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 Preliminary discussion

Throughout these notes, the symbols N and ω represent what
I would call the number-theorist’s natural numbers and the set-
theorist’s natural numbers, respectively:

N = {1, 2, 3, . . . }, ω = {0, 1, 2, . . . }.
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If the proof of a theorem is not supplied, it is an exercise for the
reader.
High-school algebra is largely a study of the properties of arbi-

trary ordered fields, such as the ordered field Q of rational num-
bers or the ordered field R of real numbers. Calculus is a study
of R as a complete ordered field. Here completeness is the
property whereby every nonempty set of numbers with an upper
bound has a least upper bound, or supremum.
Suppose f is a function from R to itself (that is, f : R → R),

and a and L are in R. We say f has the limit L at a, and we
may write either of

lim
x→a

f(x) = L, lim
a
f = L, ()

provided that f(x) is close to L whenever x is close to, but not
equal to, a. This is vague. By the “standard” definition, () means
we can make f(x) arbitrarily close to L by making x sufficiently
close to (though not equal to) a. Here “arbitrarily close” means
“within ε, for any positive ε given to us.” Then “sufficiently close”
means “within δ, where δ is positive and depends on ε.” More
precisely then, the “standard” definition of () is that, for all
positive ε in R, for some positive δ in R, for all x in R, if
0 < |x − a| < δ, then |f(x) − L| < ε. Even more symbolically,
the definition is,

∀ε
(
ε > 0→ ∃δ

(
δ > 0 ∧ ∀x(

0 < |x− a| ∧ |x− a| < δ → |f(x)− L| < ε
))
,

which can also be written as

I do not say “for all ε > 0,” because I prefer to treat the expression ε > 0
always as a sentence (“ε is greater than 0”), not as a noun phrase (“ε that
are greater than 0” or “ε greater than 0”).

Alternatively, one may say, “there exists a positive δ in R such that. . . ”
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∀ε ∃δ ∀x
(
ε > 0→ δ > 0 ∧(
0 < |x− a| ∧ |x− a| < δ → |f(x)− L| < ε

))
. ()

These two expressions are equivalent sentences of first-order logic,
in which the letters ε, δ, and x are bound variables. One could
use other letters as bound variables instead; but ε and δ are
almost always the letters used, as an aid to the memory, because
the sentences are so logically complicated. It is complicated to
have three blocks of quantifiers, as shown at the head of ();
most definitions in algebra require at most two, as in the axiom
ensuring existence of multiplicative inverses in fields,

∀x ∃y (x 6= 0→ xy = 1).

The axiom of associativity of multiplication,

∀x ∀y ∀z x(yz) = (xy)z,

has three quantifiers, but they form one block: they are all uni-
versal.
Infinitesimal or “nonstandard” analysis provides a way to

define limits without using any such letters as ε and δ. By the
“nonstandard” definition, lima f = L, provided that, for all x, if x
is infinitesimally close to a, without being equal to a, then f(x)
is infinitesimally close to L. Symbolically, the definition is

∀x (x ' a ∧ x 6= a→ f(x) ' L). ()

This is evidently much simpler than (), although, as we shall see
below, there is a quantifier in the precise definition of a ' x and
f(x) ' L.
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 Non-Archimedean fields

The adjective “infinitesimal” is obtained from the adjective “infi-
nite” by adding a Latin ending, which corresponds to the English
ordinal ending “-th” seen in “fourth,” “fifth,” “sixth,” and so on.
The English ordinals are used also to denote fractional parts:
one fourth, or the fourth part, is one of four equal parts, or 1/4.
Then an infinitesimal part is an “infinitieth” part, or 1/∞.
To be precise then, a number a is infinitesimal if, for all n in

N,
|a| < 1

n
.

A number b is infinite if, for all n in N,

n < |b|.

Then b is infinite if and only if b 6= 0 and 1/b is infinitesimal. The
“nonstandard” definition () can be spelled out as

∀x
(
∀n
(
n ∈ N→ |x− a| < 1

n

)
∧ x 6= a→

∀n
(
n ∈ N→ |f(x)− L| < 1

n

))
and hence as

∀x ∃m ∀n
((

m ∈ N ∧ |x− a| > 1

m

)
∨(

x 6= a ∧ |f(x)− L| < 1

n

))
. ()

Thus there are still three blocks of quantifiers. But again, two
of them can be hidden, as in (); this cannot be done in ().
This makes the “nonstandard” definition of limit simpler than
the “standard.”
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However, there is a new complication with the “nonstandard”
definition. The only infinitesimal in R is 0, and R contains no
infinite numbers. This follows from the theorem below. Thus if
the variable x must always represent a real number, then () is
always true. So we shall have to allow x to be a “nonstandard”
number, in a sense that we shall develop.
An ordered field is Archimedean if, for every element c of the

field, for some n in N,
|c| 6 n.

That is, an ordered field is Archimedean precisely when none of
its elements is infinite.

Theorem . R is Archimedean.

Proof. If R had an infinite element, then it would have a positive
infinite element, and this would be an upper bound of N. Then
N would have a supremum, say d. In this case, d − 1 would not
be an upper bound of N, so d− 1 < n for some n in N, and then
d < n + 1, which means d is not an upper bound of N either,
since n+ 1 ∈ N.

There are ordered fields that contain infinite and (therefore)
nonzero infinitesimal elements. (Note that containing infinite el-
ements is not the same as containing infinitely many elements.)
For one example, first we let

R[X] =
{
a0 + a1X + a2X

2 + · · ·+ anX
n :

n ∈ ω & {a0, . . . , an} ⊆ R
}
.

Here a0 + a1X + a2X
2 + · · ·+ anX

n is also written as

n∑
k=0

akX
k;

 Infinitesimal Analysis



it is a polynomial in the variable X over R, and if an 6= 0,
then an is the leading coefficient of the polynomial. Also 0 is
the leading coefficient of the polynomial 0. Then R[X] is a ring
(that is, a commutative unital ring: it has associative, commu-
tative operations of addition and multiplication; multiplication
distributes over addition; there are additive and multiplicative
identities; and there are additive inverses). We can form frac-
tions with the elements of R[X], just as the rational numbers are
formed from the integers. Thus we define

R(X) =

{
f

g
: f ∈ R[X] & g ∈ R[X] r {0}

}
,

which is the field of rational functions in X over R. Here f/g
is the equivalence class of the ordered pair (f, g) with respect to
the equivalence relation ∼ given by

(f, g) ∼ (h, k) ⇐⇒ fk = hg.

