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Preface

The present typeset document is based on a course of lectures
at the Nesin Mathematics Village in Şirince, Selçuk, İzmir,
January – (Monday–Sunday), .

My course was one of three on the general theme of linear
algebra. The students were mostly advanced undergraduates,
though not necessarily from mathematics departments. The
daily schedule was as follows.

: Ali Nesin

: Ali Nesin

: lunch, chores, rest

: Haluk Oral

: David Pierce

: dinner

Thursdays at the Village are free in the summer, but not in the
winter. However, on the Friday of the program, Haluk took
my hours, so that he could leave the next morning; I took
his hours that afternoon. Most students were gone by Sunday
afternoon, but I gave a lecture then to the few who remained
and wanted to come.

Haluk’s course treated basic linear algebra (subspaces, linear
independence, etc.); Ali’s, modules. Ali suggested on Monday
morning that my course

treat one or several of the following:

. Finite fields.
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. Nondegenerate bilinear forms and some classification

problems.

. Tensor product of modules.

. Jordan normal form.

I chose finite fields, with Jordan normal forms on the last day,
since one student asked to hear about eigenvectors.

I started typesetting this document on Thursday morning,
after three lectures had been completed. The sources are
() my handwritten notes, prepared before the lectures, () my
memory of what happened in the lectures, and sometimes
() my wishes for enlargements or improvements. Thus the
notes are not a precise record of what actually happened,
though they should be close. The appendix completes the
work on Jordan normal forms started in the last class.

I started the first lecture in Turkish, though writing on the
board in English. During the break after fifty minutes, stu-
dents invited me to speak in English. Since nobody in the class
as a whole expressed a preference for Turkish when I asked,
I did switch to English, mostly. Sometimes students asked
questions, or asked for clarifications, in Turkish.

I originally learned much of the content of the course in
a graduate algebra course by Larry Washington that used
Hungerford [] as a reference. I learned elementary number
theory through teaching it, in a course based on Burton [].
In Şirince, for the linear algebra, I had the books of Cemal
Koç [, ] at hand; for finite fields, I had a look at Lidl and
Niederreiter [].
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Introduction

The main aim of the course is to establish the classification
and description of finite fields as follows.

. The size of every finite field is a power of a prime.
. For each prime power pn, there is, up to isomorphism,

exactly one field, called Fpn , whose size is pn.
. Fpm ⊆ Fpn if and only if m | n.
. The group of units of every finite field is cyclic.

There is a similar list on page . Our work will require the
classication of finite abelian groups (page ), which uses lin-
ear algebra. The full statement of the classification uses the
Chinese Remainder Theorem (page ).

Our work will also involve polynomial rings (in one variable)
over fields. Such rings are analogous to the ring Z of rational
integers. An incidental aim then is to analyze three theorems
about integers:

. Euclid’s Lemma (pages  and ), namely Proposition
 of Book vii of Euclid’s Elements ;

. Bézout’s Lemma (pages  and ); and
. the efficacy of the Euclidean Algorithm (page ) for

finding greatest common divisors: Propositions  and 
of Book vii of the Elements.

Among commutative rings that have no infinite descending
chains of divisors, that is, no sequences (a0, a1, a2, . . . ) such
that an+1 | an, but an ∤ an+1, the three theorems establish
sufficient and necessary conditions for being, respectively,

() a unique factorization domain (UFD),





() a principal ideal domain (PID), and
() a Euclidean domain (ED).

 Finite fields



. Monday, January 

What is a vector space? The answer could be
• a definition: “A vector space is X”;
• an example (or family of examples): “X is a vector

space.”

Definitions

By definition, a vector space is an abelian group, together
with a homomorphism from a field to the endomorphism ring
of the group.

An abelian group is a pair (V,+), where + is a binary
operation called addition on the set V , and

) the equations

u+ v = v + u, u+ (v +w) = (u+ v) +w

are identities on V , that is, + is commutative and
associative on V ;

) there is an identity for + in V , namely an element of
V denoted by

0

and called zero, such that, for all a in V ,

a+ 0 = a

(and therefore 0+ a = a, since + is commutative);





) each a in V has an (additive) inverse, namely an ele-
ment of V denoted by

−a

such that
−a+ a = 0

(and therefore a+ (−a) = 0).
Yes, we use the word “identity” in two ways, to describe both
() an equation that is true for all values of its variables, and
also () an element of a set that has no effect when combined
with others by means of some operation.

We may speak of V as an abelian group if it is clear that we
mean (V,+).

An endomorphism of (V,+) is a function f from V to itself
such that the equation

f(u+ v) = f(u) + f(v)

is an identity on V . The set of endomorphisms of (V,+) can
be denoted by

End(V,+).

This contains the function v 7→ v, called the identity on V
and abbreviated by

idV .

Also End(V,+) is closed under the binary operations of com-
position and addition, defined by the identities

(f ◦ g)(v) = f(g(v)), (f + g)(v) = f(v) + g(v).

Addition in End(V,+) is different from addition in V , but
they are related, and they are given the same symbol. The
quadruple (End(V,+),+, ◦, idV ) is a ring: this means

 Finite fields



) End(V,+) is an abelian group with respect to +;
) composition on End(V,+) is associative, and idV is

an identity for it; this means that the structure
(End(V,+), ◦, idV ) a monoid, though I did not use this
term in class;

) the equations

(f + g) ◦ h = f ◦ h+ g ◦ h, f ◦ (g + h) = f ◦ g + f ◦ h

are identities on End(V,+), that is, composition dis-
tributes over addition.

The element idV of End(V,+) is the identity both of the
monoid and of the ring. Some persons’ rings are not required
to have identities; but our rings are. In our example, compo-
sition is the multiplication of the ring. In an arbitrary ring,
this operation may be denoted by a dot, or by nothing at all,
as in a · b or ab. Also, the identity of the ring may be denoted
by 1. If the multiplication of a ring is commutative, then the
ring itself is called a commutative ring.∗

A ring (K,+, · , 1) is a field if (K r {0}, · ) is an abelian
group, where 0 is the identity of the group (K,+). In this case,
if ϕ is a function from K to End(V,+) such that the equations

ϕ(x+ y) = ϕ(x) + ϕ(y), ϕ(xy) = ϕ(x) ◦ ϕ(y), ϕ(1) = idV

are identities, this means ϕ preserves addition, multiplication,
and the identity, and ϕ is a homomorphism from K as a

∗The question arose among students in Şirince of why rings are so
called. If η is a complex number such that η2 + Bη + C = 0 for some
integers B and C, then the abelian group 〈1, η〉, namely {x+ηy : (x, y) ∈
Z × Z}, is closed under multiplication. According to Harvey Cohn [,
p. ], David Hilbert in  introduced the term number ring (Zahlring)
for the group, because η2 “circles directly back” to the group as −Bη−C.
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ring to End(V,+) as a ring. In this case, the triple (V,+, ϕ)
is a vector space. We may also say that the pair (V,+) is
vector space over K, with respect to ϕ. Preservation of the
identity by ϕ is important. without it, ϕ could be x 7→ 0,
where 0 stands for the element v 7→ 0 of End(V,+), even if
V has more than one element, and so idV is different from 0
in End(V,+). We do not wish to allow ϕ to be x 7→ 0 unless
V = {0}.

In this last case, when V = {0}, then (V,+) is a trivial
group, End(V,+) is the trivial ring, having a single ele-
ment, which is both v 7→ 0 and idV , the zero and the identity.
In this case, V is a vector space over every field. In case V is
nontrivial, then every ϕ as above must be injective, and there-
fore it can be understood as an identity, so that K is just a
sub-ring of End(V,+) that happens to be a field.

Examples

Examples of fields are R, C, and Q.
Z is a commutative ring, but not a field.
The counting numbers are 1, 2, 3, and so on. I use the

expression

N

to denote the set of these numbers. Here presumably N stands
for the natural numbers. Some persons count 0 as a natural
number, considering it to belong to N. I prefer to use the
notation

ω = {0, 1, 2, . . . } = {0} ∪ N.

Neither N nor ω is a ring.

 Finite fields



If n ∈ N, then by definition

Zn = {[x] : x ∈ Z},

where

[x] = [y] ⇐⇒ x ≡ y (mod n)

⇐⇒ n | x− y.

Here “x ≡ y (mod n)” is read as x is congruent to y modulo

n.∗ The definition of Zn does not say what [x] is ; it says only
when two instances of [x] are to be counted as the same. We
can think that

Zn = {0, . . . , n− 1} = {x ∈ ω : x < n}, (.)

since every integer is indeed congruent modulo n to an element
of this set, but no two elements are congruent to one another.
Since, modulo n,

x ≡ x1 & y ≡ y1 =⇒ x+ y ≡ x1 + y1 & xy ≡ x1y1,

operations of addition and multiplication on Zn are well de-
fined by the rules

[x] + [y] = [x+ y], [x] · [y] = [xy].

With respect to these operations, Zn is a commutative ring,
because Z is a commutative ring. If we use the understanding
in (.), then for example [n] = 0, [n+1] = 1, and [−1] = n−1.

When is the ring Zn a field, that is, when do nonzero ele-
ments have (multiplicative) inverses?

∗Modulo is the dative or ablative case (roughly, the Turkish -e or
-den hali) of the Latin noun modulus. Writing entirely in Latin, Gauss in
the Disquisitiones Arithmeticae uses the expression secundum modulum

n, “according to the modulus n” [, p. ].
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• If n = 1, then Zn = {0}, which cannot be a field, since
{0}r{0} = ∅, and every group is nonempty (it contains
at least the identity).

