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Preface

This book concerns the foundations of mathematics in two ways:
. this book is about concepts and techniques that all mathematicians use,

implicitly or explicitly;
. this book (or parts of it) is intended for use in a first university-level

mathematics course.
More precisely, these notes are originally written for a course called Fundamen-
tals of Mathematics, given at Middle East Technical University in Ankara under
the designation Math . The notes also offer additional reading for those
interested in the topics they discuss. In particular, the notes may be useful for
Math  (Set Theory) and Math  (Introduction to Mathematical Logic and
Model Theory) at METU.

What are foundations? A wooden house may by built on a stone foundation.
A mason lays down the stones; then a carpenter erects the house on top. The
carpenter cannot construct the walls and floors of the house before the stone-
mason creates a place to set those floors and walls; but the stone-mason cannot
create this foundation without knowing what the carpenter intends to place
there.

So it is with the foundations of mathematics. You cannot do mathemat-
ics without a place to start; but you cannot create the starting-point without
knowing the mathematics that will proceed from it. This is a paradox—a seem-
ing contradiction. It is not a real contradiction; but it does suggest that the
nascent mathematician (the first-year student) cannot read this book page after
page as if it constituted an easy novel. The book might considered as a dif-
ficult novel with lots of interrelated events. (However, not every novel has an
index or a list of symbols like this one.) Not every section of the book should

The catalogue description of Math  is:

Symbolic logic. Set theory. Cartesian product. Relations. Functions. Injective,
surjective and bijective functions. Composition of functions. Equipotent sets.
Countability of sets. More about relations: equivalence relations, equivalence
classes and partitions. Quotient sets. Order relations: Partial order, Total order,
Well ordering. Mathematical induction and recursive definitions of functions.


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be studied in sequence during the reader’s first encounter. Even if an earlier
section is required for a later section, still, that earlier section may not be fully
comprehensible without some knowledge of the later section.

What can the reader do? Read slowly, but jump ahead; reread what you
have already read; think the whole time, but do not think too much without
really knowing what you are thinking about. Talk to classmates; talk to teach-
ers. Read with a pencil. Summarize passages in your own words. Invent your
own symbolism (while remembering that communicating with others requires a
common symbolism). Read other books on the same subjects.

Also: do exercises. Create your own exercises. Most sections of the book end
with exercises. The student who is in a hurry will find out from a teacher which
exercises to work on and will then try to do them immediately, looking back into
the sections as necessary for examples. A difficulty in this approach is that most
exercises here do not have unique correct answers; they have solutions, some
of which are better than others. Finding the best solutions—even acceptable
solutions—will require reading, thinking, and experience. Still, many of the
exercises can be approached as puzzles: they do not need deep insight into the
nature of things, but aim only to develop facility with some basic ideas.

Most exercises here could not very well be cast as multiple-choice questions.
In a multiple-choice question, if you can somehow figure out the correct answer,
even without being able to say how you did it, your answer is still 100% correct.
Here, correct solutions to problems will carry within themselves the reasons why
they are correct.

There are no answers at the back of the book. Problems here can have more
than one correct solution; you should be able to tell whether a particular solution
is correct. It is true that you may fail to notice some mistakes; the only way to
avoid this is experience, not desire or will.

Somebody who does not know a language very well will not avoid mistakes
just by trying hard: s/he must practice. Likewise with games: even if you
memorize all of the moves of chess and think real hard, you will not play a good

The construction s/he can be pronounced as she or he (or as he or she). English has not
evolved a generally accepted singular pronoun that refers to humans of either sex: it lacks
the o(n) of Turkish. In the fourteenth century, according to the Oxford English Dictionary
(OED) [], the second-person plural pronoun you began to be used respectfully in place of
the singular pronoun thou, just as the Turkish siz replaces sen. In the same way, currently,
some people use they with a singular sense. Other people are bothered by this usage, and
they may insist that he can refer to humans of unknown sex. The original OED does not
recognize this usage. However, the OED does claim that she comes from a different base
from he, because the feminine form derived from the base of he was too much like the
masculine form.
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chess-game at first. Depending on how seriously you take mathematics, you can
see this book as lessons in a language or a game.

It would be worthwhile for the reader to have a look at Euclid’s Elements.
(Heath’s English translation from the Greek is []—see the bibliography at the
end of the book. This translation is available in print and in various places
around the Web.) The present book does not share much content with the
Elements; but Euclid’s work does establish a sort of foundation or prototype for
the mathematics of his and all succeeding generations, including our own.

