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Solution . (i) Apply the Euclidean algorithm:

α

β
=

40 + 5i

39i
=

5− 40i

39
= −i +

5− i

39
, 40 + 5i = (39i)(−i) + 1 + 5i;

39i

1 + 5i
=

195 + 39i

26
= 7 + i +

1 + i

2
, 39i = (1 + 5i)(7 + i)− 2 + 3i;

1 + 5i

−2 + 3i
=

(1 + 5i)(−2− 3i)

13
= 1− i, 1 + 5i = (−2 + 3i)(1− i).

Therefore −2 + 3i is a greatest common divisor of α and β.
(ii) By the computations above,

α = β · (−i) + 1 + 5i, 1 + 5i = α + β · i;
β = (α + β · i)(7 + i)− 2 + 3i, −2 + 3i = α · (−7− i) + β · (2− 7i).

Remark. In (i), each step of the computation should lower the norm of the remainder.
Indeed, N(39i) > N(1 + 5i) > N(−2 + 3i). But the way to achieve this is not unique. For
example, from the second line, the computation could have been

39i

1 + 5i
=

195 + 39i

26
= 8 + i +

−1 + i

2
, 39i = (1 + 5i)(8 + i)− 3− 2i;

1 + 5i

−3− 2i
=

(1 + 5i)(−3 + 2i)

13
= −1− i, 1 + 5i = (−3− 2i)(−1− i).

So −3 − 2i could also be found as a greatest common divisor of α and β. (Also 2 − 3i
and 3 + 2i are gcd’s.)

In an alternative approach to (i), one might observe that

α = 5 · (8 + i) = (2 + i)(2− i)(8 + i), N(α) = 52 · 65 = 53 · 13;

β = 3 · 13i, N(β) = 32 · 132.

The factors 2± i of α are prime, and their norm is 5, and 5 - N(β). Also, 3 is prime, and
3 - N(α). One can therefore take γ as a gcd of 8+ i and 13i. To find this, one could apply
the Euclidean algorithm to the latter pair. Alternatively, since gcd(N(α), N(β)) = 13, we
must have N(γ) | 13. Since 13 has the prime factorization (3 + 2i)(3 − 2i), each factor
having norm 13, one could test whether one of these factors divides α and β: if one
does, then it is γ; if neither does, then α and β are co-prime. However, these alternative
approaches are not much help in solving (ii).

Once one does have an answer to (ii), it is easy to check.
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Solution . (i) Let x =
√

3/2 =
√

6/2. Applying our algorithm to x, we have

a0 = [x] = 1, ξ0 =

√
6

2
− 1 =

√
6− 2

2
;

2√
6− 2

=
√

6 + 2, a1 = 4, ξ2 =
√

6− 2;

1√
6− 2

=

√
6 + 2

2
, a2 = 2, ξ2 =

√
6− 2

2
= ξ0;

therefore
√

3/2 = [1; 4, 2].
(ii) The equation (∗) can be written as x2 − (3/2)y2 = 1. Assuming it is like a Pell

equation, we expect solutions to (∗) to come from convergents of x. These are:
1

1
,

5

4
,

11

9
,

49

40
,

109

89
,

485

396
, . . .

In particular, we expect the solutions to come from [1; 4], [1; 4, 2, 4], [1; 4, 2, 4, 2],
and so on. Indeed, (5, 4) is a solution.

(iii) Also (49, 40).
(iv) Also (485, 396).

Remark. Since we have not yet proved that our procedure for solving a Pell equation
works in general; and since (∗) is not literally a Pell equation anyway, one should check
one’s answers to (ii), (iii), and (iv) here.

Solution . (i) The solutions are
(1− 3t2

1 + 3t2
,

2t

1 + 3t2

)
, where t ∈ Q; and (−1, 0).

(ii) Letting t = 2 in the given formula yields (−3 + 4i)/5, not a Gaussian integer.
(iii) Letting t = 2 in (i) yields (−11 + 4i

√
3)/13, which is not in Z[(1 + i

√
3)/2].

Remark. One may solve (i) just by thinking about why the given point is on the cir-
cle. Alternatively, one may just use the same method for deriving it: find the other
intersection, besides (−1, 0) of the line y = tx + t and the ellipse x2 + 3y2 = 1.

Solution . (i) 221 = 13 ·17. In the Gaussian integers, N(ξ) = 13 is solved by 3±2i
and their associates; N(η) = 17, by 4± i and their associates. We have

(3± 2i)(4± i) = 10± 11i, (3± 2i)(4∓ i) = 14± 5i.

Hence the  desired solutions are
(10,±11), (−10,∓11), (∓11, 10), (±11,−10), (14,±5), (−14,∓5), (∓5, 14), (±5,−14).

(ii) 27−57i = 3·(9−19i), where 3 is prime; and N(9−19i) = 81+361 = 442 = 2·221.
But 2 has associated prime factors 1± i, and

9− 19i

1 + i
=

(9− 19i)(1− i)

2
= −5− 14i = −i · (14− 5i) = −i · (3− 2i)(4 + i)

by (i). Since (1 + i) · (−i) = 1− i, we conclude
27− 57i = 3 · (1− i)(3− 2i)(4 + i).
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