• Suppose n is composite, that is, n = ab for some a and
b such that 1 < a < n, so that also 1 < b < n. If ax ≡ 1
(mod n), then

b ≡ bax ≡ nx ≡ 0 (mod n),

which is absurd. Thus Zn is not a field in this case.
• If n is prime, we shall show Zn is a field. The proof will

use the following.

Euclid’s Lemma. In Z, for all primes p,

p | ab & p ∤ a =⇒ p | b.

Proving this is an exercise (which will be solved on pages 
and ). The letter p will always stand for a prime. Because
of the Lemma, if 1 6 a < p, then the endomorphism x 7→ ax
of (Zn,+) is injective, since, modulo p,

ax ≡ ay =⇒ p | ax− ay

=⇒ p | a(x− y)

=⇒ p | x− y [by the Lemma, since p ∤ a]

=⇒ x ≡ y.

By the Pigeonhole Principle, since Zp is finite, x 7→ ax must
also be surjective. In particular, the congruence

ax ≡ 1 (mod p)

is soluble.

 Finite fields



So now Zp is field, called

Fp.

We shall show that there are other finite fields. In particular,
for every prime p, for every n in N, there will be a unique field
called

Fpn

of size pn. For example, F4 = {0, 1, α, α+ 1}, with multiplica-
tion defined so that

α2 = α + 1.

If we write β for α + 1, the operations are thus:

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

× 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

If K is a finite field, then as a group it has the subgroup
denoted by

〈1〉,

namely the smallest subgroup that contains 1. Since K is
finite, 〈1〉 must be Zn for some n. This will be a sub-ring of
K, and so n must be prime, since (in the terms of tomorrow’s
lecture) every sub-ring of a field must be an integral domain,
and we have shown in effect that Zn is not an integral domain
if n = 1 or n is composite. The prime p such that 〈1〉 = Zp,
or rather such that

1 + · · ·+ 1
︸ ︷︷ ︸

p

= 0
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in K, is called the characteristic of the field. There is no
such p for the fields Q, R, and C, and so these are said to have
characteristic 0.

If K is a field, and n ∈ N, then Kn is a vector space over K.
The elements of Kn are

(x1, . . . , xn),

where each xj is in K. Addition in Kn is given by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

and each a in Kn determines the endomorphism

(x1, . . . , xn) 7→ (ax1, . . . , axn).

But what is (x1, . . . , xn)? It is the function on {1, . . . , n} that
takes the value xj at each j.

If A is an arbitrary set, then we can define

KA = {functions from A to K};

this is a vector space over K, just as Kn is. In particular,

Kn = K{1,...,n}.

We cannot define n as {1, . . . , n}. We can however define

n = {0, . . . , n− 1}.

Thus

0 = ∅, n+ 1 = n ∪ {n}.

With this understanding, which is the one that I prefer, ele-
ments of Kn can be written as

(x0, . . . , xn−1).

 Finite fields



. Tuesday, January 

Products

For any sets A and B, we can let

BA = {functions from A to B}.

If B is a field, then, as we said yesterday, BA is a vector space.
Moreover, if B is itself a vector space over some field, then BA

is also a vector space over that field. If B is a group or a ring,
then so is BA.

More generally, if we are given a set Ba for each a in A, we
define the product

∏

a∈A

Ba

to be the set of functions f on A such that, for each a in A,

f(a) ∈ Ba.

Thus
BA =

∏

a∈A

B.

Also, if n ∈ ω, we may use the notations
∏

i∈n

Bi = B0 × · · · ×Bn−1, Bn = B × · · · ×B
︸ ︷︷ ︸

n

.

If each Ba is a vector space (over the same field), or a group,
or a ring, then so is

∏

a∈A Ba. In each case, this is because,
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for example, if ∗ is a binary operation on each Ba, then the
“same” operation can be defined on

∏

a∈A Ba by

(f ∗ g)(x) = f(x) ∗ g(x).

As we have seen, groups, rings, and vector spaces over a given
field are defined by identities, namely (as we said on page )
equations that hold for all possible values of the variables. An
identity on B is also an identity on BA. However, among the
field axioms, there is the formula

∃y (x 6= 0 =⇒ xy = 1).

As an axiom, this formula is understood to hold for all values
of its free variable, which is x. But the formula is not an
equation, and so we cannot automatically expect it to hold in
a product of fields. Indeed KA is not a field when K is, unless
|A| = 1.

Integral domains

An integral domain is a nontrivial commutative ring with
no zero divisors, that is, no nonzero elements a and b such
that ab = 0. Thus integral domains have the axiom

xy = 0 & x = 0 =⇒ y = 0,

which is not an equation. Indeed, in Z× Z, we have

(1, 0) · (0, 1) = (0, 0),

and (0, 0) is the group identity of Z × Z; so (1, 0) and (0, 1)
are zero divisors.

 Finite fields



If n is a composite element of N, we proved yesterday that
Zn is not a field by showing, in effect, that Zn has zero divisors,
and these are not invertible. This is true in every ring: a zero
divisor cannot be invertible. Thus invertible elements are not
zero divisors, and therefore every field is an integral domain.
However, the converse fails: Z is an integral domain that is
not a field.

Finite cyclic groups

As we showed yesterday,

• Z1 is the trivial ring, which is not a field;

• Zn is not a field when n is composite;

• Zp is a field when p is prime.

Thus if n ∈ N and Zn is a field, then n must be prime, by
pure logic. If n is composite, so that n = ab, where a and b
are strictly between 1 and n, then a and b are zero divisors in
Zn. We consider the first few groups Zn.

• Z2 and Z3 are fields.
• In Z4, 12 = 1, 22 = 0, 32 = 1, so 1 and 3 are invertible,

but 2 is a zero-divisor and is therefore not invertible.
• Z5 is a field.
• In Z6, 12 = 1, 2 · 3 = 0, 4 · 3 = 0, 52 = 1; so 1 and 5 are

invertible, but 2, 3, and 4 are zero divisors.
• Z7 is a field.
• In Z8, 12 = 33 = 52 = 72, but 2 · 4 = 6 · 4 = 0.
• In Z9, 12 = 2 · 5 = 4 · 7 = 82 = 1, but 32 = 62 = 0.
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Groups of units

If R is a commutative ring, we define

R× = {invertible elements of R}.

Here × is the multiplication sign (and not the letter x). Thus
if p is prime, then

Zp
× = {1, . . . , p− 1};

but

Z4
× = {1, 3}, Z6

× = {1, 5}, Z8
× = {1, 3, 5, 7},

Z9
× = {1, 2, 4, 5, 7, 8}, Z10

× = {1, 3, 7, 9}.

In general, R× is called the group of units of R. The set R×

is indeed a group with respect to multiplication, since each
element a by definition has an inverse, a−1, and then this too
has an inverse, namely a, and so a−1 ∈ R×. Invertible elements
of a ring are units.

Theorem. For all n in N,

Zn
× = {k ∈ ω : k < n & gcd(k, n) = 1}. (.)

Proof. Assuming 0 6 k < n, we want to show that, modulo n,

gcd(k, n) = 1 ⇐⇒ ∃x kx ≡ 1.

(⇐). Suppose ka ≡ 1. Then n | ka− 1, so

gcd(k, n) | ka− 1.

 Finite fields



But gcd(k, n) | ka, so gcd(k, n) | 1, and therefore gcd(k, n) =
1.

(⇒). Suppose gcd(k, n) = 1. As yesterday, the endomor-
phism x 7→ kx of Zn is injective, by the more general form of
Euclid’s Lemma below. Again x 7→ kx must be surjective by
the Pigeonhole Principle, so kx ≡ 1 (mod n) is soluble.

So the proof is completed by the following.

Euclid’s Lemma, generalized. For all m in N, for all a
and b in ω,

m | ab & gcd(m, a) = 1 =⇒ m | b. (.)

Proof. Suppose the claim is false; we shall find a contradiction.
If the claim is false, then, because N is well ordered, there is
a minimal counterexample, namely some n in N such that, for
all m in N, if m < n, then for all a and b in ω, (.) holds;
but for some a and b in ω,

n | ab & gcd(n, a) = 1 & n ∤ b. (.)

If a > n, then we can replace a with a − n. Thus, since ω is
well ordered, we may assume a < n. Similarly we may assume
b < n. Then ab < n2, and so, for some m,

mn = ab & m < n.

In particular,

m

gcd(m, a)
· n =

a

gcd(m, a)
· b.

Therefore in (.) we can replace a with a/ gcd(m, a). Thus
we may assume gcd(m, a) = 1. Now, (.) holds, since m < n.

. Tuesday, January  



Therefore m | b. Hence in (.) we can replace b with b/m. But
in this case n = ab, so gcd(n, a) = a. Thus a = 1, and so n | b,
contradicting (.). So there is no minimal counterexample to
the original claim. Therefore there is no counterexample at
all, and the claim holds.

By definition,

ϕ(n) = {x ∈ ω : x < n & gcd(n, x) = 1},

and so now we have, by (.),

ϕ(n) =
∣
∣Zn

×
∣
∣ .

Here ϕ is the Euler phi-function.∗ A few values are as
follows.

n 1 2 3 4 5 6 7 8 9 10 11 12
ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4

In general,

ϕ(p) = p− 1, ϕ(pn+1) = pn+1 − pn.