Euclid wrote the Elements, the original textbook of mathematics, some 
years ago. This textbook is still in use in some classrooms today. It consists
of  books. You are not likely to read all of them; as with the present work,
you will jump around, reading what you are interested in, perhaps with the
guidance of a teacher. Indeed, perhaps Euclid expected few people to read his
work unaided. His work does bring the reader instantly into real mathematics;
but it also sets a standard for spareness (terseness, economy) of mathematical
composition.

The Elements contains no commentary, no guidance for the reader. After a
few definitions and axioms, the work consists solely of propositions and their
proofs. Euclid does not tell you, but he shows you what proofs of propositions
are.

The present book contains more than just propositions and their proofs; but it
does contain these. Each proof here is labelled as such, and it ends with a little
box. (The first example is on p. .) The propositions and proofs in the book
consist of sentences of ordinary language, with some abbreviative symbolism (as
well as the symbolism required by what the proofs are about). Such proofs might
be called informal, because ordinary language is itself informal. Grammatical
rules for English or Turkish or any other human language can indeed be for-
mulated, and the conscientious speaker or writer will try to follow them; but it
seems impossible to formulate grammatical rules that are obeyed by, and only
by, everything that one wants to say.

Informal proofs are to be distinguished from formal proofs. Again, the notion
of proof itself—informal proof—is over two thousand years old; but the notion
of a formal proof dates only from the s. This book tells you, as well
as shows you, what formal proofs are. Briefly described, a formal proof is a
list of sentences of an artificial language; but such a list must satisfy certain
requirements. The last sentence on the list is what the formal proof is a proof

Euclid practiced mathematics in Alexandria around  bce, probably having learned math-
ematics in Athens from the students of Plato [, vol. I, pp.  f.].

Perhaps the invention can be attributed to Hilbert [, §, n. ].
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of : it is what the proof proves. A machine could check whether a given list of
sentences is a formal proof. To establish the truth of an interesting proposition,
a formal proof is practically never called for. However, if it is held to the highest
standard, an informal proof of some proposition P can be seen as an argument
that a formal proof of P could in principle be written.

It will be an exercise in this book to write some formal proofs; but the ultimate
goal is the ability to check the validity of informal proofs (like Euclid’s, or any
later mathematician’s), and the ability to write one’s own (informal) proofs.

I assume that you, the reader, have some experience with high-school algebra,
and specifically with the algebra of the integers. Then you can prove an identity
like

x3 + y3 = (x+ y)(x2 − xy + y2) (0.1)

(by multiplying out the right member and combining like terms). The algebra
of the integers serves as a pattern for Boolean algebra, which I shall introduce
as the algebra of the numbers 0 and 1 alone. If one considers these numbers
to represent falsity and truth, then Boolean algebra determines an algebra of
propositions, or a propositional logic.

After we have propositional logic, we can say something about predicate logic.
This logic provides for the analysis of propositions into parts, some of which are
not propositions. (Some parts of propositions will be predicates: hence the name
of the logic.) We cannot define everything precisely until we have the notion of
a relation. Relations are certain sets; they are subsets of Cartesian products of
sets. So all of these things will need to be discussed.

A function can be defined as a kind of relation. Functions give us a way to say
when two sets ‘have the same size’, or are equipollent (or equipotent). The set
of integers has the same size as the set of even integers; both sets are countably
infinite; but there are strictly larger, uncountable sets, such as the set of real
numbers.

The predicate logic given here is more precisely called first-order predicate
logic. Functions also allow us to give an account of first-order logic in general.

The integers have an ordering. This is a kind of relation. There is a generaliza-
tion called a partial ordering . We shall prove a representation theorem, namely
the proposition that every partial ordering behaves like the subset-relation (in
a clearly defined way).

Equality is also a relation and is the motivating example of an equivalence-
relation. The standard sorts of numbers—integers, rational numbers, real
numbers, complex numbers—can be formally defined in terms of equivalence-
relations, once one has the natural numbers 0, 1, 2, 3, . . . . The idea of this book
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is that we do not really have these numbers, mathematically, until we can give
a logical account of them. This book ends with such an account.

The topics of this book are so interrelated that, in any discussion of them, it
is hard to avoid the appearance of circularity. This circularity is a part of the
foundational aspect of the book. As I say, I assume that the reader is familiar
with the integers; but I also say that we do not officially have the integers until
the end of the book. Yet my supposedly rigorous account of the integers depends
on all of the machinery that the book develops first, with the aid of a familiarity
with. . . the integers.

Our path will have been, not circular, but spiral or rather helical, as if along
a winding staircase. We start from the integers, and then we return to them,
but at a higher (or deeper) level than where we started.