Theorem . R(X) is an ordered field with respect to the relation
< defined by

f

g
> 0 ⇐⇒ a

b
> 0,

where f ∈ R[X] and g ∈ R[X] r {0}, and f and g have leading
coefficients a and b respectively. In the ordered field, X is positive
and infinite.

 Ultrafilters

We shall denote by
Rω

the set of functions from ω to R, that is, the set of real-valued
sequences on ω. The same such sequence can be denoted by any
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of the expressions

(a0, a1, a2, . . . ), (ak : k ∈ ω), a.

These sequences can be added, subtracted, and multiplied term
by term:

a± b = (ak ± bk : k ∈ ω), a · b = (ak · bk : k ∈ ω).

Then Rω is a ring, like R[X]. For each n in ω, there is an element
χn of Rω, where

χnm =

{
1, if n = m,

0, if n 6= m.

Then the set {χn : n ∈ ω} generates a proper ideal of Rω. Let
this ideal be included in a maximal ideal M : this exists by the
Maximal Ideal Theorem (see page ). We shall do infinitesimal
analysis in the field

Rω/M.

If a ∈ Rω, we define

supp(a) = {k ∈ ω : ak 6= 0};

this is the support of a. Thus supp: Rω → P(ω). Like any
function, the support function induces two additional functions,
as follows. If A ⊆ Rω and B ⊆P(ω), we have

supp[A] = {supp(x) : x ∈ A},
supp−1(B) = {x ∈ Rω : supp(x) ∈ B}.

Then

A ⊆ supp−1(supp[A]), B = supp[supp−1(B)].

The ideal of Rω generated by {χn : n ∈ ω} consists of the func-
tions from ω to R having finite support; also, if this ideal is I,
then supp[I] is the set of all finite subsets of ω.
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Theorem . A subset I of Rω is an ideal of Rω if and only if

supp−1(supp[I]) = I ()

and, for all X and Y in P(ω),
() ∅ ∈ supp[I],
() X,Y ∈ supp[I] =⇒ X ∪ Y ∈ supp[I],
() X ⊆ Y & Y ∈ supp[I] =⇒ X ∈ supp[I].

If I and J are distinct ideals of Rω, then

supp[I] 6= supp[J ].

A subset I of Rω is a maximal ideal of Rω if and only if () and,
for all X and Y in P(ω),
() ∅ ∈ supp[I] and ω /∈ supp[I],
() X,Y ∈ supp[I] =⇒ X ∪ Y ∈ supp[I],
() X /∈ supp[I] =⇒ ωrX ∈ supp[I].

A maximal ideal M of Rω is nonprincipal if and only if supp[M ]
contains every finite subset of ω.

It may be observed that P(ω) is a ring when the sum of
two elements is defined as their symmetric difference, and their
product as their intersection:

X + Y = X 4 Y = (X r Y ) ∪ (Y rX),

X · Y = X ∩ Y.

In this case

0 = ∅, 1 = ω, −X = X.

The ring P(ω) is then a Boolean ring because it satisfies

∀x x2 = x. ()

 Ultrafilters 



From this axiom (along with the ring axioms), it follows that

∀x 2x = 0, ()

or ∀x −x = x. Indeed, from () we have 2x = (2x)2 = 4x2 = 4x,
and then (). Now part of the last theorem can be formulated as
follows.

Theorem . Let I ⊆P(ω).
. I is an ideal of P(ω) if and only if supp−1[I] is an ideal

of Rω.
. I is a maximal ideal of P(ω) if and only if supp−1[I] is a

maximal ideal of Rω.

But it will be more useful to think of ideals of P(ω) in the
terms of Theorem , rather than in the usual terms of ring theory.
In fact, it will be useful to replace the notion of an ideal with a
“dual” notion, as follows. A subset F of P(ω) is a filter of
P(ω) and a filter on ω if for all X and Y in P(ω),
() ω ∈ F ,
() X,Y ∈ F =⇒ X ∩ Y ∈ F ,
() X ∈ F & X ⊆ Y =⇒ Y ∈ F .

Thus I is an ideal of P(ω) if and only if {ω rX : X ∈ I} is a
filter on ω. A subset U of P(ω) is an ultrafilter on ω if for
all X and Y in P(ω),
() ω ∈ U and ∅ /∈ U ,
() X,Y ∈ U =⇒ X ∩ Y ∈ U ,
() X /∈ U =⇒ ωrX ∈ U .

Thus M is a maximal ideal of P(ω) if and only if {ωrX : X ∈
M} is an ultrafilter on ω; moreover, in this case,

{ωrX : X ∈M} = P(ω) rM.

Suppose U is a nonprincipal ultrafilter on ω. By Theorem ,
U must contain every cofinite subset of ω, that is, every subset
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whose complement is finite. We may think of the elements of U
as large, and all other subsets of ω as small. Thus:
() every set is large or small, but not both;
() the small sets are precisely the complements of the large

sets;
() all finite sets are small, and so their complements are large;
() the union of two finite sets is small, and the intersection of

two large sets is large.
However, some infinite sets will be small. If ω is a disjoint union
A t B, then exactly one of A and B is large. Hence if ω =
A0 t · · · tAn−1, then Ai is large for exactly one index i.

 Application to König’s Lemma

In considering ultrafilters, we can replace ω with any infinite set.
This allows us to prove theorems like the following, which need
not have anything to do with calculus.
For present purposes, a tree is an ordered set (T,<) where,

for every a in T , the set {x ∈ T : x < a} of elements that are
below a is linearly ordered and, moreover, well-ordered. This
well-ordered set then has the order-type of an ordinal, which is
called the height of a. If a has height α+ 1, and b has height α,
and b < a, then a is a successor of b. In a finitely branching
tree, every element has only finitely many successors. A branch
of a tree is a maximal linearly ordered subset.

Theorem  (König’s Lemma). Every infinite finitely branching
tree has an infinite branch.

As I use the term, an ordered set is a set equipped with a binary relation
that is irreflexive and transitive. If any two distinct elements of the set
are comparable by means of the ordering, then this ordering is linear.
Thus an ordered set is what is often called a “partially” ordered set, even
though the ordering might be “total,” that is, linear.

We are not going to refer to successors again.
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Proof. Let (T,<) be such a tree, and let U be a nonprincipal
ultrafilter on T . Being finitely branching, T can have only finitely
many elements of each finite height. Suppose n ∈ ω, and the
elements of T of height n are a0, . . . , am−1. If i < m, define

Ai = {x ∈ T : x > ai};

and let

Am =

{
x ∈ T :

∨
i<m

x < ai

}
.

