p

p+ q + r
A +

q

p+ q + r
B +

r

p+ q + r
C

=
q

p+ q + r
·A B +A

r

p+ q + r
·A C.
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D

C

E

Figure . Ceva’s Theorem

This point has the barycentric coordinates p, q, and r, but
each must be considered together with the sum p+ q+ r. The
idea is that the point is the center of gravity (the barycenter) of
the system with weights p, q, and r at A, B, and C respectively.
If we define

D =
q

q + r
B +

r

q + r
C,

then D is a point on BC, and

(p : q : r) =
p

p+ q + r
A+

q + r

p+ q + r
D,

so (p : q : r) is a point on AD. Similarly we can define E and
F on AC and AB respectively, so that (p : q : r) is on BE and
CF . Note that

BD : DC :: r : q,

and so on, so that we have Ceva’s Theorem: in Figure ,
the lines AD, BE, and CF have a common point if and only
if

BD : DC & CE : EA & AF : FB :: 1.
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We can understand (p : q : r) as the equivalence class con-
sisting of all ordered triples (px, qx, rx), where x is a nonzero
ratio. The notation makes sense for all ratios p, q, and r. We
are going to show how to extend the Euclidean plane to the
projective plane by giving geometric meaning to (p : q : r)
when p+ q + r = 0 but at least one of p, q, and r is not 0.

Projective coordinates

For every straight line in the plane, there are ratios a, b, and c,
where at least one of a and b is not 0, such that the straight line
consists of the points such that, if their Cartesian coordinates
are (s, t), then

as + bt + c = 0.

If the same point has barycentric coordinates (p : q : r), where
p+ q + r = 1, then (s, t) = (q, r), and so

0 = aq + br + c(p+ q + r)

= cp+ (a+ c)q + (b+ c)r.

Thus the same line is given by

ax+ by + c = 0

in Cartesian coordinates and

cx+ (a+ c)y + (b+ c)z = 0

in barycentric coordinates. The straight lines parallel to this
one are obtained by changing c alone. Relabelling, we now
have that every straight line is given by an equation

ax+ by + cz = 0

Saturday 



in barycentric coordinates, where one of the coefficients a, b,
and c is different from the others (the coefficients are not all
equal). We obtain parallel lines by adding the same ratio to
each coefficient.

Thus, if ap+ bq + cr = 0, and p+ q + r = 0, but (p, q, r) 6=
(0,0,0), then (p : q : r) satisfies the equation of every straight
line parallel to ax + by + cz = 0, and no other straight line.
We can understand (p : q : r) as the point at infinity of the
straight lines parallel to ax+ by+ cz = 0. The line at infinity
is then defined by x+ y + z = 0.

The projective plane now consists of points (p : q : r), where
(p, q, r) 6= (0,0,0). The expression (p : q : r) consists of
projective coordinates for the point.

There is now a one-to-one correspondence between points of
the projective plane and straight lines in that plane: if the
point is (p : q : r) in projective coordinates, the straight line
is given by px+ qy + rz = 0.

We may use the notation

P
2(K) =

{

(x : y : z) : (x, y, z) ∈ K
3 \

{

(0,0,0)
}

}

.

Any triangle ABC in the Euclidean plane determines a sys-
tem of barycentric coordinates for the points of the plane,
hence a system of projective coordinates for the projective
plane. However, suppose a fourth point D in the Euclidean
plane does not lie on any of the three sides of ABC. Then D
has barycentric coordinates (µ : ν : ρ), with µνρ 6= 0. There
is now a bijection

(x : y : z) 7→

(

x

µ
:
y

ν
:
z

ρ

)

from the set of points of the projective plane to itself. This
bijection takes the line ax + by + cz = 0 to the line µax +
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νby+ρcz = 0, while fixing A, B, and C, which are (1 : 0 : 0),
(0 : 1 : 0), and (0 : 0 : 1) respectively. The points that used
to be on the line at infinity are sent to the line

µx+ νy + ρz = 0,

while of course the points now at infinity are on x+y+z = 0.
The only former point at infinity that is still at infinity is
(ν − ρ : ρ− µ : µ− ν). In particular, if E is a point that used
to be at infinity, we can have chosen D so that E is no longer
at infinity.

In this way, for any quadrangle ABCD in the projective
plane, there is a system of projective coordinates in which
the vertices of the quadrangle are (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1), and (1 : 1 : 1) respectively.

A third proof of Pappus’s Theorem

To prove Pappus’s Hexagon Theorem in yet another way, again
we suppose the vertices of the hexagon ABCDEF lie alter-
nately on straight lines ACE and BDF , and we let
• AB and DE intersect at G,
• BC and EF intersect at H ,
• CD and FA intersect at K.

We may now suppose further

A = (1 : 1 : 1), B = (1 : 0 : 0),

E = (0 : 1 : 0), K = (0 : 0 : 1),

as in Figure . The point of the choice is that no line of the
diagram contains two of B, E, and K, but these are on the
lines through A. If B, E, and K are all on a straight line, we
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Figure . Pappus’s Hexagon Theorem
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may replace them with F , C, and H . For the lines through A
we have

AB = {y = z}, AE = {x = z}, AK = {x = y},

and so, for some p, q, and r,

G = (p : 1 : 1), C = (1 : q : 1), F = (1 : 1 : r).

