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0 Preface

These notes are for Math 406 in the fall of 2004. In class, we have proved
the Compactness Theorem of first-order logic. In these notes, we establish a
complete proof-system for first-order logic. The result is Theorem 6.8 on p. 12.
The proof of this theorem follows the pattern of our proof of Compactness.

First-order logic is based on propositional logic. It will be useful to have a
general description of logics that encompasses both propositional and first-order
logic. So, this is where we begin. All sections following § 3 concern first-order
logic, unless otherwise noted.

There are a few exercises, on pp. 3, 6, 7, 7, 8, 8 and 10.

1 Logic in general

A logic has an alphabet, which is just a certain non-empty set; the members
of this set can be called the symbols of the logic. These symbols can be put
together to form strings. If we want a formal definition, we can say that such



a string is a finite, non-empty sequence of symbols of the logic; that is, the
string is a function k — s from {0,1,...,n} into the alphabet, for some n in
w. We usually write this function as

5081 - " Sn;

this the result of juxtaposing the symbols s in the prescribed order. Such a
string has sub-strings, namely the strings

S5¢S¢+1 """ Sm,

where 0 < £ < m < n; the sub-string is proper if 0 < £ or m < n. Certain
strings will be formulas of the logic. In particular, certain strings will be atomic
formulas. Some rules of construction are specified for converting certain finite
sets of strings into other strings. Then a formula of the logic is a member of
the smallest set X of strings such that:

(%) all atomic formulas are in X; and

(f) X contains every string that results from applying a rule of construction
to a set of elements of X.

Hence properties of all formulas can be proved by induction.

Moreoever, it is required that, for every formula that is not atomic, there is
exactly one rule of construction and one set of formulas such that the original
formula results from applying that rule to that set. This is the principle of
uniquely readability as formulas; it makes possible the recursive definition of
functions on the set of formulas.

For any logic, a proof-system consists of:
(¥) axioms, which are just certain formulas of the logic;

(f) rules of inference, that is, ways of inferring certain formulas from certain
finite sets of formulas.

So the notions of axiom and rule of inference are parallel to the notions of
atomic formula and rule of construction. However, in a proof-system, there is
no requirement corresponding to unique readability.

Let S be proof-system. A deduction or formal proof in S of the formula ¢
from the set ® of formulas is a sequence

¢07"'7¢n

of formulas where v, is ¢, and for each k such that k < n, one of the following
holds:

(*) d’k € (I)J or

(1) g is an axiom of S, or

(1) 9 follows from some subset of {1 : j < k} by one of the rules of inference
of S.

To denote that such a deduction exists, we can write

® ks ¢.



Then we can say that ¢ is deducible from ® in S. In case ® is empty, we can
just write

I_S ¢a

and we can call ¢ a theorem of S.

Here are some basic facts:

Lemma 1.1.
(x) FEvery non-empty initial segment of a deduction is also a deduction;
(1) if s ¢ and & C ®*, then * 5 ¢;
(1) if @ s @, then g ks @ for some finite subset Do of D;
(8) if ® st for each v in ¥, and ¥ ks x, then kg x.

Proof. Exercise. O

2 Propositional logic

We shall work here with the propositional logic whose alphabet consists of:
(¥) the propositional variables Py, where k € w;
(f) the connectives = and —;
(1) the left bracket ( and the right bracket ).

The atomic formulas are then the propositional variables. There are two rules
of construction:

(¥) From the string A, construct —A.
() From the strings A and B, construct (A — B).

Note that the same formula might be both (A — B) and (C — D) for some
strings A, B, C' and D such that A is not C. But if all of these strings are
formulas, then (as one can prove) A must be C. We use F' and G and H as
syntactical variables for propositional formulas.

In propositional logic, there is a notion of truth, which we can develop as
follows. If S C w, let 2° be the set of functions from S to 2. We can consider 2
as the universe of the field Fy; then a ring-structure on 2° is induced. If F is a
propositional formula, and all variables appearing in F' are in S, then there is a
function F from 25 into 2, as given by the following recursive definition:

() If F is Py, then F(a) = a(k) for all @ in 2¢.
() If Fis =G, then F =1+ G.
(1) If Fis (G — H), then F =1+ G- (1+ H).

Suppose S is the set of variables actually appearing in F', and F(a) =1 for all
a in 2%; then F is called a tautology.