Then
T = A0 t · · · tAm−1 tAm,

a disjoint union of m + 1 sets. Since the set Am is small (being
finite), exactly one of the other sets is large. Supposing Ai is
large, let bn = ai. Then the infinite set {bn : n ∈ ω} is linearly
ordered; for if m and n are in ω, then, being large, the sets
{x ∈ T : x > bm} and {x ∈ T : x > bn} have a common element
c, and then bm 6 c and bn 6 c, so bm and bn must be comparable,
by the definition of a tree.

An alternative approach to König’s Lemma sets the stage for
our analysis of R. For any set A, we define Aω as we did Rω.

Theorem . For any set A, for any ultrafilter U on ω, the
binary relation ∼ on Aω given by

a ∼ b ⇐⇒ {k ∈ ω : ak = bk} ∈ U

is an equivalence relation.

Given an ultrafilter U on A and an element a of Aω, we may
denote by any of

[a], [a0, a1, a2, . . . ], [ak : k ∈ ω]
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the equivalence-class of a with respect to ∼ as in the theorem.
We could write [a]U for [a]; but we shall not be interested in
changing the ultrafilter. We shall however denote the set of all of
the classes [a] by

Aω/U .

This is an ultrapower of A.

Theorem . For any set A, for any ultrafilter U on ω, the map
x 7→ [x, x, x, . . . ] is an embedding of A in Aω/U . If A is finite or
U is principal, then this embedding is also surjective; otherwise
it is not.

Proof. If a and b in Aω are constant sequences, then the set
{k ∈ ω : ak = bk} is either ω or ∅. The former must be true if
[a] = [b]; but in that case, a = b.
Now suppose a is an arbitrary element of Aω. If A is a finite

set {b0, . . . , bn−1}, then for some unique i less than n, we must
have {k ∈ ω : ak = bi} ∈ U . In this case, [a] = [bi, bi, bi, . . . ],
and so the indicated embedding is surjective.
If U is principal, this means it is {X ∈ P(ω) : i ∈ X} for

some i in ω. In particular, {i} ∈ U . Then [a] = [ai, ai, ai, . . . ],
so the embedding is again surjective.
If A is infinite, then there is an element a of Aω with no re-

peated terms. If also U is nonprincipal, then for all b in A, the
set {k ∈ ω : ak = b} has at most one element, so it is not large,
and thus [a] is not in the image of the embedding.

We shall usually treat the embedding of the theorem as an
inclusion, identifying a in A with [a, a, a, . . . ] in Aω/U . Thus, by
the theorem, Aω/U r A is nonempty if and only if A is infinite
and U is nonprincipal. Because of the this, we shall not be
interested in principal ultrafilters, though some of our claims will
be true for them as well as for nonprincipal ultrafilters.
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Theorem . For any ordered set (A,<), for any ultrafilter U
on ω, there is an ordering ∗< on Tω/U given by

[a] ∗< [b] ⇐⇒ {k ∈ ω : ak < bk} ∈ U .

The embedding x 7→ [x, x, x, . . . ] respects the orderings: for all a
and b in A,

a < b ⇐⇒ [a, a, a, . . . ] ∗< [b, b, b, . . . ].

Finally we have the promised alternative formulation and proof
of König’s Lemma:

Theorem . Suppose (T,<) is an infinite, finitely branching
tree, U is nonprincipal ultrafilter on ω, and ∗< is ordering of
Tω/U , induced as in the previous theorem. Then the tree (T,<)
has infinite branches, namely the sets

{x ∈ T : x ∗< a},

where a ∈ (Tω/U ) r T .

 Limits

We return to considering fields, whose ultrapowers can be under-
stood in terms of maximal ideals. The following is true for all
ordered fields, and not just R; but our main interest is in R.

Theorem . Let M be a nonprincipal maximal ideal of Rω,
and let U be the corresponding nonprincipal ultrafilter on ω, so
that

U = {ωr supp(x) : x ∈M} = P(ω) r supp[M ].

The quotient Rω/M , which is a field, is precisely the ultrapower
Rω/U . This field is an ordered field with respect to the relation
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∗< of Theorem , and the embedding x 7→ [x, x, x, . . . ] of R in
Rω/U is an embedding of ordered fields. The element [0, 1, 2, . . . ]
of Rω/U is positive and infinite, and the element [1, 1/2, 1/3, . . . ]
is positive and infinitesimal.

By Łoś’s Theorem (Theorem  below), all sentences of first-
order logic will be true in Rω/U if and only if they are true in
R. The same will be true when R is replaced by an arbitrary
structure, such as a tree, as in Theorem . Then also Theorems
, , , and  will turn out to have been special cases of Łoś’s
Theorem.
The formal definition of a first-order logic is recursive. For

now, we shall just say that
() first-order sentences are finite, and
() their variables range only over individuals.

Here are corresponding examples of non-first-order sentences.
. By the last theorem, Rω/U differs from R in having infinite

elements. That is, the sentence written as one of

∃x (x > 1 ∧ x > 2 ∧ x > 3 ∧ · · · ), ∃x
∧
n∈N

x > n

is true in Rω/U , but false in R. Being infinite, in the sense of in-
volving the conjunction of infinitely many formulas, this sentence
is not first order.

. In proving Theorem  (that R has no infinite elements), we
showed that an ordered field with infinite elements cannot be
complete. In particular, the sentence

∀X ∀y ∃z ∀v ∃u(
y ∈ X →

(
(v ∈ X → v 6 z) ∧

(
(u ∈ X ∧ u > v) ∨ z 6 v

)))
,
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which expresses completeness, is true in R, but false in Rω/U .
The sentence is not first order, because the variable X ranges
over sets as such, not individuals.
We may denote the ordered field Rω/U by

∗R.

We now establish the equivalence of the standard and nonstan-
dard definitions of limit.

Theorem . Suppose f is a function from R to itself, and a
and L are in R. There is a well-defined function ∗f from ∗R to
itself given by

∗f [x] = [f(xk) : k ∈ ω].

Then lima f = L if and only if, for all x in Rω,

[x] ' a & [x] 6= a =⇒ ∗f [x] ' L.

Proof. For all a and b in Rω, we have

{k ∈ ω : ak = bk} ⊆ {k ∈ ω : f(ak) = f(bk)}.

If [a] = [b], then the former set is large, and therefore the latter
set is large, which means

[f(ak) : k ∈ ω] = [f(bk) : k ∈ ω].