Typography

These printed words are assembled by means of the collection of typesetting
programs and packages known as AMS-LATEX. Here, TEX is in Greek letters;
the same three letters will appear below, in § ., in the full Greek name of
logic. In the Latin alphabet, the letters are written tech, as in technical. The
AMS is the American Mathematical Society. The original TEX program was
expanded into LATEX and independently into AMS-TEX; then the benefits of
both expansions were combined into AMS-LATEX.

The original TEX program distinguishes between ordinary text and mathe-
matical text. In ordinary text, in this book, words are italicized for the usual
sorts of reasons: they (or their meanings) are being emphasized, they are ti-
tles, they are not in the language of the surrounding text, and so forth. I am
also making some further distinctions. Technical terms are in bold-face when
they are being defined, explicitly or implicitly. Technical terms might simply
be slanted if their precise definitions will come later or are simply not needed.
Words that are being talked about or mentioned (and not simply being used)

See [, p. ].
The distinction between the use and the mention of a word (or symbol) is attributed to

Quine in [, § , p. ]. The sentence ‘A woman or a man is a human’ uses the word
woman. The sentence ‘The English word for kadın also has five letters’ mentions the word
woman without using it. The sentence ‘Woman has five letters’ uses the word woman to
mention the same word. Such a use can be called autonymous, following Carnap: again,
the attribution is in [, § , p. ], where it is said that Frege introduced the practice
of indicating autonymous use of words by quotation-marks (inverted commas). By this
practice, the last quoted sentence would be “ ‘Woman’ has five letters.”
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are in sanserif. However, I may not have always been consistent in making these
distinctions.

Footnotes here are intended to contain only material that is not essential to
the main point. They may contain historical information that I have happened
to discover, although much of the history of what I am discussing is still unknown
to me.

Labelled proofs here end with boxes, as noted above; labelled examples end
with bullets (the first is on p. ).
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Open Your Own Treasure House

Daiju visited the master Baso in China. Baso asked: “What do you
seek?”

“Enlightenment,” replied Daiju.

“You have your own treasure house. Why do you search outside?”
Baso asked.

Daiju inquired: “Where is my treasure house?”

Baso answered: “What you are asking is your treasure house.”

Daiju was enlightened! Ever after he urged his friends: “Open your
own treasure house and use those treasures.”

Paul Reps and Nyogen Senzaki
‘ Zen Stories’

Zen Flesh, Zen Bones
[, p. ]
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. Introduction

.. Logic

The name of logic comes ultimately from the (ancient) Greek adjective λογική,
which is short for ἡ λογικὴ τέχνη. This phrase can be rendered in English as the
rational art, or the art of reason. I shall not attempt to define reason. In Latin
letters, the Greek phrase is hē logikē technē. But knowing the Greek alphabet is
worthwhile, if only because mathematicians use it as a source of symbols. See
Figure . below.

Logic as a field of study can be counted as a part of philosophy. One can
do logic with ordinary language alone. Aristotle (– bce [, pp. vii–ix]) is
classically considered the originator of logic, and his texts are in ordinary Greek,
albeit with some use of (Greek) letters to stand for parts of sentences. I shall
take him as a source for some fundamental ideas: see §§ . and ., as well as
Appendix A.

Symbolic logic consciously develops a special notation for the notions that
logic examines. Some two thousand years after Aristotle, George Boole describes
the process at the beginning of The Laws of Thought [, [], p. ], first published
in :

The design of the following treatise is to investigate the fundamental
laws of those operations of the mind by which reasoning is performed;
to give expression to them in the symbolic language of a Calculus,

and upon this foundation to establish the science of Logic and con-
struct its method; to make the method itself the basis of a general
method for the application of the mathematical doctrine of Prob-
abilities; and, finally, to collect from the various elements of truth
brought to view in the course of these inquiries some probable inti-
mations concerning the nature and constitution of the human mind.

This is calculus in the sense of a method of calculating; it has little to do with the infinites-

imal calculus, which is the subject now called just calculus. What this book refers to as
propositional logic can also be called propositional calculus.





.. Logic 

Α α alpha Η η ēta Ν ν nu Τ τ tau
Β β beta Θ θ theta Ξ ξ xi Υ υ upsilon
Γ γ gamma Ι ι iota Ο ο omicron Φ φ phi
Δ δ delta Κ κ kappa Π π pi Χ χ chi
Ε ε epsilon Λ λ lambda Ρ ρ rho Ψ ψ psi
Ζ ζ zeta Μ μ mu Σ ς,ς sigma Ω ω ōmega

Figure .. The Greek alphabet. Mathematicians use (some of) these letters all
the time. In this table, the first letter or two of the (Latin) name for
a Greek letter provides a transliteration for that letter. In texts, the
rough-breathing mark (῾) over an initial vowel (or ρ) is transcribed
as a preceeding (or following) h; the smooth-breathing mark (᾿) and
the three tonal accents (ά, ᾶ, ὰ) can be ignored.