An element « of 2¥ can be called a structure for propositional logic. (Alterna-
tively, the set {P, : a(n) = 1} can be called the structure; each one determines
the other.) Then a formula F is true in « if F'(a) = 1. If every formula in a set
® of formulas is true in a structure a, then « is a model of ®. If F is true in

{lem:gen}

{ex1}



{lem:sound}

every model of ®, then we say that F is a logical consequence of ®, or that
P entails F', and we write
® = F.

A formula F' is valid, or is a validity, if it is true in all structures; in that case,
we write
= F.

A proof-system S for propositional logic is called:
(¥) sound, if & = ¢ whenever ® s ¢;
(1) complete, if ® s ¢ whenever @ = ¢.

Lemma 2.1. Let S be a proof-system for propositional logic. Then S is sound
if and only if:
() each aziom of S is valid;

() @ |= ¢ whenever ¢ can be inferred from ® by one of the rules of inference
of S.

Proof. Suppose S is sound. If ¢ is an axiom of S, then the one-term sequence
¢ is a deduction of ¢ from &, so s ¢ and therefore = ¢. Suppose, instead,
that ¢ can be inferred from & by one of the rules of inference of S. Then & is
a finite set {¢o,...,%¥n}, so the sequence

111107 te 7'11[)77,3 ¢
is a deduction of ¢ from ® in S. Hence ® s ¢, and therefore ® = ¢.

The converse is proved by induction on the lengths of deductions. Suppose that
each axiom of § is valid, and ® |= ¢ whenever ¢ can be inferred from & by
one of the rules of inference of S. As an inductive hypothesis, suppose ® = ¢
whenever ¢ has a deduction in S from & of length less than n + 1. Now say the
sequence

¢0a"'5¢n—1)¢

of length n+1 is a deduction in S from ®. If ¢ € &, then ® |= ¢ trivially. If ¢ is
an axiom of S, then = ¢ by assumption, so ® |= ¢. The remaining possibility is
that ¢ can be inferred from some subset T of {1, : ¥ < n} by a rule of inference
of S. Then I' |= ¢ by assumption. Also, ® = v for each ¢y, in T' by inductive
hypothesis, since each 1, has a proof from & of length k + 1, namely

Yo+ o5 V-

Hence every model of ® is a model of T', and so ¢ is true in this model; that is,
® = ¢. O
Let us also note that if a proof-system is complete, then so is every proof-system
obtained by addition of new axioms or rules of inference.
In the only proof-system for first-order logic that we shall consider,

() the axioms are just the tautologies;

(1) the only rule of inference is modus ponens, that is, G' can be inferred from
{F,(F - G)}.



If, in this system, F' is deducible from the set ® of formulas, then we can just
write
d+F

(since we shall consider no other proof-systems for propositional logic). We have
proved (in class) that this system is sound and complete.

3 First-order logic

The foregoing notions in propositional logic generalize to first-order logic. For
us, the alphabet for a first-order logic will consist of:

(¥) the symbols in a signature £ for the logic;

(1) individual variables vy, where k € w;

(8) the quantifier 3;
() the brackets ( and ).

The set of formulas of the resulting logic can be denoted

)

(1) the Boolean connectives — and —;
)
)

Fm L -
Certain formulas are sentences; the set of them is
Sn L -

We do not have proof by induction on this set, since sentences can be constructed
from formulas that are not sentences. However, we can still define proof-systems
for Sn.. (Alternatively, we could define a proof-system for Fm,.)

There are L-structures 2, and then for each sentence o of £, there is an element
o of 2. Then ¢ is true in 2 if 0 = 1. The notions of model, entailment,
validity, soundness and completeness can now be defined as for proposi-
tional logic. Hence we have Lemma 2.1 for Sn, in addition to propositional
logic.

To prove that a certain proof-system for Sn, is complete, we shall use the
method first expounded by Leon Henkin, in [1]. (Henkin’s proof was a part of his
doctoral thesis; see [2]. We have already used Henkin’s method to prove Com-
pactness.) The particular treatment in these notes owes something to Shoen-
field’s in [3]. I introduce the notions of tautological and deductive completeness
merely to make our ultimate proof-system seem natural.

If F is an n-ary formula F(P,,...,P,_1) of propositional logic, and o € Sng,
then by substitution we can form the sentence

F(JOJ s 70-n71)

of L. If F is a tautology, then F(oy,...,0n,—1) can be called a tautology of
Snﬁ.