Thus ∗f is well defined.
Suppose lima f = L, and [x] ' a, but [x] 6= a. For all n in N,

for some positive δ in R, for all k in ω, if 0 < |xk − a| < δ, then
|f(xk)− L| < 1/n. Thus

{k ∈ ω : 0 < |xk − a| < δ} ⊆ {k ∈ ω : |f(xk)− L| < 1/n}. ()

The former set is

{k ∈ ω : xk 6= a} ∩ {k ∈ ω : xk − a < δ} ∩ {k ∈ ω : a− xk < δ},

 Infinitesimal Analysis



the intersection of three sets, all of which are large, since, respec-
tively, [x] 6= 0, and [x]−a < δ, and a−[x] < δ. So the intersection
itself is large, and therefore the latter set in () is large, which
means

|∗f [x]− L| < 1

n
.

This being the case for all n in N, ∗f [x] ' L.
Now suppose lima f 6= L. Then for some positive ε in R, for

every n in ω, there is xn in R such that 0 < |xn−a| < 1/(n+ 1),
but |f(xn)−L| > ε. Then [x] ' a, but [x] 6= a, and |∗f [x]−L| > ε,
so ∗f [x] 6' L.

The nonstandard definition makes proofs about limits easier,
at least once one has the following.

Theorem . In any ordered field, the finite elements compose a
sub-ring, and the infinitesimal elements compose a maximal ideal
of the ring of finite elements. In fact the ideal is the only maximal
ideal of the ring.

Corollary. In the ring of finite elements of any ordered field, the
relation ' of being infinitesimally close is an equivalence relation,
and

a ' b & c ' d =⇒ a+ c ' b+ d & ac ' bd,

a ' b & a 6' 0 =⇒ b 6' 0 &
1

a
' 1

b
.

The “standard” proof of the following involves taking different
deltas for different epsilons, and then taking the maximum. The
“nonstandard” proof is more straightforward.

Theorem . Suppose lima f = L and lima f = M . Then

lim
a

(f + g) = L+M, lim
a

(fg) = LM.

 Limits 



If L 6= 0, then

lim
a

1

f
=

1

L
.

Proof. Suppose [x] ' a, but [x] 6= a. By hypothesis and Theorem
, ∗f [x] ' L and ∗g[x] ' M . Then the corollary of Theorem 
yields the desired results.

 Standard parts

Every finite element a of ∗R is infinitesimally close to a unique
element st (a) of R, namely

sup{x ∈ R : x < a}.

This is the standard part of a. If a is infinite, we may define
st (a) = ∞. Then the function x 7→ st (x) from ∗R to R ∪ {∞},
is an example of a place, as we shall see.
In Theorem , if the ordered field is K, and the ring of its

finite elements is R, then

x ∈ K rR =⇒ 1

x
∈ R.

This means R is a valuation ring of K, at least if R is different
from K. The definition does not require K to be ordered. Every
valuation ringR of a fieldK has a unique maximal idealM , which
is the complement of the multiplicative group R× of invertible
elements of R. Then two functions can be defined onK as follows.

. The function ϕ with range R/M ∪ {∞} given by

ϕ(x) =

{
x+M, if x ∈ R,
∞, if x ∈ K rR

is a place of K.

 Infinitesimal Analysis



. The function v with range {0} ∪K×/R× given by

v(x) =

{
xR×, if x ∈ K×,
0, if x = 0

is a valuation of K. Here

v(x) = 0 ⇐⇒ x = 0,

and

v(−x) = v(x), v(xy) = v(x) · v(y).

The multiplicative group K×/R× is linearly ordered by the
rule

xR× 6 yR× ⇐⇒ x

y
∈ R,

and 0 is declared to be less than every element of the group.
Then a strong triangle inequality holds, namely

v(x+ y) 6 max(v(x), v(y)).

Thus the map (x, y) 7→ v(x− y) is a metric on K.
There are two standard classes of examples.

. If K is any field, we can form the field K(X) of rational
functions in X over K. If α ∈ K, then the function f 7→ f(α) is
a place on K(X). Here, if f(α) is “undefined,” because it involves
division by 0, then we define f(α) = ∞. Thus the range of the
place is indeed K∪{∞}. If K is algebraically closed, like C, then
every nonzero element of K(X) can be written as

p(X)

q(X)
· (X − α)n,

where p and q are polynomials that are not zero at α, and n ∈ Z.
If 0 < t < 1, the valuation can be understood as taking the above
element of K× to tn. In particular, according to the associated
metric, the sequence (Xn : n ∈ ω) converges to 0.
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. If p is a prime number, thenQ has a valuation ring consisting
of the fractions having denominators that are indivisible by p.
The range of the associated place can be understood as Fp∪{∞}.
Indeed, if p - b, then the place can be understood as taking a/b to
that element c of Fp× such that a ≡ bc (mod p). The associated
valuation can be understood as the map taking (a/b) ·pn to 1/pn

(and 0 to 0). In the associated metric, the sequence (pn : n ∈ N)
converges to 0, and so every series

∑∞
n=m anp

n, where m ∈ Z
and an ∈ {0, . . . , p − 1}, has a sequence of partial sums that is
a Cauchy sequence. Such series then constitute the field of p-
adic numbers. This is a field that, like R, is complete in the
sense that all of its Cauchy sequences converge. This notion of
completeness should be distinguished from the completeness of
the ordering of R.

 Logic

In the first-order logic of ordered fields, the atomic formulas
are the polynomial equations and inequalities. Then the formu-
las are defined recursively:

. Every atomic formula is a formula.
. If ϕ and ψ are formulas, and x is an individual variable (that

is, such a variable as may occur in an atomic formula), then
each of the expressions

¬ϕ, (ϕ ∧ ψ), ∃x ϕ

is a formula.
By this scheme, the expressions

(ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ), ∀x ϕ

are abbreviations of the formulas

¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), (ϕ→ ψ) ∧ (ψ → ϕ), ¬∃x ¬ϕ
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respectively.
An occurrence of a variable x in a formula is bound if it en-

ters the formula as occurring in a formula ∃x ϕ; otherwise the
occurrence is free. Thus, in the formula (x = y ∨ ∃x ¬ x = y)
(usually written as x 6= y → ∃x x 6= y), the first occurrence of x
is free, but the other two occurrences are bound.
A formula in which no variable occurs freely is a sentence. By

the definition to be given presently, a sentence σ is either true
or false in a given ordered field K, and we write

K � σ, K 2 σ

accordingly. For now, we take the definition of the truth or falsity
of an atomic sentence in K as obvious. Then for all sentences σ
and τ ,

K � ¬σ ⇐⇒ K 2 σ,
K � (σ ∧ τ) ⇐⇒ K � σ & K � τ,

Note here that the two-shafted arrow ⇐⇒ is just an abbreviation
of the English expression “if and only if”; and the ampersand & is
an abbreviation of “and.” We could replace the abbreviations with
the full expressions without changing the mathematical meaning
of what we are saying. By contrast, we cannot replace the symbol
∧ in the formula (σ ∧ τ) with anything else, because our purpose
is to study the uses of such formulas as they are.
It remains to declare that K � ∃x ϕ if and only if, for some a

in K,
K � ϕ(a).