Boole’s project is grander than mine. My interest here is almost entirely math-
ematical. The introduction of symbolism to logic allows logical notions to be
examined as if they were numbers or geometric figures. In short, symbolism
makes mathematical logic possible. This, then—mathematical logic—is one
subject of this book.

Section . of the book makes a preliminary approach to the notion of a
proposition, introducing the terminology of axioms and theorems. Section .
introduces the basic terminology of sets and natural numbers; some of this
terminology is used in the review of arithmetic in § .. Arithmetic will be
familiar to everybody from school; the main purpose here is to develop a point
of view, a way of looking at mathematics, which we shall then apply to logic.
Also, the notion of arithmetic term introduced in § . will provide an example
of a proof by induction. Finally, arithmetic is the setting for some ancient
mathematical proofs; these are given as examples in § .. Further investigation
into these examples is in § .. In §§ . and ., some operations on the set
{0, 1} are introduced by means of, and by analogy with, the usual arithmetic
operations. What these correspond to in ordinary language is discussed in § .;
further logical analysis of language is in § ..

The operations on {0, 1} are essential to the study of mathematical logic as
such, which begins in Chapter .
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Exercise

Memorize the Greek alphabet.

.. Language and propositions

We are using language right now. We divide up language into sentences. Some
sentences, but not all, can be described as true or false. At least, some sentences
are true or false when placed in a situation or context. Let us refer to such
sentences as statements or propositions. For example, the sentence

I went to Van last year

is a statement (or a proposition). Whether it is true or false depends on who
says it and when: the speaker and the time would be the context in which the
sentence is true or false.

We shall mainly be interested in mathematical propositions. Such propositions
are timeless and personless: their truth or falsity does not change with time or
with the person who utters them. Still, in § ., we shall see a way in which,
strictly, a mathematical proposition must still be placed in a context in order to
become true or false.

The belief that a mathematical proposition is true or false may change with
time. Certain mathematical propositions have been accepted as true for many
years, only to be found false. For example, Proposition I. of Euclid’s Ele-
ments can be called false, even in its context, since its proof relies on unstated
assumptions that do not follow from the stated assumptions; but this falsehood
was not recognized until the nineteenth century. However, the philosopher R.
G. Collingwood writes in his autobiography [, pp. –]:

[Y]ou cannot find out what a man means by simply studying his
spoken or written statements, even though he has spoken or written
with perfect command of language and perfect truthful intention. In
order to find out his meaning you must also know what the question
was (a question in his own mind, and presumed by him to be in
yours) to which the thing he has said or written was meant as an

We could make a distinction here: we could let a statement be a bit of language of a certain
grammatical form, letting a proposition be the meaning of a statement. See [, p. ]. I
am not going to try to make such a distinction.

The context can also include the listener, as when the sentence is You went to Van last year.
See Heath [, vol. , p. ] for some commentary.
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answer. . . If the meaning of a proposition is relative to the question
it answers, its truth must be relative to the same thing.

If we translate Euclid’s work into the kind of formal proofs that will be developed
in this book, then indeed we shall find errors or gaps in the proofs. Euclid himself
was not writing formal proofs; there was no notion of such a thing for over two
thousand years. However, Euclid was doing mathematics, and correctly, I would
say; but this is for you to judge, after reading Euclid himself and understanding
his purpose—after understanding the questions he was answering.

Euclid’s work begins with five propositions that we call axioms or postulates.
(He, apparently [, p. ], called them αἰτήματα, that is, requests, demands,
or assumptions.) An axiom is usually a proposition that satisfies two criteria:

. it is self-evident;
. it is useful for proving other propositions.

In common usage, the first criterion is probably more important; in mathemat-
ical usage, the second.

A self-evident proposition is self-evidently true: that is, obviously true with-
out any need of appeal to some other authority. A classical use of the compound
word self-evident is found in a certain revolutionary manifesto of the eighteenth
century. I transcribe from [, p. ], with my own formatting:

We hold these truths to be self-evident,

) that all men are created equal,
) that they are endowed by their Creator with certain unalienable

rights,
) that among these are life, liberty and the pursuit of happiness.
) That to secure these rights, governments are instituted among

men, deriving their just powers from the consent of the gov-
erned.

) That whenever any form of government becomes destructive of
these ends, it is the right of the people to alter or abolish it,
and to institute new government, laying its foundation on such
principles and organizing its powers in such form, as to them
shall seem most likely to effect their safety and happiness.

