First-order Compactness exercises

Math 406

2004.11.22

Problem 1. Show that every Archimedean ordered field is elementarily equivalent to some countable, non-Archimedean ordered field.

Problem 2. Show that every non-Archimedean ordered field contains **infinites**-imal elements, that is, positive elements a that are less than every positive rational number.

Problem 3. Find an example of a non-Archimedean ordered field.

Problem 4. The **order** of an element g of a group is the size of the subgroup $\{g^n : n \in \mathbb{Z}\}$ that g generates. In a **periodic** group, all elements have finite order. Suppose G is a periodic group in which there is no finite upper bound on the orders of elements. Show that $G \equiv H$ for some non-periodic group H.

Problem 5. Suppose (X, <) is an infinite total order in which X is well-ordered by <. Show that there is a total order $(X^*, <^*)$ such that

$$(X,<) \equiv (X^*,<^*),$$

but X^* is not well-ordered by $<^*$.