Here ϕ(a) is the result of replacing each free occurrence of x in
ϕ with a.
We can prove Łoś’s Theorem just for R, but a more general

form may actually be easier to understand. Suppose (Kn : n ∈ ω)
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is an indexed family of ordered fields. Then we can form the
product ∏

n∈ω
Kn,

namely the set of sequences a or (an : n ∈ ω), where an ∈ Kn

for each n in ω. Let us denote the product also by R. Each
element a of R can be understood as a constant symbol, whose
interpretation in the ordered field Kn is just an, for each n in
ω. In other words, a means a0 in K0, and a1 in K1, and so forth.
Likewise, the identity of an abelian group is usually 0, and this
means 0 in the additive group Z; but it means 1 in multiplicative
groups like R×. For an arbitrary element b of Kn, with a in R as
before,

Kn � a = b ⇐⇒ an = b.

Now let S be the set

{+, 0,−, · , 1, <}

of symbols: this is the signature of ordered fields. The constant
symbols in S are only 0 and 1. Using these, we can form the
polynomials(
· · ·
(
(1 + 1) + 1

)
+ · · ·+ 1

)
, −

(
· · ·
(
(1 + 1) + 1

)
+ · · ·+ 1

)
.

According to the associativity of addition in every field, these
polynomials can be written unambiguously as

1 + · · ·+ 1, − (1 + · · ·+ 1).

Every integer can be denoted by such an expression. (Even 0 can
be so denoted, if we allow the “empty” sum.) Thus, every equa-
tion or inequality of polynomials with coefficients from Z can be
understood as an atomic formula in the pure signature of ordered
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fields. We may also introduce, as coefficients, new constant sym-
bols standing for elements of a particular ordered field or fields.
The new constant symbols can be called parameters. With R
being

∏
n∈ωKn as above, if σ is a sentence in the signature S ∪R

of ordered fields with parameters from R, we define

‖σ‖ = {n ∈ ω : Kn � σ}.

(In his Model Theory, Hodges calls this the Boolean value of σ.)
Then by the definition of truth and falsity,

‖¬σ‖ = ωr ‖σ‖,
‖(σ ∧ τ)‖ = ‖σ‖ ∩ ‖τ‖,

and for all a in R,
‖ϕ(a)‖ ⊆ ‖∃x ϕ‖.

Moreover, given the formula ϕ in which only x occurs freely, we
can define a in R so that, for all n in ω, if Kn � ∃x ϕ, then
Kn � ϕ(an), but if Kn 2 ∃x ϕ, then an is an arbitrary element of
Kn (for example, 0 or 1). In this case

‖∃x ϕ‖ = ‖ϕ(a)‖. ()

Now let U be an ultrafilter onω, and let T be the set of sentences
σ of S ∪R such that ‖σ‖ ∈ U . Then T contains every sentence of
S ∪R that is true in every ordered field (in which the parameters
have interpretations). Moreover,

¬σ ∈ T ⇐⇒ σ /∈ T, (a)
(σ ∧ τ) ∈ T ⇐⇒ σ ∈ T & τ ∈ T, (b)

∃x ϕ ∈ T ⇐⇒ for some a in R, ϕ(a) ∈ T. (c)

Now, suppose F is some ordered field, and every element of R
has an interpretation in F , and every element of F is the inter-
pretation of an element of R. The set of sentences of S ∪R that
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are true in F is the (complete) theory of F in the indicated
signature. But then, by the definition of truth, this theory has
the properties of T that we have just determined. The converse
will turn out to true as well: by having the indicated properties,
T must itself be the complete theory of some ordered field (in
which the elements of R have interpretations). We shall denote
this ordered field (whose theory is T ) by

∏
n∈ω

Kn

/
U

or just R/U : it is an ultraproduct of the ordered fields Kn.
For all a and b in R, since

R/U � a = b ⇐⇒ {k ∈ ω : ak = bk},

we can understand the elements of R/U as being the equivalence
classes [a] or {

x ∈ R : {k ∈ ω : ak = xk}
}
,

where a ∈ R.
In the special case where each ordered field Kn is R, then the

ultraproduct
∏
n∈ωKn

/
U will be the ultrapower ∗R, that is,

Rω/U . This is an ordered field by Theorem , and we may
consider R as a subfield. Then a (first-order) sentence σ with
parameters from R will be true in R if and only if it is true in
∗R, because ‖σ‖ in this case is either U or ∅.
A structure in which every sentence of a set of sentences is

true is a model of that set. So we are going to show that the
set T above has a model. This will give us (a special case of)
Łoś’s Theorem. There is a sense in which we need not prove this
theorem though, just to do “nonstandard,” infinitesimal analysis.
Analysis is a study of R, not ∗R. We shall not really use the
latter itself, but only its theory, and we have this already.
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 Łoś’s Theorem

Strictly speaking though, even to understand the theory T above,
we need to do more work. We should understand the structure
of polynomials. The symbols +, −, and · in S are examples
of operation symbols, taking two, one, and two arguments
respectively; and polynomials are examples of terms.
In an arbitrary signature, the terms are defined recursively as

follows.
. every individual variable is a term.
. every constant symbol is a term.
. for every n in N, if F is an n-ary operation symbol (that is,

an operation symbol taking n arguments), and ti is a term
when i < n, then the expression

Ft0 · · · tn−1

is a term. In case n = 2, it is conventional to write t0 F t1
instead of Ft0t1.

A term is called closed if no variable occurs in it. Thus closed
terms are obtained by omitting the first condition in the definition
of terms.
An interpretation of an n-ary operation symbol on a set A is

a function from An to A (where An can be understood as the set
of functions from {0, . . . , n− 1} to A). If each constant symbol
and operation symbol in a signature has an interpretation on A,
then, recursively, each closed term of S has an interpretation as
an element of A.

I think this is the best way to understand An, but many people understand
it as the set of functions from the set {1, . . . , n} to A.

An arbitrary term can be interpreted as an operation on A; but the best
way of making this precise is not clear. It might be best to interpret the
term x + y as a function from A{x,y} to A; but then if this term occurs
in a formula where the variable z also occurs, then we should interpret
x+ y as a function from A{x,y,z} to A.
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The symbol < in the signature of ordered fields is a binary
relation symbol. In an arbitrary signature, the atomic formulas
are of two kinds:

. There are equations t0 = t1 of terms t0 and t1.
. For every n in N, for every n-ary relation symbol in the

signature, if ti is a term when i < n, there is an atomic
formula

Rt0 · · · tn−1.