Namely, the Declaration of Independence of the United States of America, written in  by
Thomas Jefferson, who, with other signers of the document, possessed other human beings
as slaves. In , Vietnamese revolutionaries led by Ho Chi Minh issued a Declaration of
Independence that enunciated some of the truths of the American declaration [, ch. ];
this did not prevent a later American invasion.
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Two thousand years earlier, before Euclid even, in the collection of books now
known as the Metaphysics [], Aristotle writes of axioms, using the Greek source
of our word axiom, namely ἀξιώμα. This word has the root meaning of something
worthy, or an honor. Aristotle seems to use axiom almost as a synonym of
principle (ἀρχή) or common notion (κοινὴ δόξα). His writing is elliptical, in the
style of lecture-notes—which is probably just what his works are [, pp. xxv &
xxxi]; I translate accordingly below, with seemingly missing words supplied in
brackets. (Some of the original Greek words in parentheses are the sources of
modern technical terms.)

In Book Β (that is, Book Beta, also called Book III) of the Metaphysics,
Aristotle introduces some questions:

[ b ] Yet indeed, concerning the demonstrative (ἀποδεικτικός)
principles, whether they belong to one science (ἐπιστήμη) or more
(πλειών) is debatable. I call demonstrative the common notions from
which everybody proves (δείκνυμι) [propositions], for example, it is
necessary to affirm or deny everything, or it is impossible to be and
not be at the same time, and however many other such premisses
(προτάσις).

Aristotle’s examples of common notions are called the Law of the Excluded
Middle and the Law of Contradiction; they are discussed further in Book Γ
(IV). That book opens with a statement of the general subject, which we call
metaphysics, but Aristotle called first philosophy:

[ a ] There is a science (ἐπιστήμη) that looks at (θεωρέω) being
as such (τὸ ὂν ᾗ ὄν) and what applies to it (τὰ τούτῳ ὑπάρχοντα)
according to itself (καθ’ αὑτό).

A Turkish version of this passage, from [], is

Varlık olmak bakımından varliğı ve ona özü gereği ait olan ana nite-
likleri inceleyen bir bilim vardır.

πᾶν ἀναγκαῖον ἣ φάναι ἣ ἀποφάναι.
ἀδύνατον ἅμα εἶναι καὶ μὴ εἶναι.
The whole Greek sentence, as given in [], is ῎Εστιν ἐπιστήμη τις ἥ θεωρεῖ τὸ ὂν ᾗ ὄν καὶ τὰ
τούτῳ ὑπάρχοντα καθ’ αὑτό. The Greek ὄν (stem ὄντ-) is the neuter participle corresponding
to the Engish being and the Turkish olan; it appears in modern technical terms like ontology.
The feminine stem of the participle is οὔσ-; from this is derived the abstract noun οὐσία,
which I translate below as beingness, although a traditional (and misleading) translation
is substance.
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Later in Book Γ, in ch. , Aristotle takes up axioms; but he understands them as
something more general than the subject of a particular field like mathematics
or physics. First he seems to repeat the question raised in Book Β:

[ a ] It must be said whether [the inquiry] concerning the so-
called axioms (ἀξιώματα) of mathematics, and concerning beingness
(ἡ οὐσία), belongs to one science (ἐπιστήμη) or another (ἑτέρα).

It is evident (φανερόν) that the inquiry (σκεψίς) concerning these
belongs to one [science], namely that of the philosopher (φιλοσόφος).

For, [the axioms] apply to all beings, not just to some particular
class (γένος) apart from the others.

Also, all [scientists] use [the axioms]—because they are of being as
such—while each class [has] being.

To whatever extent is appropriate for them, to that extent they
use [the axioms]—that is, to the extent of the class concerning which
they carry out their proofs (ἀποδείξεις).

So, because it is clear (δηλόν) that [the axioms] apply to all things
as beings—for this [namely, being] is common to them—the theory
(θεωρία) concerning them belongs to those who are gaining knowl-
edge (γνωρίζοντοι) concerning being as such.

Therefore, none of those making particular investigations (οἱ κατὰ
μέρος ἐπισκοπούντοι) tries to say something concerning them, wheth-
er [they] are true or not—not the geometer (γεωμέτρης), not the
arithmetician (ἀριθμητικός).

But some of the physicists (φυσικοῖ) [were] doing this appropri-
ately (εἰκότως).

For, they thought they alone were doing research (σκοπέω) con-
cerning all nature (ἡ φύσις) and concerning being.

But since there is somebody even higher (ἀνωτέρω) than the physi-
cist—for nature is [just] some one class of being—the inquiry con-
cerning these would belong to the theoretician (θεωρητικός) of gen-
erality (καθόλου) and first [or primary] beingness (ἡ πρώτη οὐσία).