Lemma 3.1. Tautologies of Sny are validities.

{sect:1st}

{lem:validities}



eqn:prop-ent
qn: prop

{eqn:1-ent}

{lem:1}

Proof. We can prove by induction on propositional formulas F' that, if F is

F(Py,...,P,_1), then for all sentences oy, of Sng, and all L-structure 2,
F(O'(), .. ,O'n_l)m == F(UOQ[, “e. ,O'n_lm).
(Details are an exercise.) The claim follows immediately from this. O

4 Tautological completeness

Suppose S is a proof-system for Sn, such that, if Fy, ..., Fy are n-ary propo-
sitional formulas, and

{FOa"'aFk—l}':Fka (1)
and oyg,...,0,_1 € Sng, then

{FO(O'(], - ,0'",1), - 7Fk71(0'07 - ,0'",1)} |_5 Fk(Uo, - ,0'”,1); (2)
let us say then that S is tautologically complete.

Lemma 4.1. Let S be a proof-system for Snz. Then S is tautologically complete
if and only if:

(%) ks o for all tautologies o of Snz, and

(1) {o,0 > 7} Fs 7 for all o and 7 in Sng.

Proof. If S is tautologically complete, then immediately all tautologies are the-
orems; the other condition follows since {FPy, Py — P1} = Pi.

To prove the converse, we can use our complete proof-system for proposi-
tional logic: Suppose we have (1) above. Then F} has a a formal proof from
{Fo,...,Fx_1}. Say this proof is

Go,..-,Gp.

Then G,, is Fj,. We proceed by induction on m. There are three possibilities:
(x) If Fy, € {Fy,...,Fr_1}, then trivially (2) follows.
() If Fy is a tautology, then s F (&) by assumption, so (2).

(1) IfG;is (G; — Fy) for some i and j in m, then, by inductive hypothesis,
we have

hence (2) by assumption (and Lemma 1.1).

In all cases then, (2) follows. O

It should be clear that a complete proof-system is tautologically complete. The
converse fails:

{ex2}



Example 4.2. The proof-system in which all tautologies are axioms and modus
ponens is the only rule of inference is not complete, since it cannot be used to
prove the validity dx = x. Indeed, the theorems of this proof-system are just
the tautologies (as one can show); but dx £ = x is not a tautology.

Let L be the negation of a tautology, say
Az x =2 — Iz x = x).
Henceforth, let ¥ C Sn, and o € Sng.

Lemma 4.3. In a tautologically complete proof-system S, the following are
equivalent:

(x) L F —o for some o in X;
(t
(i
(8

) ¥+ o and T+ —o for some o in Sng;
) X+ o for every o in Sng;
) Sk L.

Proof. Exercise. (There is a corresponding lemma, for propositional logic.) O

If ¥ kg L, then X is inconsistent in S; otherwise, it is consistent.

Lemma 4.4. In a complete proof-system, every consistent subset of Sny has a
model.

Proof. If S is complete, but ¥ has no model, then ¥ = 1, so ¥ ks L by
completeness, so X is inconsistent. ]

The converse of the lemma may fail, even if the proof-system is required to be
tautologically complete:

Example 4.5. Let the axioms of a proof-system S be the tautologies, and
let the rules of inference be modus ponens, along with the rule that L can
be inferred from every finite set that has no model. (Note however that this
is not a syntactical rule: it is not based directly on the form of sentences.)
By the Compactness Theorem of first-order logic, every set with no model is
inconsistent in this theory; therefore all consistent sets have models. However,
the validity 3z = z is not a theorem of S. (Exercise: show this.)

5 Deductive completeness

Let a proof-system S be called deductively complete if ¥ g (0 — 7) when-
ever YU {o}Fs .

Lemma 5.1. A tautologically and deductively complete proof-system in which
every consistent set has a model is complete.

{lem: 2}

{ex3}

{ex4}

{lem:4}



{ex5}

{ex6}

{eqn:axiom-E}

Proof. Suppose S is such a system, and ¥ U {—o} is inconsistent in S. Then
Y U{-o} Fs o by Lemma 4.3, so ¥ s (-0 — o) by deductive completeness.
But (o — o) — o is a tautology, so ¥ Fs o by tautological completeness.

Therefore, if ¥ /s o, then ¥ U {—c} is consistent, so it has a model by assump-
tion; this shows ¥ [~ o.