If n = 2, it is conventional to write t0 R t1 instead of Rt0t1.
An interpretation of an n-ary relation symbol on a set A is a
subset of An. An interpretation of all symbols in a signature S ,
on a set, is a structure whose universe is the set. If the set is
A, then the structure itself may be A (the same letter in a more
elaborate font), and the interpretation of a symbol or closed term
s can be denoted by

sA.

Then the truth or falsity of an atomic sentence in A has the
obvious definition:

A � t0 = t1 ⇐⇒ t0
A = t1

A,

A � Rt0 · · · tn−1 ⇐⇒ (t0
A, . . . , tn−1

A) ∈ RA.

Now arbitrary sentences, and their truth or falsity, are defined
as before. We just have to note that, unless otherwise specified,
every element of a set can be understood as a constant symbol
whose interpretation is itself.
We now have all of the ingredients for the full statement of

Łoś’s Theorem. As we did when proving König’s Lemma, we can
replace our usual index set ω with an arbitrary index set.

Theorem  (Łoś). In a signature S , let (Ai : i ∈ Ω) be a
family of structures indexed by elements of some infinite set Ω.
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In the product
∏
i∈ΩAi of the universes of the structures Ai, let

each element (ai : i ∈ Ω) be considered as a new constant symbol,
interpreted in Ai as ai for each i in Ω. Let U be an ultrafilter on
Ω. In the signature S ∪

∏
i∈ΩAi, there is a new structure

() whose complete theory consists precisely of those σ such that

{i ∈ Ω: Ai � σ} ∈ U , ()

and
() whose universe consists of the interpretations of the ele-

ments of ∏
i∈Ω

Ai.

In case each of the structures Ai is the same structure A, then
this embeds in the new structure under the map sending each a
in A to the interpretation of the constant sequence (a : i ∈ Ω). In
this case, a sentence of S ∪A is true in the new structure if and
only if it is true in A.

Proof. Let B =
∏
i∈ΩAi, and let T be the set of sentences of

S ∪B such that () holds. As we have shown, T must have the
properties in (). In particular, by (a), if T has a model, then
T is the complete theory of this model. So we want to show T
has a model whose universe consists of the interpretations of the
elements of B. In fact, this will follow from (), along with the
observation that T contains all sentences that are logically true,
that is, true in all structures of the signature S ∪B. Indeed, for
all a, b, and c in B, T contains the sentences

a = a,

a = b→ b = a,

a = b ∧ b = c→ a = c.
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Therefore the relation ∼ on B given by

a ∼ b ⇐⇒ the sentence a = b is in T

is an equivalence relation. Let us denote by B/U the set of
equivalence classes of elements of B. For every n in N, for ev-
ery n-ary operation symbol F of S , for all (a0, . . . , an−1) and
(b0, . . . , bn−1) in Bn, T contains∧

i<n

ai = bi → Fa0 · · · an−1 = Fb0 · · · bn−1,

∃x Fa0 · · · an−1 = x.

Therefore, by (c), T determines an interpretation of F on
B/U . Similarly, T determines an interpretation of every rela-
tion symbol in S . Likewise, every atomic sentence is true in the
resulting structure if and only if it belongs to T . Then the same
is true for every sentence, by ().

The new structure given by the theorem can be denoted by

∏
i∈Ω

Ai

/
U ;

it is the ultraproduct of the indexed family (Ai : i ∈ Ω) with
respect to the ultrafilter U . In case U is a principal ultrafilter
{X ∈P(Ω): i ∈ X} for some i in Ω, then T is just the complete
theory of Ai, and so the theorem is trivial. It is the existence of
nonprincipal ultrafilters that makes the theorem interesting and
useful.
In the special case of the theorem where each Ai is the same

structure A, the ultraproduct is an ultrapower, denoted by

AΩ/U .
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In this case, the conclusion of Łoś’s Theorem is that A is an
elementary substructure of the ultrapower. We denote this
situation by

A 4 AΩ/U .

 Applications

We can now understand Theorem  as a consequence of Łoś’s
Theorem in the following way. We are given a function f from R
to R. this means f is a singulary operation on R, and as such it
can considered as the interpretation of some singulary operation
symbol (which we also write as f). This symbol is interpreted in
the ultrapower ∗R as ∗f . We assume lima f = L, that is, for all
n in N, for some positive δ in R, the sentence

∀x
(

0 < |x− a| < δ → |f(x)− L| < 1

n

)
is true in R. Then the same sentence is true in ∗R. In particular,
in ∗R, suppose x ' a, but x 6= a. Then 0 < |x − a| < δ, so
|f(x) − L| < 1/n, where the symbol f means ∗f . This being so
for all n in N, we have ∗f(x) ' L.
If instead lima f 6= L, then for some positive ε in R, the sen-

tence

∀δ ∃x (δ > 0→ 0 < |x− a| < δ ∧ |f(x)− L| > ε)

is true in R, hence in ∗R. In particular, letting δ be a positive
infinitesimal, we obtain x in ∗R such that x ' a, but x 6= a, and
∗f(x) 6' L.
If we call ∗R a (nonstandard) extension of R, then ∗f as

above is the corresponding extension of the function f . Similarly,
being a subset of R, the set N is a singulary relation on R, and
so it has an extension ∗N, which is the set of all a in ∗R such
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that the sentence a ∈ N is true in ∗R. (By the formal definition
above, the sentence a ∈ N would be written as Na.) This means

∗N =
{

[x] : x ∈ Rω & {k ∈ ω : xi ∈ N} ∈ U
}
.

Theorem . N ⊂ ∗N, and the finite elements of ∗N are precisely
the elements of N.

Proof. For every n in N, the sentence n ∈ N is true in R, hence
in ∗R; so N ⊆ ∗N. Since the sentence

∀x
(
x ∈ N→ 1 6 x ∧ (n 6 x < n+ 1→ n = x)

)
is true in R, it is true in ∗R, and so there are no new finite
elements of ∗N. Finally, the sentence ∀x ∃y (y ∈ N ∧ y > x) is
true in R, hence in ∗R, so letting x be a positive infinite element
of ∗R gives us an infinite element of ∗N; this element is not in N,
so N ⊂ ∗N.

If now a is a sequence (ak : k ∈ N) of elements of R, this means a
is the binary relation {(k, ak) : k ∈ N} on R, so it has an extension
∗a. This extension must be a sequence (∗an : n ∈ ∗N), where
∗an = an if n ∈ N; for the sentences

∀x ∀y (x a y → x ∈ N),

∀x ∀y ∀z (x a y ∧ x a z → y = z)

are true in R, hence in ∗R.