Physics (ἡ φυσική) is a kind of wisdom (σοφία), but not the first
[or foremost] (πρώτη).

Presently we come to what were called common notions in Book Β, then axioms
(in Book Γ), and now principles:

Aristotle’s ‘physicists’ are pre-Socratic philosophers such as Thales of Miletus; they are
discussed in Book Α of the Metaphysics.
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[ b ] It is proper for the one who knows best each class [of
things] to be able to state the most certain principles (ἀρχαί) of the
thing (πράγμα):

So that the one [who knows best] being as such [can state] the most
certain [principles] of all [things]. This is the philosopher.

The most certain principle of all is that about which being mistaken
is impossible.

This principle is the Law of Contradiction, which Aristotle now states more
precisely than in Book Β:

[ b ] For the same [predicate] to apply and not apply at the
same time to the same [subject] in the same [respect] is impossible.

The grammatical notions of subject and predicate are discussed briefly in § .
below; there also the Law of Contradiction will be put to use. Meanwhile, a
Turkish rendition of Aristotle’s formulation of the Law of Contradiction, again
from [], is

Aynı niteliğin, aynı zamanda, aynı özneye, aynı bakımından hem ait
olması, hem de olmaması imkânsızdır.

After a long discussion of the Law of Contradiction and those who question it,
Aristotle gives the Law of the Excluded Middle, again with slightly different
wording from Book Β:

[ b ] Neither does [any]thing admit to being between a con-
tradiction, but it is necessary either to affirm or deny one of one,
whatsoever.

Öte yandan çelişik önermeler arasında bir aracının olması da imkân-
sızdır. Bir özne hakkında tek bir yüklemi—hangi yüklem olursa ol-
sun—, zorunlu olarak ya tasdik etmek veya inkâr etmek gerekir.

In other words, a proposition is true or false; there is no third alternative. A
contradiction [ἀντιφάσις] for Aristotle is evidently a pair of propositions, one
affirming something, the other denying the same thing. The continuation of this
passage is in § . below. If we follow Aristotle, it seems that, as mathematicians,

τὸ γὰρ αὐτὸ ἅμα ὑπάρχειν τε καὶ μὴ ὑπάρχειν ἀδύνατον τᾦ αὐτᾦ καὶ κατὰ τὸ αὐτό.
 Ἀλλὰ μὴν οὐδὲ μεταξὺ ἀντιφάσεως ἐνδέχεται εἶναι οὐθέν, ἀλλ’ ἀνάγκη ἢ φάναι ἢ ἀποφάναι ἓν
καθ’ ἑνὸς ὁτιου̂ν.
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we need not concern ourselves with the Laws of Contradiction and the Excluded
Middle; we can just accept these principles and use them; it is the philosopher’s
job to identify and enunciate them. But the logician is also a philosopher. In
any case, we shall use these principles explicitly in the next section; but we shall
also see an apparent violation of one of them. There we shall also begin to state
axioms in our mathematical sense.

A theorem today is usually considered just as a noteworthy proposition with
a proof from axioms. The first example is Theorem .. in the next section.
The word theorem itself comes from the Greek θεώρημα, and it is related to the
verb with the meaning of look at. (This verb is found at the beginning of Book Γ
of the Metaphysics as quoted above on p. .) In former times, finer distinctions
were considered. A few centuries after Aristotle, Pappus of Alexandria writes:

Those who favor a more technical terminology in geometrical re-
search use problem (πρόβλημα) to mean a [proposition] in which it
is proposed to do or construct [something]; and theorem, a [proposi-
tion] in which the consequences and necessary implications of certain
hypotheses are investigated; but among the ancients some described
them all as problems, some as theorems.

A lemma is a proposition proved mainly for the sake of proving other propo-
sitions; the first example will be Lemma ... (The Greek λέμμα means that
which is peeled off, and is from the verb, λέπω, with the meaning of peel.) A
corollary to a theorem is a proposition that follows almost immediately from
the theorem; the first example will be Corollary ... (The word derives from
the Latin corollarivm, which is the neuter form of the adjective derived from
corolla; this means, among other things, a wreath of flowers [].)

.. Classes, sets, and numbers

In Chapter , we shall have a lot to say about sets; but it will be useful to have
the basic notion available from the beginning.

A set is many things, made into one. There are many special cases of sets:
Two matching earrings make a pair; several football-players make a team; the
Pappus may have been born during the reign of Theodosius I, – bce, or he may

have flourished earlier, during the reign of Diocletian, – bce. The possibilities are
discussed in [, pp. –], where also are found the text and translation from which
the quotation is adapted.