Lemma 5.2. A tautologically complete proof-system whose only rule of infer-
ence is modus ponens is deductively complete.

Proof. Exercise. (See the Deduction Theorem of propositional logic.) O
Lemma 5.3. Suppose ¥ C Snp and X is consistent in a tautologically and
deductively complete proof-system. The following are equivalent:

(x) If X CT CSng and T is consistent, then T' = X.

(1) "0 €X < 0 ¢X for all o in Sn,.

Proof. Exercise. O

A set ¥ meeting one of the conditions in the lemma can be called maximally
consistent.

6 Completeness

By Lemma 4.1, we know of one tautologically complete proof-system, namely,
the system whose axioms are the tautologies, and whose rule of inference is
modus ponens. Let S be this system. Then § is deductively complete, by
Lemma 5.2, and is sound, by Lemmas 2.1 and 3.1. Moreover, soundness and
deductive completeness are preserved if we add new valid axioms to S. Now we
shall see which valid axioms we can add in order to ensure that every consistent
set has a model; then we shall have a complete system by Lemma 5.1.

We follow the proof of the Compactness Theorem, replacing ‘finitely satisfiable’
with ‘consistent’. We assume that £ is countable. Suppose X is a consistent
subset of Sn,.. We introduce an infinite set C' of new constants and enumerate
Sncuc as {on 1 n € w}. We construct a chain

Y=%CECEC---

where
Yon U{op}, if this is consistent;
E2n—i—1 = .
Yon, otherwise.

If o, is 3z ¢, and this is in Yo,11, then we want to define Yo, 12 as

Yont1 U{ge},

where c is a variable not used in ¥o,41. But we need to know that this set is
consistent. For this we assume, as axioms of S, the sentences

(¢ = x) =3z o= x, 3)

where ¢ is a variable not appearing in x. Note that these axioms are valid. We
now have:

{lem:5}



Lemma 6.1. If T is consistent and contains 3x ¢, and ¢ does not appear in T,
then T'U {¢Z} is consistent.

Proof. Suppose it’s not. Then
oy -1} U{d} Fs L
for some v; in I'. By deductive completeness,
Fsde = o = -+ = hp1 = L, (4)

where the notational convention is that a terminal string xo — x1 — X2 stands
for the formula (xo = (X1 = x2)). We can re-write (4) as

Fs ¢ = X, (5)
where x is ¢9 = -+ = ¥p—1 — L. Then from (3) we have
Fsdz ¢ = x
by modus ponens; that is,
Fsdzd = pg = - > 1 — L.
Then k + 1 applications of modus ponens show
Phks L,

which contradicts the assumption that I' is consistent. O

So now, given a consistent subset ¥ of Sn., we can construct a consistent subset
¥* of Snzyue such that

(x) TC XY

(f) ¥* is maximally consistent;

(1) if (Az @) € X, then ¢? € ¥ for some c in C, that is, ¥* has witnesses.
As in the proof of Compactness, we want to use X* to define a model 2 of itself.

For the sake of defining the universe of 2, we assume now that S has the axioms

c=c, (6)
c=cd vd=d sc=d—d=4d, (7)

where ¢, ¢/, d and d' range over C. Let E be the relation
{(c,d) € C? : (c=d) € ©*}.
We can now show:

Lemma 6.2. The relation E is an equivalence-relation.

{eqn:to-bot}

{eqn:to-bot-again}

{eqn:equality}
{eqn:more-equality}



Proof. We first show

Fsc=c, (8) {eqn:=1}
Fse=d—>d=c, (9) {eqn:=2}
Fsc=d—wd=e—c=e (10) {eqn:=3}

for all constants ¢, d and e in C.
Now, we have (8) trivially by (6). An instance of (7) is

c=d—o>c=c—=c=c—od=cg
then (9) follows by tautological completeness. Another instance of (7) is
c=c—o>d=e—c=d—c=e¢

then (10) follows by tautological completeness.

By its maximal consistency then, ¥* contains ¢ = ¢; and if ¥* contains ¢ = d
and d = e, then it contains d = c and c = e. 1

We define A to be C/E. We now define R* (for each n-ary predicate R in £)
as the set

{(leol, -+ e 1)) € A™ s (Reo -+ 1) € 7.