∗This terminology is used by Burton [, pp. –], who mentions
also the alternative terms indicator and totient, while saying, “the func-
tional notation φ(n), however, is credited to Gauss.” Burton does not say
who does the crediting. Kline [, p. ] does it, saying, “The notation
φ(n) was introduced by Gauss.” Indeed, Article  of the Disquisitiones

Arithmeticae [, p. ] is, “problem. To find how many positive numbers

are smaller than a given positive number A and relatively prime to it. For
brevity we will designate the number of positive numbers which are rel-
atively prime to the given number and smaller than it by the prefix φ.
We seek therefore φA.” In the next article, Gauss adjusts the definition
to allow φ1 to be 1 (as we do) and not 0.

 Finite fields



From the table,

ϕ(6) = ϕ(2) ·ϕ(3),

ϕ(10) = ϕ(2) ·ϕ(5),

ϕ(12) = ϕ(3) ·ϕ(4).

We are going to prove that this is not an accident, but ϕ is
multiplicative, that is,∗

gcd(x, y) = 1 =⇒ ϕ(xy) = ϕ(x) ·ϕ(y).

∗It may be noted that, for the letter phi, instead of φ I prefer ϕ,
as being less like the symbol ∅ for the empty set, and as being more
like what I write by hand. For use as a permanently defined constant, I
prefer the upright form ϕ. Most of the students were familiar with the
phi-function, though a few were not.
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. Wednesday, February 

Finite fields

Our ultimate goal is to prove the following four theorems:

. For every prime p, for every n in N, there is a field of
size pn.

. There is a unique such field (up to isomorphism), called
Fpn .

. The group of units of a finite field is cyclic, so

Fpn
× ∼= Zpn−1.

. Fpm ⊆ Fpn if and only if—what?

We answer the last question as follows. For every field L, if
K is a subfield of L, then L is a vector space over K. In this
case, suppose the dimension of L over K is n:

dimK L = d.





What is the size of L?∗ We know L has a basis (ai : i < d);†

this means that every element of L is uniquely of the form

∑

i<d

xiai,

where xi ∈ K. Thus
|L| = |K|d .

In case K = Fpm , we have |L| = pmd. Thus

Fpm ⊆ Fpn =⇒ m | n.

The converse will be true as well. Thus the finite fields of
characteristic p will form a tree, part of which is seen in Figure
.. In fact there will be a field Fpℓ right above Fp in the tree
for every prime ℓ. Also, for all a and b in N, both Fpa and Fpb

will be included in Fpgcd(a,b) . Thus the union
⋃

n∈N Fpn of all of
the finite fields of characteristic p will be a field, namely the
algebraic closure of Fp. (See page .)

Polynomial rings

On page  we saw F4 = {0, 1, α, α+1}. A better way to write
this will be as F2[α] or else

F2[X]/(X2 +X + 1).

∗One student initially proposed the answer n · |K|.
†Probably in class I wrote {ai : i < d}, but strictly this notation does

not establish that the basis has size d. The ensuing explanation of a basis
relies not just on the set of basis elements, but on a function into this set
from a set of size d. Here the set of size d is d itself (page ), which is
{0, . . . , d− 1} or {x ∈ ω : x < d}, and the function on it is i 7→ ai.

. Wednesday, February  



Fp4 Fp6 Fp9

Fp2

❇❇❇❇❇❇❇❇

Fp3

❇❇❇❇❇❇❇❇

· · ·

Fp

❇❇❇❇❇❇❇❇

⑥⑥⑥⑥⑥⑥⑥⑥⑥

Figure ..: The tree of finite fields of characteristic p

For any commutative ring R,

R[X] = {polynomials in X over R}

= {0} ∪

{
n∑

i=0

aiX
i : n ∈ ω & ai ∈ R & an 6= 0

}

.

If f =
∑n

i=0 aiX
i, where an 6= 0, then we say the degree of f

is n, that is,
deg f = n.

Also, by definition,
deg 0 = −∞.

Then for all f and g in R[X],

deg(fg) 6 deg f + deg g,

with equality if R is an integral domain. In this case, R[X]
too must be an integral domain.

 Finite fields



We are interested mainly in the case where R is a field K.
If f ∈ K[X], we define

K[X]/(f) = {[g] : g ∈ K[X]},

where
[g] = [h] ⇐⇒ f | g − h.

In the same way, if n ∈ N, we can write

Z/(n) = Zn,

since Zn = {[x] : x ∈ Z}, where

[x] = [y] ⇐⇒ n | x− y.

Indeed, we are going to be investigating an analogy between
Z and K[X]. (See the remark on page  about how we do
not say what [x] is in itself.)

In K[X]/(f), if we write [X] as α (that is, [g] = α when g
is X), then for any g in K[X],

[g] = g(α).

Assuming deg f = n > 0, by division (see below) we have
that, for every g in K[X], there is g1 in K[X] such that

f | g − g1, deg g1 < n.

Here g1 is the remainder after dividing g by f . Thus

K[X]/(f) = {g(α) : g ∈ K[X] & deg g < n}.

We may denote this set also by

K[α].
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In fact it is a ring in a fairly obvious way. For, we may assume
that f is monic, that is, f = Xn−g for some g having degree
less than n. Then multiplication in K[α] is as we expect, ex-
cept that f(α) = 0, so that αn is replaced with g(α) whenever
it comes up. We shall say more on this tomorrow.

If f = gh, where 0 < deg g < n, then also 0 < deg h < n,
and so g(α) and g(α) are nonzero, although their product is
0. Thus K[α] has zero divisors in this case. We say f is
reducible.

Otherwise f is irreducible, and then K[α] is an integral
domain. In this case, if K is finite, then K[α] is actually a
field, for the same reason that Zp was shown to be a field on
page : multiplication by a nonzero element is an injective
endomorphism of the additive group, so it is also surjective.
(By a different argument, K[α] will be a field, even if K is
infinite; see page .)

Thus, to prove the first of the four theorems above about
finite fields, for each prime p, for each n in N, we shall show
that there is an irreducible polynomial over Fp of degree n.

For example, X2 +X + 1 is irreducible over F2, because for
all a and b in F2,

(X − a)(X − b) = X2 − (a+ b)X + ab,

but

a = b =⇒ a+ b = 0,

a 6= b =⇒ ab = 0,

and so
(X − a)(X − b) 6= X2 +X + 1.

Similarly, X3 + X + 1 is irreducible over F2: showing this is
an exercise.

 Finite fields



The Euclidean algorithm

The chief analogy between Z and K[X] lies in the similarity
of the functions x 7→ |x| on Z and f 7→ deg f on K[X]. Each
one allows us to perform division effectively. Indeed, for all
a in Z r {0}, for all b in Z, we have

b = ax+ y

for some unique x and y in Z such that also

0 6 y < |a| .

Similarly, for all f in K[X]r {0}, for all g in K[X], we have

g = fh+ r

for some unique h and r in K[X] such that also

deg r < deg f.

This means that, in both Z and K[X], the Euclidean al-
gorithm can be used to find greatest common divisors. For
example, in Z, we have gcd(13, 8) = 1, because

13 = 8 + 5,

8 = 5 + 3,

5 = 3 + 2,

3 = 2 + 1.

Reversing the steps, we find

1 = 3− 2

= 3− (5− 3) = 3 · 2− 5

= (8− 5) · 2− 5 = 8 · 2− 5 · 3

= 8 · 2− (13− 8) · 3 = 8 · 5− 13 · 3.
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In the same way, for all a and b in Z that are not both 0, the
equation

ax+ by = gcd(a, b) (.)

is soluble in Z. This result can be called Bézout’s Lemma.∗

This now gives us an easy proof of the general form of Euclid’s
Lemma on page . We assume n | ab and gcd(n, a) = 1. Then
for some x and y we have

nx+ ay = 1,

bnx+ aby = b,

and so n | b since n | bnx and n | aby.
A reason for giving the other proof is that solubility of (.)

is actually stronger than Euclid’s Lemma: there are rings in
which the latter is true, but (.) is not always soluble. We
shall see an example tomorrow (page ).

The Chinese Remainder Theorem

For any k and m in N, there is a well-defined ring homomor-
phism x 7→ (x, x) from Zkm to Zk × Zm. If gcd(k,m) = 1,

∗The term is used in Wikipedia, but I have not found clear historical
justification for it. Bézout’s relevant concern seems to have been polyno-
mials. According to Morris Kline [, p. ] (who writes Bézout’s name
without the accent), “Bezout’s idea [sketched first in ] was that by
multiplying f(x, y) and g(x, y) by suitable polynomials, F (x) and G(x)
respectively, he could form R(y) = F (x)f(x, y) + G(x)g(x, y).” Now, an
“idea” is not necessarily a theorem; but perhaps Kline made a mistake,
and F and G were supposed to be polynomials in x and y. This way,
unless f and g have a common factor in x, the x can be eliminated by
performing the Euclidean algorithm in K(y)[x], then clearing fractions.

 Finite fields



this homomorphism is injective: this was shown in Ali Nesin’s
class earlier today. In this case, it follows that

Zkm
× ∼= Zk

× × Zm
×,

and so
ϕ(km) = ϕ(k) ·ϕ(m).

What is the inverse of the isomorphism x 7→ (x, x)? It is given
by the Chinese Remainder Theorem. For all a and b in
Z, we know that the congruences

x ≡ a (mod k), x ≡ b (mod m) (.)

are equivalent to a single congruence

x ≡ (mod km).

Indeed, we just let x be the inverse image of (a, b) under x 7→
(x, x). We expect

x ≡ a + b (mod km).

The multiple of a should disappear modulo k, and the multiple
of b should disappear modulo m. Thus we expect

x ≡ am + bk (mod km).