Theorem . A real-valued sequence a on N is bounded if and
only if, for each infinite n in ∗N, ∗an is finite.

Theorem . For all real-valued sequences a on N, for all L in
R,

lim
n→∞

an = L

if and only if, for all infinite n in ∗N,
∗an ' L.
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Recall that a real-valued sequence a on N is a Cauchy se-
quence if for all positive ε in R, for some ` in N,

m > ` & n > ` =⇒ |am − an| < ε.

Easily, every convergent sequence is a Cauchy sequence. The con-
verse is more difficult. The following is the “nonstandard” version
of the theorem: the proof will use standard parts as defined above.

Theorem . A real-valued sequence a on N is convergent if and
only if, for all infinite m and n,

am ' an.

 Mock second-order logic

We may consider a structure as having a universe partitioned
into several subsets, called sorts. For example, a vector space
has a sort of vectors and a sort of scalars. Correspondingly, in
the logic of vector spaces, there will be vector variables and scalar
variables. In a many-sorted structure, operations and relations
do not simply take n arguments for some n in N, but the sort
of each argument must be specified. Thus, in a vector space,
two vectors can be added together, and two scalars can be added
together, but not a vector and a scalar.
We can consider the natural numbers as composing a two-

sorted structure, the sorts being N and P(N). The variables for
these sorts are minuscule and capital letters, respectively. In ad-
dition to the relation symbol <, which takes two arguments from
N, let the signature contain the membership relation ∈, taking
an argument from N and an argument from P(N). Then we
can express the well-ordering property of (N, <) as a first-order
sentence in this signature:

∀X ∀y
(
y ∈ X → ∃z

(
z ∈ X ∧ ∀w (w ∈ X → z 6 w)

))
. ()
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Denoting our two-sorted structure by NtP(N), we can form the
extension ∗(N tP(N)), which can be understood as having the
two sorts ∗N and ∗P(N). Then the same sentence () is true
in the extension. However, this does not mean that ∗N is well
ordered. This is because ∗P(N) is not P(∗N). If a ∈ Nω and
B ∈P(N)ω, we have

[a] ∗∈ [B] ⇐⇒ {k ∈ ω : ak ∈ Bk} ∈ U .

Thus we can identify [B] with the subset{
[x] ∈ ∗N : {k ∈ ω : xk ∈ Bk} ∈ U

}
()

of ∗N. We can denote this subset of ∗N by∏
k∈ω

Bk

/
U ;

however, it must be understood that if [a] belongs to this set,
this does not mean a ∈

∏
k∈ωBk, but only that {k ∈ ω : ak ∈

Bk} ∈ U , as in (). For example, if some Bk is empty, then∏
k∈ωBk = ∅, but this does not imply that the set in () is

empty.
The embedding [X] 7→

∏
k∈ωXk

/
U of ∗P(N) in P(∗N) is

not surjective. For example, N itself (considered as a subset of
∗N) is not in the image of ∗P(N). We can see this in two ways.

. Every nonempty subset of ∗P(N) has a least element, be-
cause () is true in ∗(NtP(N)); but ∗NrN has no least element.

. More directly, suppose B in P(N)ω is such that the element
of P(∗N) in () includes N. This means, for each n in N,

{k ∈ ω : n ∈ Bk} ∈ U .

In particular, there are infinitely many k in ω such that n ∈ Bk.
Thus if, for all k in ω, we define

ak = max{n ∈ Bk : n 6 k + 1},
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then the sequence (ak : k ∈ ω) is unbounded, and so [ak : k ∈ ω]
is not in (the image of) N, though it is in

∏
k∈ωBk

/
U .

We can introduce power sets as sorts in order to define inte-
gration. By one standard definition (attributed to Riemann), a
real-valued function f whose domain includes a closed interval
[a, b] is integrable on [a, b] if, for some I in R, for all positive
ε in R, there is a positive δ in R such that, for all n in N, for
all subsets {a0, . . . , an} of [a, b], for all subsets {ξ0, . . . , ξn−1} of
[a, b], if

a = a0 < · · · < an = b,

a0 6 ξ0 6 a1 & · · · & an−1 6 ξn−1 6 an,

}
()

and
max{ak+1 − ak : k < n} < δ,

then ∣∣∣∣∣∑
k<n

f(ξk) · (ak+1 − ak)− I

∣∣∣∣∣ < ε.

In this case I is unique and is the integral of f on [a, b]; the
integral is denoted by ∫ b

a
f.

If f is given only in the form x 7→ f(x), we may write the integral
as ∫ b

a
f(x) dx.

The idea of the notation is that dx is infinitesimal, so that the
integral itself is the sum (abbreviated by

∫
, an elongated letter

S) of rectangles of infinitesimal width. Given f as before, and I
in R, suppose that, for all n in ∗N, for all subsets {a0, . . . , an}
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of ∗[a, b] and for all subsets {ξ0, . . . , ξn−1} of ∗[a, b] such that ()
and

a0 ' a1 & · · · & an−1 ' an

hold, it follows that∑
k<n

f(ξk) · (ak+1 − ak) ' I.

In this case, by the nonstandard definition, I =
∫ b
a f(x) dx.

 Set-theoretic considerations

The signature of set theory as {∈}. The Extension Axiom is
that sets with the same elements are equal:

∀x ∀y
(
∀z (z ∈ x↔ z ∈ y)→ x = y

)
.

If ϕ is a formula of the signature {∈} in which only the variable
x occurs freely, then those sets a such that ϕ(a) is true compose
a class, denoted by

{x : ϕ}.

Such an expression is not literally part of the logic of sets. How-
ever, in what is known as Zermelo–Fraenkel set theory, every
axiom besides the Foundation Axiom is that certain classes are
sets. For example, the “power class” of a set a is the class

{x : ∀y (y ∈ x→ y ∈ a)};
This is not quite true. The Foundation Axiom is that every nonempty
set has a minimal element with respect to ∈, that is, ∀x ∀y ∃z ∀w

(
y ∈

x → z ∈ x ∧ (w ∈ z → w /∈ x)
)
. There could in fact be sets without

minimal elements; all the Foundation Axiom does is to decline to consider
such sets as sets.
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the Power Set Axiom is accordingly

∀z ∃w ∀x
(
x ∈ w → ∀y (y ∈ x→ y ∈ z)

)
.

The Axiom of Choice is not of this form, but is that, for every
set a, there is a function f such that, for every nonempty subset
b of a,

f(b) ∈ b.