Then we have
(Reg+-+cn-1) €X* = ([eo], " ,[en-1]) € R*,

but perhaps not the converse. Possibly then both Reg - - - ¢,—1 and —Rcj - - - ¢},

are in ¥*, although (¢ = ¢},) € £* in each case. To prevent this, as as axioms
of § we assume

{eqn:R} Co=1¢y)— "+ —Cp1=0Cyp_q = Reg--cp_1 = Rey---ch_y. (11)

We now have:

Lemma 6.3. ([co],- - ,[cn_1]) € R* < (Rco-+-c,_1) € B*.
{ex7} Proof. Exercise. O

Finally, suppose f is an n-ary function-symbol (where possibly n = 0, in which
case f is a constant.) We want to be able to define f2. (If ¢ € C, then ¢* = [¢];
but there might be constants of £ as well.) To define f#, we first need some
lemmas, which are based on another axiom:

{eqn:t} of — 3z ¢, (12)

where fv(¢) C {z} and ¢ is a term with no variables. Let us assume that this is
an axiom of §. Then we have:

Lemma 6.4 (Substitution). If fv(¢) C {z}, and the constant ¢ does not
appear in ¢, then

Fs ¢ = &

for all constant terms t.

10



Proof. We have

Fs =gy — 32 =9, [by (12)]

Fs =3z —¢ — ¢, [by tautological completeness]
Fs (m¢¢ = 1) = 3z ¢ — L, [by (3)]

Fs ¢7 — =3z 9, [by tautological completeness]

and hence ks ¢% — ¢ by modus ponens. O

Lemma 6.5. Fst =1t for all terms t.

Proof. We have

Fsc=c, [by (6)]
Fsc=c—ot=t, [by the Substitution Lemmal]
and hence s t =t by modus ponens. O

Lemma 6.6. s 3z fcy---cp_1 = x.

Proof. We have

Fs feo - cn—1= feo - cn-1, [by the last lemmal]
Fs feo - cn1=fco - cpn1— 3z feg - cn1 =z, [by (12)]

hence Fs 3z fcg -« - ¢n—1 = x by modus ponens. O
Finally, we assume as axioms of S the sentences

Co=Ch—>+—Cp1=Chq = feo " Cn1= fc--Ch_;. (13)
This enables us to define f2:

Lemma 6.7. For each n-ary function-symbol f, there is an n-ary operation f*
on A given by

o), [ena]) = [d] <= (feo- - cao1 =d) € ", (14)
Proof. Since ¥* is maximally consistent, we now have
Az feg--cn1 = x € X*.
Since ¥* has witnesses, we have
feo-recp1=dex”

for some constant d. This gives us a value for f¥([co], - ,[c,_1]); We have to
show that this value is unique. For this, it is enough to show

Fsco=chp—--—ecp1=c, 14—
d=d — fco---cno1=d— fey---ch_; =d

11

{eqn:f}

{eqn:function}



{thm:completeness}

for all ¢, and ¢}, and d and d' in C. By (13) and tautological completeness, it
is enough to show

Fs feo - cn1=fey-ch 1 >d=d — feg---cn1=d— feg---ch, =4

In the axiom (7), we may assume that ¢ is not one of the variables ¢/, d or d'.
Then by the Substitution Lemma, we have

Fs feo- - cnor=c =d=d = fco---chnor=d—=c =d.
We may also assume that ¢’ is not one of the variables ¢y, d or d'. Applying the
Substitution Lemma, again gives what we want. O
The structure 2 is now determined and is a model of ¥, by the proof of the
Compactness Theorem. In sum, what we have shown is:

Theorem 6.8 (Completeness for first-order logic). That proof-system for
Sn/ is complete whose only rule of inference is modus ponens, and whose azioms
are the following:

(%) the tautologies;
(1) (¢% = x) = Tz ¢ — x, where ¢ does not appear in X;
1) c=¢
c=d sd=d sc=d->d=4d;
(8) ;
M) co=chy—-..cpo1=¢h_y = Rep---cp1 = Rey---ch_y;
(D) ¢f = 3z ¢;
(%) co=cf) = - > cpe1 =Ch_1 = feo---Cpe1 = fey---Ch_y

Here the notation is as follows:
e x is a variable;
e ¢ is a formula such that fv(¢) C {z};
e X is a sentence;
e t is a constant term;
e ¢, c,cp, ¢, dandd are constants;
®nEw

e R is an n-ary predicate if n > 0; and

f is an n-ary function-symbol (or a constant, if n =0).
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