But then the multiple of a should be a modulo k, and the
multiple of b should be b modulo m. Therefore the congruences
(.) are equivalent to

x ≡ amc+ bkd (mod km),

where

mc ≡ 1 (mod k), kd ≡ 1 (mod m).
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Z4

0 1 2 3
0 0 9 6 3

Z3 1 4 1 10 7
2 8 5 2 11

Figure ..: The Chinese Remainder Theorem in a table

Such c and d exist since gcd(k,m) = 1, so that

m ∈ Zk
×, k ∈ Zm

×.

The inverse of x 7→ (x, x) is now

(y, z) 7→ mcy + kdz.

One can read the values of this inverse off a table, as in Figure
., where one can read directly that the solution to

x ≡ 1 (mod 3), x ≡ 2 (mod 4)

is 10.
There is also a well-defined homomorphism

(y, z) 7→ my + kz

from Zk×Zm to Zkm as groups, again assuming gcd(k,m) = 1.
There are group endomorphisms x 7→ cx of Zk and x 7→ dx
of Zm. These fit into a commutative diagram as in Figure
.. We can therefore conclude that (x, y) 7→ mx + ky is an
isomorphism from Zk × Zm as a group to Zkm.

This means for example that every element of Z12 is, in
exactly one way, the difference of an element of 〈3〉 and an
element of 〈4〉; see Figure ..
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Zk × Zm

Zkm

Zk × Zm

(y,
z)

7−→
my

+ kz

x7−
→

(x,
x)

(y
,z)

7−
→

(cy
,d
z)

Figure ..: The Chinese Remainder Theorem in three
isomorphisms

b

bb
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b b

0
1

2

3
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6

7

8

9

10

11

Figure ..: Z12 = 〈3〉 × 〈4〉 ∼= Z4 × Z3
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. Thursday, January 

Endomorphism rings

We have observed (page ) that, for every abelian group
(V,+), there is an endomorphism ring, namely

(End(V,+),+, ◦, idV ).

If the abelian group V is trivial, then the endomorphism ring
End(V,+) is trivial. If End(V,+) is not trivial, then V is a
vector space over any sub-ring of End(V,+) that happens to
be a field. Also V is a module over any sub-ring of End(V,+)
at all. (V is a left module over a sub-ring of End(V,+), if
the elements of End(V,+) are written on the left of their ar-
guments, or more precisely if (f ◦g)(x) means f(g(x)) and not
g(f(x)).)

What is End(Zn,+)? Suppose ϕ ∈ End(Zn,+). If 0 6 k <
n, then

ϕ(k) = ϕ(1 + · · ·+ 1
︸ ︷︷ ︸

k

) = ϕ(1) + · · ·+ ϕ(1)
︸ ︷︷ ︸

k

= ϕ(1) · k.

Thus ϕ is determined by ϕ(1). Conversely, if a ∈ Zn, we can
define ϕa in End(Zn,+) by

ϕa(x) = ax.

Thus ϕ = ϕϕ(1). We have moreover

ϕab = ϕa ◦ ϕb, ϕa+b = ϕa + ϕb.





Since, finally, ϕ1 = idZn
, we can conclude

x 7−→ ϕx : (Zn,+, · , 1)
∼=

−→ (End(Zn,+),+, ◦, idZn
).

In this way, the ring structure of Zn is determined by the group
structure.

Automorphism groups

An automorphism is an endomorphism that is invertible
as an endomorphism. In other words, it is an isomorphism
from a structure to itself. (The letters AU of “auto-” in “au-
tomorphism” are related to EF in the Turkish efendi, since
the latter—which was taken into English as “effendi”—comes
from the Greek αὐθέντης, source also of the English “authen-
tic” and a compound of αὐτο- and ἕντης.) The automorphisms
of (Zn,+), for example, compose a set denoted by

Aut(Zn,+).

Then by what we have just shown,

Aut(Zn,+) ∼= Zn
×.

We are going to show

Aut(Zp) ∼= Zp−1.

Meanwhile, what is Aut(Z10)? We have

Z10
× = {1, 3, 7, 9} = {1, 3,−3,−1},

32 = −1, 33 = −3,
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and therefore Z10
× ∼= Z4. However,

Z30
× = {1, 7, 11, 13,−13,−11,−7,−1}

(the number of elements is correct since ϕ(30) = ϕ(2) ·ϕ(3) ·
ϕ(5) = 2 · 4 = 8). We find

72 = −11, 73 = 13, 74 = 1,

〈7〉 ∼= Z4,

Z30
× = 〈7,−1〉 ∼= Z4 × Z2.

It is also the case that Z30
× = 〈7,−7〉. However, 〈7〉 ∩ 〈−7〉 =

〈−11〉 ∼= Z2, so Z30
× is not 〈7〉×〈−7〉: this product is too big.

The main point to observe is that Z30
× is not cyclic.

For any group (G, · ), abelian or not, if G contains a and b,
and ab = ba, and 〈a〉∩〈b〉 is trivial, then 〈a, b〉 ∼= 〈a〉×〈b〉. (In
class I stated this only for abelian groups, written additively;
but it is not hard to prove in any case.)

As an exercise, write Z24
× as a product of finite cyclic

groups. In fact

Z24
× = 〈5, 7,−1〉 ∼= Z2

3.

It is a theorem (which we are not going to prove in its entirety)
that Zn

× is cyclic if and only if n is 2, 4, pk, or 2pk for some k
in N and some odd prime p.

Suppose gcd(k,m) = 1. Then k ∈ Zm
× and m ∈ Zk

×, so c
and d exist as before such that

mc ≡ 1 (mod k), kd ≡ 1 (mod m).

Then c ∈ Zk
× and d ∈ Zm

×, so (x, y) 7→ (cx, dy) is indeed an
automorphism of Zk × Zm. Then x 7→ (cx, dx) is an isomor-
phism from Zkm to Zk×Zm. As an exercise, verify our earlier
claim that the inverse of this isomorphism is (x, y) 7→ mx+ky.

 Finite fields



If K is a field and f ∈ K[X], we defined

K[X]/(f) = {[g] : g ∈ K[X]},

where

[g] = [h] ⇐⇒ f | g − h

⇐⇒ g ≡ h mod f.

We let α = [X] and wrote K[X]/(f) as K[α], noting g(α) =
[g]. We observed that, if deg f = n > 0, then

K[α] = {g(α) : g ∈ K[X] & deg g < n}.

In particular, K[α] has basis {1, α, . . . , αn−1} as a vector space
over K. This is true, even if n = 0, in the sense that the basis
is empty in this case. For, if deg f = 0, this means f ∈ K×.
Moreover,

K× = K[X]×. (.)

Thus f is invertible, which means it divides everything in
K[X], and so [g] = [h] for all g and h in K[X]. In partic-
ular, K[α] = {0} = {α}.

There is a final case to consider. If f = 0, then

[g] = [h] ⇐⇒ g = h.

Thus K[X]/(0) ∼= K[X].

Irreducibles

By (.), for all f in K[X],

deg f = 0 ⇐⇒ f ∈ K[X]×.
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This allows us to rewrite the definition of irreducible polyno-
mial in a form that makes sense for any commutative ring. If
R is such a ring, an element π is irreducible if π 6= 0 and
π /∈ R× and

π = ab & a /∈ R× =⇒ b ∈ R×.

By this definition, the irreducibles of Z are just ±p. An ele-
ment π of R is prime if π 6= 0 and π /∈ R× and π satisfies
Euclid’s Lemma, that is,

π | ab & π ∤ a =⇒ π ∤ b.

Then we can reformulate an earlier statement (from page )
as follows:

Euclid’s Lemma. In Z, all irreducibles are prime.

Euclid’s Lemma ensures that irreducible factorizations are
unique, when they exist at all. Thus if

p0 · · · pm−1 = q0 · · · qn−1,

where pi and qj are positive irreducibles in Z, then

p0 | q0 · · · qn−1,

and so p0 | qj for some j, and then p0 = qj. In this way m = n,
and for some permutation σ of m,

p0 · · · pm−1 = qσ(0) · · · qσ(m−1).

The converse of Euclid’s Lemma is more generally true:

Theorem. In every integral domain, all primes are irre-
ducible.
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Proof. Suppose π is prime and π = ab. Then π | ab, so we
may assume π | a. For some c then, cπ = a. Hence

bcπ = ab = π,

so bc = 1 in an integral domain. In this case, c is invertible.

In integral domain whose every nonzero element is uniquely
the product of irreducibles is called a unique factorization
domain or UFD. Here the uniqueness is up to replacement by
associates; two elements of a ring are associates if they divide
one another, like a and −a in Z. Euclid’s Lemma is that Z is
a UFD. Any two elements of a UFD that are not both 0 have
a greatest common divisor.∗ Indeed, if two elements a and b
are respectively

∏

i<n

πa(i),
∏

i<n

πb(i),

where the πi are irreducible, then

gcd(a, b) =
∏

i<n

πmin(a(i),b(i)).

We also proved something stronger for Z (page ):

Bézout’s Lemma. In Z, for all a and b that are not both 0,
the equation

ax+ by = gcd(a, b) (.)

is soluble.

∗In class I did not define associates or show that greatest common
divisors exist in UFDs.
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This is stronger than Euclid’s Lemma, since in Z[X], all irre-
ducibles are prime, and in fact Z[X] is a UFD; but gcd(X, 2) =
1, and the equation

2u+Xt = 1

is insoluble. A UFD in which Bézout’s Lemma holds is a
principal ideal domain or PID.