Ivor Thomas [, p. ] uses inquiry here; but there is no word in the Greek original
corresponding to this or proposition.



 . Introduction

pigeons descending on bread-crumbs in the park make a flock. Words like pair,
team and flock are collective nouns. In mathematics, the word set is the most
general collective noun—except for the word class.

In the previous section, I translated Aristotle’s word γένος as class, but that
does not mean that our understanding will be the same as Aristotle’s. For us,
every set is a class, but not every class is a set. Classes and sets are made up
of elements or members. In the context of classes, there is no mathematical
difference between the words element and member. (However, in an equation,
such as (.) below, the expressions on either side of the sign of equality, or =,
can be called the members of the equation.)

A class is determined by a property. The property defines the class. I do
not attempt to define property; I shall just say that, for every property, there is
a class whose members are precisely the things that have that property. This
does not mean that a class is necessarily a thing that can itself be a member of
classes. Indeed, if we assume that every class can be a member of classes, then
we can derive a contradiction. This is what we do in the proof of Theorem ..
below. The contradiction is the reason why we have to distinguish classes and
sets.

A set is a class that is a member of some classes. If A is a set, and C is a
class, then the sentence

A is a member of C

is true or false—it is a proposition. Again, all sets are classes; but Theorem ..
shows that not all classes are sets.

A class can be indicated in writing or print by the presence of braces around
its members. So, if we have, say, three objects,

a, b, c,

then we can form the single object

{a, b, c}.

This single object is a class, namely the class of all things with the property of
being one of a, b, and c. In fact, this class will be a set. In particular, this set
contains a, b, and c (and nothing else) as elements.

Levy [] seems to use collection more generally even than class.
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Elements of a class are in the class. If C is a class, then we have several ways
of saying the same thing:

C contains d;

d is an element of C;

d is a member of C;

d is in C.

Any of these can be expressed by the symbolism

d ∈ C.

To deny that d ∈ C, we can write

d /∈ C,

which can be read as d is not in C.
One can say that a class comprises its elements, and the elements compose

the class. Unfortunately, the verbs comprise and compose are often confused by
native English-speakers. Alternatively, a set consists of its elements.

Words like collection, aggregate and family are sometimes used as synonyms
for set (or perhaps for class).

I say that a set is many things, made into one; but I am using the word
many more generally than is usual in ordinary language. A set might have two
elements or one element. A set might have no element at all: such a set is

∅,

the empty set. I shall also assume that sets can have infinitely many elements,
and that, in particular, the natural numbers compose such a set, namely

{0, 1, 2, 3, 4, . . . }.

In Chapter , this assumption will turn out to be a consequence of the Axiom
of Infinity, ...

A class C is included in a class D if every element of C is an element of D.
In this case, we can write

C ⊆ D,

The sign ∈ is apparently derived from the Greek ε. Peano [] used this letter in  as a
symbol with the meaning of is, perhaps because the Greek word for is is ἐστί. For Peano,
d ∈ C means d is a C, that is, d is one of the things denoted by the term C.
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and we can say also that D includes C or that C is a subclass of D. A
subclass of D that is also a set is a subset of D. If C is not a subclass of D,
we can write

C 6⊆ D.

The first axiom of set-theory is that sets are determined by their elements, so
that if two sets have the same elements, then the sets themselves are the same,
that is, equal. We can express this more symbolically:

Axiom .. (Extension). If A and B are sets such that A ⊆ B and B ⊆ A,
then

A = B. (.)

Instead of A ⊆ B, some people write

A ⊂ B;

but I prefer to use this to mean that A is a proper subset of B, that is, A ⊆ B,
but A 6= B.

Again, a class is defined by a property. A property can be symbolized by
a predicate. A predicate says something about a subject. (See the Law of
Contradiction, in the previous section, as translated from Aristotle.) If P is a
predicate, then the corresponding class can be denoted by

{x : Px}; (.)

this is read as the class of x such that P [applies to] x; here, the variable x takes
the place of a grammatical subject of P .

If A is a set, then being an element of A is a property; the class defined by
this property is

{x : x ∈ A}.
Some people would say here that D contains C; but it is desirable to read C ⊆ D differently

from c ∈ D.
The English predicate is from the Latin praedicatvm, a participle of the verb praedicare.

This verb consists of the prefix prae- (or pre-) and the verb dicare. This verb, with
root dic-, means say, and it can be found in various English words, such as indicate and
dictionary. The Latin praedicatvm is a translation of the Greek κατηγορεύμενον [],
a participle of κατηγορέω; this verb consists of the prefix κατα- and the verb αγορεύω,
which means speak before an assembly of the people; such an assembly is an αγορά. See
Appendix A. The verb κατηγορέω (or some related word) is the source of the English
category.
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This class is just the set A. Again, by the Extension Axiom, two sets are equal if
they have the same members; more generally; two classes are equal if they have
the same members. In particular, two predicates that are different as symbols
may nonetheless define the same class; we may have {x : Px} = {x : Qx}, even
though P and Q are different predicates.