Consequently,

BF = {z = ry}, EG = {x = pz}, KC = {y = qx}.

Since these three lines have a common point, namely D, we
must have D = (1 : q : rq) = (pr : 1 : r) = (p : qp : 1), and so

1 = prq = qpr = rqp.

But we have also

BC = {y = qz}, EF = {z = rx}, KG = {x = py}.

In particular, H being the intersection of the first two of these
lines, we have

H = (1 : qr : r),

and this lies on KG since pqr = 1. Figure  shows the
situation when p = 2 and q = 2, so r = 1/4.
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Sunday, September , 

The projective plane over a field

Given a field K (possibly a “skew” or non-commutative field),
we have

P
2(K) =

(

K
3 \

{

(0,0,0)
}

)

/∼,

where
(p, q, r) ∼ (p′, q′, r′)

if and only if, for some t in K \ {0},

p′ = tp, q′ = tq, r′ = tr.

We may understand this both as the set of points in the pro-
jective plane and as the set of lines in the projective plane.
The point (p : q : r) sits on the line (a : b : c) if and only if
ap + bq + cr = 0. The line at infinity is (1 : 1 : 1), that is,
the line given by the equation x+ y+ z = 0. So the points at
infinity satisfy this.

The Fano Plane

For the simplest example, we may let K be the two-element
field F2, thus obtaining the Fano Plane. The four points of
F2
2 in barycentric coordinates are

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1).
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(1 : 1 : 1)

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

(0 : 1 : 1)(1 : 0 : 1)

(1 : 1 : 0)

Figure . The Fano Plane

There are three points at infinity in P2(K):

(1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1).

If we call these A, B, C, D, E, F , and G respectively, then
the seven lines are as follows:

{x = 0} = BCG, {y = z} = ADG,

{y = 0} = ACF, {x = z} = BDF,

{z = 0} = ABE, {x = y} = CDE,

and the line at infinity, EFG. All of this can be depicted as
in Figure .
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Figure . Desargues’s Theorem

A proof of Desargues’s Theorem

We now prove Desargues’s Theorem in P2(K) for arbitrary K.
The diagram is as in Figure , repeated as Figure . In K3,
if triangles ABC and DEF lie in two different planes, then
each of H , K, and L lies in each of those planes, and therefore
the three points lie in the intersection of the two planes, which
is a straight line. (If the planes are parallel, they meet at their
common line at infinity.) If ABC and DEF lie in the same
plane, the diagram can still be considered as the “shadow”
or projection of the three-dimensional case. So Desargues’s
Theorem holds in P2(K).

If K is not commutative, then Pappus’s Theorem does not
hold in P2(K). However, with three applications of Pap-
pus’s Theorem alone, we can prove Desargues’s Theorem as
sketched in Figure . using in turn the hexagons ABGMDC,
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Figure . Proof of Desargues’s Theorem
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Figure . The dual of Pappus’s Theorem

CDFEGM , and CMDQNP . Strictly, we have now proved
Desargues’s Theorem on the assumption of three axioms:

. Two points determine a line.
. Two lines determine a point.
. Pappus’s Theorem is true.

Duality

The dual of a statement about the projective plane is obtained
by interchanging points and lines. Thus the dual of Pappus’s
Theorem is that if the sides of a hexagon alternately meet
two points, then the straight lines met by pairs of opposite
vertices meet a common point. So, in the hexagon ABCDEF ,
let AB, CD, and EF intersect at G, and let BC, DE, and
FA intersect at H , as in Figure . If the diagonals AD and
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Figure . The Quadrangle Theorem

BE meet at K, then the diagonal CF also passes through
K. For we can apply Pappus’s Theorem itself to the hexagon
ADGEBH , since AGB and DEH are straight. Since AD and
EB intersect at K, and DG and BH at C, and GE and HA
at F , it follows that KCF is straight.

It now follows from the three axioms above that the dual
of Desargues’s Theorem is true. But the dual is precisely the
converse.

A second proof of the Quadrangle Theorem

We now use the converse of Desargues’s Theorem twice, and
the original Theorem once, to prove the Quadrangle Theorem.
We shall show that, in Figure , the line PQ passes through
F .
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. by the converse of Desargues’s Theorem applied to tri-
angles GHL and MNQ, since
• GH and MN meet at A,
• GL and MQ meet at D, and
• HL and NQ meet at E,

and ADE is straight, it follows that GM , HN , and LQ
intersect at a common point R (not drawn).

. Likewise, in triangles GHK and MNP , since
• GH and MN meet at A,
• GK and MP meet at B, and
• HK and NP meet at C,

and ABC is straight, it follows that KP passes through
the intersection point of GM and HN , which is R.

. So now we know that HN , KP , and LQ intersect at R.
Therefore, by Desargues’s Theorem, the respective sides
of triangles HKL and NPQ intersect along a straight
line. But HK and NP intersect at C, and HL and NQ
intersect at E; and KL intersects CE at F ; therefore
PQ must also intersect CE at F .
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