As earlier (page ), we can derive Bézout’s Lemma from
the following:

Theorem (division algorithm). On Z, the function x 7→ |x|
on Z has the following properties.

. Its range is well ordered.
. For every nonzero a, for every b, for some c,

a | b− c, |c| < |a| .

Any commutative ring with the properties of Z in the theo-
rem is a Euclidean domain or ED. Thus if K is a field, then
K[X] is an ED. Some PIDs are not EDs, though this is hard
to prove.

As a reminder that not all EDs are PIDs, one may wish to
prove Bézout’s Lemma for Z without relying on the Euclidean
algorithm, just as we originally proved Euclid’s Lemma on
page . If a and b are not both 0, one can show that the least
positive element of {ax+ by : (x, y) ∈ Z2} must be gcd(a, b).

Nonetheless, we may understand Bézout’s Lemma as the
theorem that equation (.) is always soluble in any Euclidean
domain, particularly K[X] when K is a field.

 Finite fields



. Saturday, January 

About finite fields, we know that
) the size of each of them is a power of a prime, and
) if L is a finite field with subfield K, then for some n in

N,
|L| = |K|n .

We are now going to show that L× is cyclic.

Finite abelian groups

On Thursday we looked at Zn
× when n is 10 and 24. Also,

Z28
× = {x ∈ Z : − 14 < x 6 14 & gcd(28, x) = 1}

= {±1,±3,±5,±9,±11,±13},

which is confirmed by

ϕ(28) = ϕ(4) ·ϕ(7) = 2 · 6 = 12.

We compute

k 1 2 3 4 5 6
3k 3 9 −1 −3 −9 1 (mod 28)

,

so that 〈3〉 ∼= Z6. Since 132 = 169 and 6 · 28 = 168, we have

132 ≡ 1 (mod 28),

〈13〉 ∩ 〈3〉 = {1},

〈13, 3〉 = 〈13〉 × 〈3〉,

Z28
× = 〈13〉 × 〈3〉 ∼= Z2 × Z6.
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We use here the more general result that, if (G, ·) is an arbi-
trary group with elements a and b such that ab = ba, then there
is a well-defined homomorphism (x, y) 7→ xy or (ai, bj) 7→ aibj

from 〈a〉 × 〈b〉 to G (exercise). If, further, 〈a〉 ∩ 〈b〉 = {1},
then the homomorphism is injective, since if aibj = 1, then
ai = b−j, so both of these are in 〈a〉 ∩ 〈b〉, and therefore they
are 1. In this case

〈a〉 × 〈b〉 ∼= 〈a, b〉.

We can write this as an equation if it is understood that a and
b indeed belong to the same group, so that 〈a〉 × 〈b〉 is the
so-called internal direct product.∗

We know Z6
∼= Z2 ×Z3, and in fact Z6 is the internal direct

product 〈3〉 × 〈2〉. Thus

Z28
× ∼= Z2 × Z2 × Z3,

Z28
× ∼= 〈13〉 × 〈33〉 × 〈32〉 ∼= 〈13〉 × 〈−1〉 × 〈9〉.

Classification of finite abelian groups. Every finite
abelian group is isomorphic to a product

Zk(0) × · · · × Zk(n−1)

for some n in ω, for some k(i) in Nr {1} such that

k(0) | k(1) & · · · & k(n− 2) | k(n− 1).

(If n = 0, the product is the trivial product, which is the triv-
ial group.) By the Chinese Remainder Theorem, every finite
abelian group is therefore isomorphic to a product

Zq(0) × · · · × Zq(m−1)

∗I did not use this terminology in class, but I stated the theorem
because of a question from a student.
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for some m in ω, for some powers q(j) of primes. The latter
factorization is unique, and therefore the former is unique.

Proof. We shall prove only the existence of the former factor-
ization, because that is all that we shall need; the rest is an
exercise. Every finite abelian group (G,+) is 〈a0, . . . , an−1〉,
that is,

{a0x0 + · · ·+ an−1xn−1 : x ∈ Zn},

for some ai in G. Here possibly G = {a0, . . . , an−1} as a
set; but instead we could require n to be minimal such that
G = 〈a0, . . . , an−1〉 for some ai in G. In any case, there is an
epimorphism (a surjective homomorphism)

x 7→
∑

i<n

aixi

from Zn onto G. Let N be the kernel of this epimorphism;
then by the (first) isomorphism theorem (learned in Ali
Nesin’s class),

G ∼= Zn/N.

We can think of the elements of Zn as 1×n matrices, which are
row vectors. Then every automorphism (invertible endomor-
phism, as on page ) of Zn can be understood as x 7→ x · Q
for some n × n invertible matrix Q over Z. The set of such
matrices (or else the automorphisms that they represent) is
denoted by

GLn(Z),

where GL stands for “general linear [group].” Then the func-
tion

x ·Q 7→
∑

i<n

aixi,
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






k(0) 0 . . . 0

0 k(1)
. . .

...
...

. . . . . . 0
0 . . . 0 k(n− 1)








Figure ..: A diagonal matrix

namely x 7→ x ·Q−1 followed by x 7→
∑

i<n aixi, is an epimor-
phism from Zn onto G with kernel

{x ·Q : x ∈ N}.

Thus G ∼= Zn/{x ·Q : x ∈ N}. We are going to find Q so that
{x ·Q : x ∈ N} is generated by the rows of an n× n diagonal
matrix as in Figure .; we can write the matrix also as

diag(k(0), . . . , k(n− 1)).

We shall be able to require further that

k(0) | . . . | k(n− 1);

and in this case G will be as desired. (Some of the k(i) at the
end might be 0.)

The first step is to show that any subgroup of Zn is generated
by n elements. Suppose s > n, and some subgroup of Zn is
generated by s elements. Let those s elements by the rows of
an s× n matrix A over Z. Then we can write the group as

〈A〉.

For all P in GLs(Z), the matrix product PA is obtained from
A by a sequence of elementary row operations, namely
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













a0 ∗ . . . ∗

0 a1
. . .

...
...

. . . . . . ∗
0 . . . 0 an−1

0 . . . . . . . . 0
...

...
0 . . . . . . . . 0















Figure ..: An upper triangular matrix

) adding a multiple of one row to another,
) interchanging two rows,
) multiplying a row by an element of Z×, which is {±1}.

Thus
〈PA〉 = 〈A〉.

For some P in GLs(Z), PA will be an upper triangular matrix,
having the form in Figure .. For example, by elementary row
operations, we obtain





8 14
4 13
6 9



 ,





0 −12
4 13
2 −4



 ,





0 −12
0 21
2 −4



 ,





0 −12
0 −3
2 −4



 ,





0 0
0 −3
2 −4



 ,





2 −4
0 −3
0 0



 ,





2 2
0 3
0 0



 ,

and so
〈(8, 14), (4, 13), (6, 9)〉 = 〈(2, 2), (0, 3)〉.

The general procedure is the following.
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) If the first column of A is (a0 · · · an−1)
T (that is, the

column vector that is the transpose of the row vector
(a0 . . . an−1)), then, using the Euclidean algorithm, re-
duce this to

(gcd(a0, . . . , an−1) 0 · · · 0)T .

) If the second column of the resulting matrix is
(b0 · · · bn−1)

T , reduce this to

(b0 gcd(b1, . . . , bn−1) 0 · · · 0)T .

) Treat the third column similarly, and so on.
This shows that any subgroup of Zn generated by s elements is
generated by n elements. The same goes for subgroups gener-
ated by infinitely many elements, since the foregoing procedure
applies to ∞× n matrices.

In the second and final step, we may assume N is generated
by the rows of an n× n matrix A. If P and Q are in GLn(Z),
we say that PAQ is similar to A. We want to show that A
is similar to a diagonal matrix as above. Let ℓ(0) be the least
positive entry of any matrix similar to A. Then

A ∼

(
ℓ(0) ∗
∗ ∗

)

∼

(
ℓ(0) 0

0 A1

)

since otherwise the first row or column can be given a positive
entry that is less than ℓ(0). Now let ℓ(1) be the least positive
entry of any such matrix A1. Then

A ∼





ℓ(0) 0 0

0 ℓ(1) 0

0 0 A2



 ,
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and so on. Thus

A ∼ diag(ℓ(0), ℓ(1), . . . , ℓ(n− 1)).

Finally we obtain A as desired by observing
(
a 0
0 b

)

∼

(
a b
0 b

)

∼

(
gcd(a, b) 0

bx by

)

∼

(
gcd(a, b) 0

0 by

)

,

and gcd(a, b) | by.

Units of finite fields

Theorem. The group of units of every finite field is cyclic.

Proof. Let K be a finite field. Then by the classification of
finite abelian groups, K× is isomorphic to a product

Zk(0) × · · · × Zk(n−1)

for some n in ω, for some k(i) in Nr {1} such that

k(0) | . . . | k(n− 1).

If n = 0, the product is the trivial group, which is cyclic, and
so we are done. (The trivial group is the group of units of F2.)
We may henceforth assume n > 0. For every (x0, . . . , xn−1) in
Zk(0) × · · · × Zk(n−1), writing k(n− 1) as k, we have

k · (x0, . . . , xn−1) = (kx0, . . . , kxn−1) = (0, . . . , 0) = 0,

since k(i) | k. Therefore, for every a in K× we have

ak = 1.

. Saturday, January  



Thus every element of K× is a zero of the polynomial

Xk − 1.