We used a version of this in proving Łoś’s Theorem, when we
found (an : n ∈ ω) so that () on page  holds.
Łoś’s Theorem requires also the existence of nonprincipal ultra-

filters on arbitrary sets. As we know, ultrafilters are complements
of maximal ideals of Boolean rings. The Maximal Ideal The-
orem is that, in arbitrary ring R, if I is a proper ideal, then I is
included in a maximal ideal.

Theorem . The Maximal Ideal Theorem is a consequence of
the Axiom of Choice.

Proof. This is commonly proved by means of Zorn’s Lemma,
which is equivalent to the Axiom of Choice. A more useful ap-
proach for present purposes is the following. The Axiom of Choice
allows us to well-order any ring R, writing it as {aα : α < κ},
where κ is now the cardinality of R. We define an increasing
sequence of ideals of R by transfinite recursion:

. I0 is the given proper ideal I of R.
. For all α in κ, If Iα ∪ {aα} generates a proper ideal of R,

this ideal is defined to be Iα+1; otherwise Iα+1 = Iα.
. If β is a limit ordinal and β 6 κ, then Iβ =

⋃
α<β Iα.

Then Iκ is a proper ideal of R; it is maximal, since any larger
ideal J will contain some aα that is not in Iκ, but this means
Iα ∪ {aα} must generate R, and thus J = R.
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The proper ideal I of R is a prime ideal if

xy ∈ I & x /∈ I =⇒ y ∈ I.

For example, every element n of Z generates the ideal (n), namely
{nx : x ∈ Z}. Then

x ∈ (n) ⇐⇒ n | x.

Euclid’s Lemma is that for all primes p,

p | xy & p - x =⇒ p | y,

that is, (p) is a prime ideal of Z. But (0) is also a prime ideal of
Z, although 0 is not considered to be a prime number.
Any ring in which (0) is a prime ideal is an integral domain.

In general, the proper ideal I of R is
• maximal, if and only if R/I is a field;
• prime, if and only if R/I is an integral domain.

Since all fields are integral domains, all maximal ideals are prime.
The converse holds for Boolean rings, since the only Boolean in-
tegral domain has the two elements 0 and 1 (namely the solutions
to x2 = x) and is therefore the two-element field.
The Prime Ideal Theorem is that every proper ideal of a

ring is included in a prime ideal. It is known that the Prime
Ideal Theorem does not imply the Maximal Ideal Theorem in
Zermelo–Fraenkel set theory. (Both the Prime and the Maximal
Ideal Theorem become real theorems when the Axiom of Choice
is introduced.) Moreover, the Maximal Ideal Theorem implies
the Axiom of Choice [].
We derived the Compactness Theorem from Łoś’s Theorem,

but this turns out to be stronger than needed for the job: for the
following is true.

Theorem . The Compactness Theorem is a consequence of
the Prime Ideal Theorem.
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Proof. In proving Łoś’s Theorem, in a certain signature we find
a set T of sentences such that, for all sentences σ and τ , and all
formulas ϕ in which only x occurs freely, the properties () on
page  hold; moreover, T contains all logically true sentences
of its signature. These properties ensure that T is the set of all
sentences that are true in some structure, whose universe consists
of the interpretations of the constant symbols in the signature.
(This result can be called the Canonical Model Theorem.)
Given a set Γ of sentences such that every finite subset of Γ

has a model, we want to enlarge Γ to a set like T above. We
do this first by adding to the signature, for every ϕ as above, a
new constant symbol, cϕ. Now let Γ′ consist of the sentences in
Γ along with, for every ϕ as above, the sentence ∃x ϕ → ϕ(cϕ).
Then every finite subset of Γ′ has a model.
This means, as it were, Γ′ generates a proper filter of the set

of sentences of its signature. Now, this is not quite true, because
this set of sentences is not exactly a Boolean ring; but it becomes
a Boolean ring when we replace each of its sentences with the
logical equivalence class of the sentence. Two sentences σ and
τ are logically equivalent if the sentence σ ↔ τ is true in all
structures of its signature. As equipped with the operations ∧,
∨, and ¬ given by

[σ] ∧ [τ ] = [(σ ∧ τ)],

[σ] ∨ [τ ] = [(σ ∨ τ)],

¬[σ] = [¬σ],

the set of logical equivalence classes of sentences of a signature
is the Lindenbaum algebra of the signature. A Lindenbaum
algebra is a Boolean algebra, which is just a Boolean ring with
different operations emphasized. Addition in the Boolean ring is

Actually, for any list of variables, there is a Lindenbaum algebra of formu-
las in which only the variables on that list occur freely.
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given by [σ]+[τ ] = [((σ∨τ)∧¬(σ∧τ))]; multiplication is ∧. Then
the image of Γ′ under σ 7→ [σ] generates a proper filter, which is
included in an ultrafilter U by the Prime Ideal Theorem. Then
the set {σ : [σ] ∈ U } is of the desired form of T as above, and so
it has a model, which is a model of Γ since Γ ⊆ T .

We also have the converse. To prove this, we define the dia-
gram of any structure A to be the set of all quantifier-free sen-
tences, with parameters from A, that are true in A.

Theorem . The Prime Ideal Theorem is a consequence of the
Compactness Theorem.

Proof. Suppose I is a proper ideal of a ring R. We consider I
as a singulary relation on R, and we introduce a new singulary
relation symbol P . Let Γ consist of the sentences of the diagram
of (R, I), together with, for all a and b in R, the sentences

a ∈ P ∧ b ∈ P → a+ b ∈ P,
a ∈ P ∨ b ∈ P → ab ∈ P,

1 /∈ P,
a ∈ I → a ∈ P.

If (R′, I ′, P ′) � Γ, then R′ is not necessarily a ring; but R embeds
in R′, since the sentence a 6= b is in Γ, and is therefore true in R′,
whenever a and b are distinct elements of R. So we may assume
R ⊆ R′. In this case I = I ′ ∩ R, and P ′ ∩ R is a proper prime
ideal of R that includes I.
The set Γ does have a model, by the Compactness Theorem.

For suppose ∆ is a finite subset of Γ. Then only finitely many ele-
ments of R occur in the sentences of ∆. These elements generate
a countable sub-ring S of R. Then the Maximal Ideal Theorem is
true for this sub-ring, as in the proof of Theorem . In particu-
lar, since I ∩S is a proper ideal of S, it is included in a maximal
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ideal, which is therefore a prime ideal, and this provides a model
of ∆.

Finally, it is possible to derive the Axiom of Choice from Łoś’s
Theorem. Using obvious abbreviations, we have

ŁOŚ ks +3

��

AC ks +3 MAX

��
COM ks +3 PRI
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