Over any field, for every d in ω, every polynomial of degree
d has at most d zeroes. We prove this by induction. A poly-
nomial of degree 0 is a nonzero constant, so it has 0 zeroes.
Suppose deg f = d+ 1 and f(α) = 0. By division,

f = (X − α) · g + h,

where g is a polynomial of degree d, and deg h < 1, so h is
constant. But then

0 = f(α) = 0 · g(α) + h = h.

Thus f = (X − α) · g. Suppose β is a zero of f different from
α. Then

(β − α) · g(β) = 0,

so g(β) = 0 since a field is an integral domain. So the zeroes
of f , other than α, are zeroes of g. If g has at most d zeroes,
then f must have at most d + 1 zeroes. This completes the
induction.

We now have

∣
∣K×

∣
∣ 6 k = k(n− 1) 6 k(0) · · · k(n− 1) =

∣
∣K×

∣
∣ ,

k(n− 1) = k(0) · · · k(n− 1),

and so n = 1 (since we assume k(0) > 1). Thus

K× ∼= Zk = Z|K|−1.
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Existence of finite fields

If K is a finite field of size pn, then we now know that the
elements of K× are precisely the zeroes of the polynomial
Xpn−1 − 1 in any field that includes K. Hence the elements of
K are precisely the zeroes of the polynomial

Xpn −X

in any field that includes K. This means the elements of K
are the fixed points of the function x 7→ xpn . Now, in Z we
have

(a+ b)p
n

≡ ap
n

+ bp
n

(mod p),

since, for example,

(a+ b)p = ap + pap−1b+

(
p

2

)

ap−2b2 + · · ·+ pabp−1 + bp

≡ ap + bp (mod p);

the general result is left as an exercise. In a field of charac-
teristic p then, we have

(x+ y)p
n

= xpn + yp
n

, (xy)p
n

= xpn · yp
n

, 1p
n

= 1.

Thus x 7→ xpn is an endomorphism of the field.
For any endomorphism ϕ of a field, the set {x : ϕ(x) = x}

of fixed points is a subfield: this too is an exercise. Thus,
to show that there is finite field of size pn, we need only show
that there is a field of characteristic p that contains pn zeroes of
Xpn−X; these zeroes will then constitute the desired subfield.
An example of a field containing pn zeroes of Xpn −X is the
algebraic closure of Fp.
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A field is algebraically closed if the only irreducible poly-
nomials over it are linear (that is, of degree 1). An example
is C, though we are not going to prove this; the result does
follow from the fact that R is real closed, that is, every poly-
nomial function that takes both positive and negative values
has a zero.

We have seen that if f is irreducible over a field K, then f
has a zero in K[X]/(f), namely the element called [X]. We
showed on page  that K[X]/(f) is a field if K is finite. In
fact it is a field in any case. For if f ∤ g, then, since f is
irreducible and therefore prime, we have gcd(f, g) = 1, and
so, by Bézout’s Lemma (in the sense of page ), or by the
Euclidean algorithm, we can find polynomials h and k such
that

fh+ gk = 1.

In K[X]/(f) then, [g][k] = 1, so [g] is invertible. We could
have proved similarly that Fp is a field.

Starting with Fp, we can obtain a chain or tower

K0 ⊆ K1 ⊆ K2 ⊆ · · ·

of fields, where K0 = Fp and for each n in ω, for some irre-
ducible fn over Kn,

Kn+1 = Kn[X]/(fn).

Then
⋃

n∈ωKn is a field, and if we have chosen the fn prop-
erly, that field will be algebraically closed. It will then be the
algebraic closure

Fp
alg

of Fp, in the sense described below. Inside this field, we can
find each Fpn , as above.
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Actually we have to show also∗ that the polynomial Xpn−X
has pn distinct zeroes in Fp

alg. For example, the polynomial
Xpn − 1 has only one zero in a field of characteristic p, since
there the polynomial factorizes as (X − 1)p

n

. If Xpn −X has
fewer than pn distinct zeroes in Fp

alg, then for one of those
zeroes, say α, for some polynomial g of degree pn−2, we must
have

Xpn −X = (X − α)2 · g.

In this case, by formal differentiation, since we are in a field
of characteristic p,

−1 = 2(X − α) · g + (X − α)2 · g′

= (X − α)·
(
2g + (X − α) · g′

)
,

(.)

which is absurd. Here formal differentiation over a field K
is the endomorphism f 7→ f ′ of K[X] as a vector space over
K given by

(
n∑

i=0

aiX
i

)′

=
n∑

i=1

iaiX
i−1.

One shows that

(fg)′ = f ′g + fg′, (.)

which is what we used to establish (.). One can prove (.)
by induction on deg g, or directly from the equation

(
∑

i

aiX
i

)

·
∑

j

bjX
j =

∑

k

(
∑

i+j=k

aibj

)

Xk

∗I did not do this in class.
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Uniqueness of finite fields

We establish the uniqueness of Fpn as follows. If f is irreducible
over a field K, but has a zero α in some larger field L, we let

K[α]

denote the smallest sub-ring of L that includes K∪{α}. In fact
this sub-ring will be {g(α) : g ∈ K[X]}, which is the image of
the ring K[X] under the homomorphism g 7→ g(α). Also the
kernel of this homomorphism is (f), that is, {g ∈ K[X] : f | g}.
Thus, by the isomorphism theorem,

K[X]/(f) ∼= K[α].

Hence K[α] is a field. Using this, one shows that the alge-
braically closed field

⋃

n∈ωKn constructed above embeds in
every algebraically closed field that includes Fp. (An embed-
ding is a monomorphism, that is, an injective homomor-
phism.) This is the sense in which the field

⋃

n∈ωKn is the
algebraic closure of Fp. There is only one algebraic closure,
up to isomorphism, called Fp

alg as above; its uniqueness proves
the uniqueness of each Fpn .
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Endomorphisms of groups and vector spaces

We said yesterday that the automorphisms of Zn are the func-
tions

x 7→ x ·Q,

where x is an element of Zn considered as a row vector, and
Q is an invertible n× n matrix, that is,

Q ∈ GLn(Z).

Why is this? If i < n, let

e
i = (ei0, . . . , e

i
n−1), where eij =

{

1, if i = j,

0, if i 6= j.

Then
x =

∑

i<n

xie
i

for all x in Zn. Thus if ϕ in End(Zn), then

ϕ(x) =
∑

i<n

ϕ(xie
i) =

∑

i<n

xi · ϕ(e
i) = x ·






ϕ(e0)
...

ϕ(en−1)




 .

If ϕ ∈ Aut(Zn), this means the n × n matrix whose rows are
the ϕ(ei) must be invertible.
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Here we have been considering Zn as an abelian group, not
a ring: as (Zn,+), not (Zn,+, · , 1).

We know that Rn is a vector space over R, which means
there is a homomorphism from R to End(Rn,+). As a vector
space over R, Rn has the endomorphism ring

Mn(R),

namely the ring of n×n matrices over R, by the same reasoning
as for Zn. However, as a group, Rn has a larger endomorphism
ring, unless n = 0. For, as a group, R is a vector space over
Q, in the sense that

k

m
· x = y ⇐⇒ k · x = m · y

for all x and y in R, all k in Z, and all m in N. But R then
has a basis over Q (by the Axiom of Choice, as discussed in
Ali Nesin’s class), in fact an uncountable basis of size |R|; and
then End(R,+,Q) will have size

∣
∣2R
∣
∣.

The characteristic polynomial of a matrix

R embeds in Mn(R) under

x 7→ x · In,

where In is the n× n identity matrix, that is,

In =






e
0

...
e
n−1




 =








1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1








.
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The same is true when R is replaced with an arbitrary field
K. Let A ∈ Mn(K). It may be that for some nonzero v in
Kn, for some λ in K,

v · A = λ · v.

This means
0 = v · (λ · In −A).

Since we assume v 6= 0, the matrix λ · In −A must not be
invertible, and so we must have det(λ · In −A) = 0. The poly-
nomial

det(X · In −A)

in X of degree n over K is the characteristic polynomial of
A. Its zeroes are the characteristic values or eigenvalues
of A. If λ is an eigenvalue of A, then the solution space of the
equation

0 = x · (λ · In −A)

is the eigenspace associated with λ, and its nonzero elements
are the eigenvectors (or characteristic vectors) associated
with λ.

Diagonalizable matrices

For example, if

A =

(
−1 −5
−5 −1

)

,

then

det(X · I2−A) = det

(
X + 1 5

5 X + 1

)

= (X + 1)2 − 25 = X2 + 2X − 24 = (X + 6)(X − 4),
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so the eigenvalues of A are −6 and 4. The corresponding
eigenspaces are as follows.

• λ = −6:

0 = x ·

(
−5 5
5 −5

)

⇐⇒ 0 = x ·

(
1 0
−1 0

)

⇐⇒ (0, 0) = (x0 − x1, 0)

⇐⇒ x0 = x1

⇐⇒ x = t · (1, 1) for some t in K.

• λ = 4:

0 = x ·

(
5 5
5 5

)

⇐⇒ 0 = x ·

(
1 0
1 0

)

⇐⇒ x0 = −x1

⇐⇒ x = t · (1,−1) for some t in K.

Letting the eigenvectors (1, 1) and (1,−1) be the rows of a
matrix, we obtain

(
1 1
1 −1

)

· A =

(
−6 −6
4 −4

)

=

(
−6 0
0 4

)

·

(
1 1
1 −1

)

,

(
−6 0
0 4

)

=

(
1 1
1 −1

)

· A ·

(
1 1
1 −1

)−1

.

In general, if A is an n× n matrix with n distinct eigenvalues
λ0, . . . , λn−1, and v0, . . . , vn−1 are corresponding eigenvectors,
then

PA = diag(λ0, . . . , λn−1) · P,

where

P =






v0

...
vn−1




 .
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We can conclude that PAP−1 is a diagonal matrix whose diag-
onal entries are the eigenvalues of A, provided A is invertible.
It is invertible by the following.

Theorem. Eigenvectors corresponding to distinct eigenvalues
of any matrix are linearly independent.

Proof. We prove the claim by induction on the number of
eigenvectors. The empty set of eigenvectors is trivially linearly
independent. Suppose vi is the eigenvector corresponding to
λi, and

∑

i<n+1

xi
vi = 0. (.)

Multiplying by the matrix gives

∑

i<n+1

λix
i
vi = 0.

But just multiplying by λn gives

∑

i<n+1

λnx
i
vi = 0.

By subtraction, one term is cancelled, and we have

∑

i<n

(λn − λi)x
i
vi = 0.

If n eigenvectors corresponding to distinct eigenvalues must
be linearly independent, then we can conclude (λn−λi)x

i = 0
when i < n, so xi = 0 when i < n, and then also xn =
0 by (.); so n + 1 eigenvectors corresponding to distinct
eigenvalues must be linearly independent.
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A nondiagonalizable matrix

Possibly an n×n matrix does not have n distinct eigenvectors.
Still, if the sum of the dimensions of the eigenspaces is n, A
will be diagonalizable, just as in the case where there are n
distinct eigenvectors.

However, not every square matrix is diagonalizable, even
over an algebraically closed field. Suppose for example

A =

(
8 4
−9 −4

)

.

Then

det(X · I2 −A) = det

(
X − 8 −4

9 X + 4

)

= (X − 8)(X + 4) + 36 = X2 − 4X + 4 = (X − 2)2,

so A has the unique eigenvalue 2. Moreover,

0 = x · (2 I2 −A) ⇐⇒ 0 = x ·

(
−6 −4
9 6

)

⇐⇒ 0 = x ·

(
2 2
−3 −3

)

⇐⇒ 0 = x ·

(
2 0
−3 0

)

⇐⇒ 2x0 = 3x1

⇐⇒ x = t · (3, 2) for some t in K,

so the unique eigenspace is one-dimensional, spanned by (3, 2).
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But then

(3, 2) = x · (2 I2 −A)

⇐⇒ (3, 2) = x ·

(
−6 −4
9 6

)

⇐⇒ (−1,−1) = x ·

(
2 2
−3 −3

)

⇐⇒ (−1, 0) = x ·

(
2 0
−3 0

)

⇐⇒ −1 = 2x0 − 3x1

⇐⇒ x = t · (3, 2)− (1
2
, 0) for some t in K.

One solution here is (1, 1). Call this c, and let (3, 2) = b.
Then

0 = 2b− b · A, b = 2c− c · A,

that is,

b · A = 2b, c · A = 2c− b,

and so
(
c

b

)

· A =

(
2c− b

2b

)

=

(
2 −1
0 2

)

·

(
c

b

)

,

(
c

b

)

· A ·

(
c

b

)−1

=

(
2 −1
0 2

)

.

We also have
(
−c

b

)

· A ·

(
−c

b

)−1

=

(
2 1
0 2

)

.
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The general claim, which we are not proving, is that, for every
square matrix A over an algebraically closed field, for some
invertible P ,

PAP−1 = diag(B0, . . . , Bk−1),

where each Bi is not necessarily a number, but a square matrix,
of the form 









λ 1 0 . . . 0

0 λ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 . . . . . . . 0 λ











,

where λ is an eigenvalue of A. The matrix diag(B0, . . . , Bk−1)
is the Jordan normal form of A. Note that the same eigen-
value may appear in more than one of the matrices Bi.
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A. Jordan Normal Form

We are going to show that every square matrix over an alge-
braically closed field is “almost” diagonalizable, in the sense
of having the Jordan normal form described above. We shall
show moreover that the procedure used above for finding a Jor-
dan normal form works generally. The presentation is based
mainly on that of Lang [].

Polynomial functions of matrices

Although K is a field, the ring Mn(K) is not commutative.
However, it has commutative sub-rings. Indeed, for every A
in Mn(K), there is smallest sub-ring of Mn(K) that contains
A. We may denote this sub-ring by

K[A].

This ring is commutative. As a vector space over K, K[A] is
spanned by In and the positive powers of A. Indeed, for any
f in K[X], for any A in Mn(K), there is a well-defined matrix
f(A) in Mn(K). In particular, if f =

∑n

i=0 biX
i, then

f(A) =
n∑

i=0

biA
i.

Then
K[A] =

{
f(A) : f ∈ K[X]

}
.
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If f(A) is the zero matrix, we may say A is a zero of f . Note
however that K[A] may have zero divisors. Indeed, A itself
may be a zero divisor, since for example

(
0 1
0 0

)2

= 0

(where the last 0 is the zero matrix).
In proving that the group of units of every finite field is

cyclic, we showed that a polynomial has no more zeros than
its degree; but these zeroes belong to a field over which the
polynomial is defined. If f ∈ K[X], and K is a subfield of a
field L, then the number of zeroes of f in L is no greater than
deg f .

We know that K embeds in Mn(K) under x 7→ x · In; but a
polynomial over K can have any number of zeroes in Mn(K)
or even in a sub-ring K[A]. Indeed, if A = ( 0 1

0 0 ) as above,
then β · A belongs to K[A] for all β in K, and β · A is a zero
of X2.

Cayley–Hamilton Theorem

Given a square matrix over some field, we are going to want
to know that the matrix is a zero of some nonzero polynomial.
The following gives us this.

Theorem (Cayley–Hamilton). Over any field, every matrix is
a zero of its characteristic polynomial.

First proof. Let K be a field, let A ∈ Mn(K), and let

f = det(X · In−A), (A.)
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
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


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a10 a11
. . .

...
...

. . . . . .
...

...
. . . 0

an−1
0 . . . . . . . . . . . an−1

n−1











Figure A..: A lower triangular matrix

the characteristic polynomial of A. We want to show f(A) = 0.
It so happens that det(A · In −A) = det(0) = 0. Thus we want
to show

f(A) = det(A · In −A).

This does not follow immediately from (A.) by replacing X
with the matrix A, because the multiplications symbolized in
the terms X · In and A · In are two different operations, namely
scalar multiplication and matrix multiplication respectively.

Since the determinant function is multiplicative, for every P
in GLn(Z),

det(X · In −A) = det
(
P · (X · In−A) · P−1

)

= det(X · In −PAP−1).

For some P , PAP−1 is a lower triangular matrix, as we
shall show presently, so that we may assume A is as in Figure
A.. The characteristic polynomial of A is now

∏

i<n

(X − aii).

We have to show ∏

i<n

(A− aii In) = 0.

A. Jordan Normal Form 



The product here is independent of the order of the factors. If
j < n, then row j of the product is

e
j ·
∏

i<n

(A− aii In).

However, since A is the matrix in Figure A., we have

e
j · (A− ajj In) = e

j · A− ajje
j =

∑

i<j

ajie
i.

By induction then,

e
j ·
∏

i6j

(A− aii In) = 0;

for if this is true when j < k, then

e
k ·
∏

i6k

(A− aii In) =
∑

i<k

aki e
i ·
∏

i<k

(A− aii In) = 0.

It remains to find, for arbitrary B in Mn(K), an invertible
matrix P such that PBP−1 is lower triangular. We shall use
induction. Replacing K with its algebraic closure if necessary,
we know there is a basis (vi : i < n) of Kn such that v

0 is an
eigenvector. Let C and D in Mn(K) be such that

∑

i<n

xiv
i · C = x0v

0,
∑

i<n

xiv
i ·D =

∑

0<i<n

xiv
i.

Then x 7→ x · BC is a homomorphism from Kn to span(v0),
and x 7→ x · BD is an endomorphism of span(vi : 0 < i < n),
and

x ·B = x ·BC + x ·BD. (A.)
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As an inductive hypothesis, we assume that span(vi : 0 < i <
n) has a basis (wi : 0 < i < n) such that

w
j ·BD ∈ span(wi : 0 < i 6 j)

whenever 0 < j < n. Then (v0,w1, . . . ,wn−1) is a basis of
Kn, and

v
0 ·B ∈ span(v0)

since v
0 is an eigenvector of B, and by (A.),

w
j · B ∈ span(v0,w0, . . . ,wj)

whenever 0 < j < n. This completes the induction. If we now
define aji by

v
0 ·B = a00v

0, w
j ·B = aj0v

0 + aj1w
1 + · · ·+ ajjw

j ,

and we let P be the matrix whose n rows are
(v0,w1, . . . ,wn−1), then, with A as in Figure A., we have
PB = AP , so P is as desired.

Second proof. For every B in Mn(K), there is a matrix in
Mn(K) called the adjoint of B, and denoted by adj(B), such
that

detB · In = B · adj(B). (A.)

This is all we need to know about the adjoint; but in fact, if

B = (bij)
i∈n
j∈n,

so that
detB =

∑

σ∈Sym(n)

sgn(σ) ·
∏

i<n

biσ(i),
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then

adj(B) =

(

(−1)i+j · det
(

(bkℓ )
k∈nr{i}
ℓ∈nr{j}

))j∈n

i∈n

.

From (A.), if we let B = X · In −A, then we have

det(X · In−A) · In = (X · In −A) · adj(B). (A.)

The two members of this equation are elements of Mn(K[X]);
that is, they are matrices with polynomial entries. We can
write out the left-hand member as a sum

Xm · Cm +Xm−1 · Cm−1 + · · ·+X · C1 + C0, (A.)

where Ci ∈ Mn(K) and, as it happens, m = n. We are going to
perform a variant of the division algorithm (page ). Again,
the sum in (A.) is equal to either member of (A.). if we
abbreviate the sum by C, then we have

C = (X · In −A) ·Xm−1 · Cm +D, (A.)

where D stands for

Xm−1 · (A · Cm + Cm−1) +Xm−2 · Cm−2 + · · ·+X · C1 + C0.

If we replace X with A, either in C or D, by (A.) we get the
same result. By induction, for some Q in Mn(K[X]) and R in
Mn(K),

C = (X · In−A) ·Q+R,

where R is the result of replacing X in C with A. Moreover,
Q and R are unique. Comparing with (A.), we conclude that
Q = adj(B) and, what is the point for us, R = 0.
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Direct sums

Suppose V is a vector space over K, and n ∈ N, and for each
j in n, Vj is a subspace of V . If the homomorphism

(vi : i < n) 7→
∑

i<n

vi

from
∏

i<n Vi to V is surjective, then V is the sum of the
subspaces Vi, and we may write

V = V0 + · · ·+ Vn−1 =
∑

i<n

Vi.

If, further, the homomorphism is injective, then V is the di-
rect sum of the Vi, and we may write

V = V0 ⊕ · · · ⊕ Vn−1 =
⊕

i<n

Vi.

Given A in Mn(K), we shall understand by

kerA

the kernel of the endomorphism x 7→ x ·A of Kn. Suppose A
has characteristic polynomial f , and K is algebraically closed.
We may suppose that the zeroes of f in K are given to us in
some order, as the entries of a list (λj : j < m). Then

f =
∏

j<m

(X − λj)
rj

for some rj in N. Now, ker
(
f(A)

)
= Kn by the Cayley–

Hamilton Theorem. We are going to show

Kn =
⊕

j<m

ker (Bj
rj) , (A.)
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where
Bj = A− λj · In .

The result is easier to prove if stated more generally, as follows.

Theorem. If m ∈ N, and (fi : i < m) ∈ K[X]m, and each fi
is prime to each of the others, then for all A in Mn(K),

ker

(
∏

i<m

fi(A)

)

=
⊕

i<m

ker(fi(A)). (A.)

Proof. The case when m = 1 is trivial. Suppose m = 2. By
Bézout’s Lemma (in the sense of page ), for some g0 and g1
in K[X],

f0 · g0 + f1 · g1 = 1.

Therefore

f0(A) · g0(A) + f1(A) · g1(A) = In, (A.)

and so, for all v in Kn,

v = v · f0(A) · g0(A) + v · f1(A) · g1(A). (A.)

Now, if we should have

v ∈ ker(f0(A) · f1(A)),

then we can conclude

v · f0(A) ∈ ker(f1(A)), v · f1(A) ∈ ker(f0(A)).

Comparing with (A.) shows

ker(f0(A) · f1(A)) = ker(f1(A)) + ker(f0(A)).
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Now, suppose
v = u+w,

where

u ∈ ker(f1(A)), w ∈ ker(f0(A)).

Then
v · f0(A) · g0(A) = u · f0(A) · g0(A);

but also, applying (A.) to u yields

u = u · f0(A) · g0(A),

and so
v · f0(A) · g0(A) = u.

This is enough to establish (A.) in case m = 2. The general
case follows by induction. Indeed, under the hypothesis that
each fi is prime to each of the others, it must be prime to
the product of the others. In particular, if m > 3 we have
gcd

(∏

i<m−1 fi, fm−1

)
= 1, so

ker

(
∏

i<m

fi(A)

)

= ker

(
∏

i<m−1

fi(A)

)

⊕ ker(fm−1(A)),

and the inductive hypothesis will take care of
∏

i<m−1 fi(A).

Cyclic spaces

Assuming again A ∈ Mn(K), let v0 be an eigenvector of A
corresponding to an eigenvalue λ. If we let

Bλ = A− λ · In, (A.)
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then v0 ∈ kerBλ r {0}. We continue recursively. Given a
vector vi in Kn, if possible we let vi+1 be a solution of

vi = x ·Bλ.

Then by (A.),

λ · vi+1 + vi = vi+1 · A,

but also, by induction,

vi ∈ ker(Bλ
i+1).

If vr−1 exists, let

P =








vr−1

...
v1

v0








.

Then

PA =








λvr−1 + vr−2

...
λv1 + v0

λv0








=











λ 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . λ 1
0 . . . . . . . 0 λ











P. (A.)

We show next that the rows of P are linearly independent,
at least under an additional assumption, which will turn out
later always to hold.

Theorem. Suppose v ∈ Kn, B ∈ Mn(K), and

0 = v · Bs (A.)
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for some s in N. If r is the least such s, then the r-tuple

(v,v ·B, . . . ,v ·Br−1)

is linearly independent over K.

Proof. Suppose (A.) holds, but the s-tuple (v ·Bi : i < s) is
linearly dependent over K. This means

0 = c0v + c1v ·B + · · ·+ cs−1v ·Bs−1 (A.)

for some c in Ks r {0}. We can write (A.) as

0 = v · f(B),

where
f = c0 + c1X + · · ·+ cs−1X

s−1.

Let g = gcd(Xs, f). By Bézout’s Lemma,

0 = v · g(B).

But g must be Xr for some r that is less than s.

If B ∈ Mn(K), and V is a subspace of Kn, we let V B be the
image of V under the endomorphism x 7→ x ·B of Kn. Thus

V B = {x ·B : x ∈ V }.

If V B ⊆ V , let us say V is B-invariant. For example, V is
B-invariant if it is spanned by {v · Bk : k ∈ ω} for some v in
V r {0}. If V is thus, and also v ·Bs = 0 for some s in N, let
us say that V is B-cyclic. If r is the least s, then by the last
theorem, (v ·Bi : i < r) is a basis of the B-cyclic space.

Theorem. For all B in Mn(K), for all s in N, ker(Bs) is the
direct sum of B-cyclic subspaces.

A. Jordan Normal Form 



Proof. We shall prove that every B-invariant subspace of
ker(Bs) is the direct sum of B-cyclic subspaces. We use in-
duction on the dimension of the subspace. If the dimension
is 0, the claim is vacuously true. Suppose V is a B-invariant
subspace of ker(Bs) having positive dimension. Then

V B ⊆ V ∩ ker(Bs−1) ⊆ V.

If r is the least s for which V ⊆ ker(Bs), then V ∩ker(Br−1) ⊂
V . This shows

V B ⊂ V.

As an inductive hypothesis, we assume

V B =
⊕

i<m

Wi, (A.)

where each Wi is B-cyclic. Then for some (wi : i < m) in V m,
for some (ri : i < m) in Nm,

Wi = span(wi,wi ·B, . . . ,wi ·B
ri−1), 0 = wi ·B

ri . (A.)

For some vi in V ,
wi = vi ·B. (A.)

By the last theorem, we know that the tuple

(vi,wi,wi ·B, . . . ,wi ·B
ri−1),

which is
(vi,vi ·B, . . . ,vi ·B

ri),

is linearly independent. Let Vi be the B-cyclic space that it is
a basis of. We shall show that the sum of the Vi is direct.
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An arbitrary element of Vi is vi · fi(B) for some fi in K[X]
such that

deg fi 6 ri. (A.)

Suppose
0 =

∑

i<m

vi · fi(B). (A.)

Then by (A.),
0 =

∑

i<m

wi · fi(B).

But then by (A.),

0 = wi · fi(B),

so by (A.), and (A.), and the previous theorem,

fi = ciX
ri

for some ci in K. In this case, (A.) can be written as

0 =
∑

i<m

ciwi ·B
ri−1,

which implies that each ci is 0. Thus fi = 0.
Now we can let

V ′ =
⊕

i<m

Vi.

Then V ′ ⊆ V . By construction, ViB = Wi, so

V ′B = W = V B.

Therefore V r V ′ ⊆ kerB, and so

V = V ′ + kerB.

Each element of kerB constitutes a basis of a one-dimensional
B-cyclic space. Then V is the direct sum of some of these
spaces, along with the Vi, as desired.
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In the notation of (A.), there is (nj : j < m) in Nm such
that there are elements

•
(
(vj,k : k < nj) : j < m

)
of
∏

j<m ker (Bj
rj)nj ,

•
(
(sj,k : k < nj) : j < m

)
of
∏

j<mNnj , and

•
(
(Vj,k : k < nj) : j < m

)
of

∏

j<m

{subspaces of ker(Bj
rj)}nj

such that, for each j in m,

• ker(Bj) has the basis (vj,k · Bj
sj,k−1 : k < nj),

• ker(Bj
rj) =

⊕

k<nj
Vj,k, and

• for each k in nj, Vj,k has the basis (vj,k ·Bj
ℓ : ℓ < sj,k).

Now we may let

P =






P0

...
Pm−1




 ,

where, for each j in m,

Pj =






Pj,0

...
Pj,nj−1




 ,

where, for each k in nj,

Pj,k =








vj,k ·Bj
sj,k−1

...
vj,k ·Bj

vj,k








.
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Then PAP−1 is a Jordan normal form for A. Indeed, by
the considerations yielding (A.),

PAP−1 = diag(Λ0, . . . ,Λm−1),

where, for each j in m,

Λj = diag(Λj,0, . . . ,Λj,nj−1),

where, for each k in nj,

Λj,k =











λj 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 . . . . . . 0 λj











,

which is in Msj,k(K).
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