Often, in place of Px in (.), we have to write something that features x
more than once. For example, there is a property of not being a member of
oneself. In words, the corresponding predicate is something like

is not a member of -self, (.)

with two spaces left for a subject. The phrase is not a member of is also sym-
bolized by /∈; so the given property determines the class

{x : x /∈ x}. (.)

This is the historically first example of a class that is not a set:

Theorem .. (Russell Paradox). The class {x : x /∈ x} is not a set.

Proof. Call this class R, and suppose it is a set. Then by the Law of the
Excluded Middle, either R ∈ R or R /∈ R.

Suppose R ∈ R. Then, by the Law of Contradiction, it is not the case that
R /∈ R. This means R fails to have the defining property of members of R, and
so R /∈ R. In short, if R ∈ R, then R /∈ R. On the other hand, trivially, if
R /∈ R, then R /∈ R.

Having considered both possibilities, we conclude R /∈ R. This means R

does have the defining property of members of R, so R ∈ R. Thus R is and is
not a member of itself. This violates the Law of Contradiction. Therefore the
assumption that R is a set must be mistaken, so R is not a set (by the Law of
the Excluded Middle).

The proof ends with a box, as noted on p. . This particular proof is a proof
by contradiction, because it assumes the falsity of what is to be proved, and
it derives from this a violation of the Law of Contradiction.

Russell gives the example in a letter [] to Frege in ; but Levy [, p.  correction]
cites an article attributing an independent discovery of the example to Zermelo.

Other writers use a different symbol, or none at all. An old-fashioned termination of a proof
is qed, for the Latin qvod erat demonstrandvm, with the meaning of which was to be
demonstrated.
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This particular proof also shows that there is a class to which the predicate
in (.) neither applies nor fails to apply. So we have an apparent violation of
the Law of the Excluded Middle. I would say rather that we have an example
of a class that is not a real thing, so that it is just meaningless to try to apply
predicates to it. Elements of classes are the real things.

We do assume that subclasses of sets are sets:

Axiom .. (Separation). Suppose U is some set, and P is a predicate. The
class of elements of U to which P applies is a set.

The set created by the axiom is denoted by

{x ∈ U : Px}.

I use the letter U here because it stands for universe; but the set could be
anything. For a mundane example, we could let U be the set of human beings
living now, and let P be the predicate is over two meters tall. Then {x ∈ U : Px}
is the set of people now taller than two meters. However, in using sets for
mathematics, we have no need to consider classes that contain anything other
than sets. This is because, by starting with the empty set, and by putting sets
into other sets, we can create the natural numbers; from these, we can create
all of the other objects of mathematics. The procedure is as follows.

Any two classes C and D have a union, which is the class comprising every
element of C or D (or both); this union is denoted by

C ∪D.

(See § ..)

Axiom .. (Adjunction). If A is a set, then for all b, there is a set whose
elements are just b and the elements of A.

The new set guaranteed by the Axiom is denoted by

A ∪ {b}.

Theorem .. (Pairing). For every a and b, the classes {a} and {a, b} are
sets.
The following Axiom of Separation is also called the Axiom of Comprehension; but I

think this term is better reserved for the original, but false, assumption that every property
defines a set.

The terminology is from George Boolos, according to Wikipedia http://en.wikipedia.org/

wiki/General_set_theory (accessed September , ).
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Proof. By the Adjunction Axiom, the class ∅ ∪ {a} is a set; but this set is just
{a}. Then, by the Axiom again, {a}∪{b} is a set; but this set is just {a, b}.

The set {a} is called a singleton. Evidently the proof can be continued to
show that {a, b, c} is a set, {a, b, c, d} is a set, and so on; in short, finite classes
are sets.

From any set A, we can now form the union

A ∪ {A}.

This idea can be used to give the following recursive definition of the natural
numbers. First, we declare that the number zero is just the empty set:

0 = ∅.

Then we define the natural numbers by two rules:
. 0 is a natural number.
. if n is a natural number, then n ∪ {n} is a natural number.

The latter rule assumes that n is a set; but then n∪{n} is also a set. The latter
set can be called the successor of n. Hence all natural numbers are sets, and
every natural number has a successor, which is a natural number.

To the recursive defition of natural numbers, some writers might add a third
condition:

. Nothing else is a natural number.
However, I understand such a condition to be implicit in every recursive defini-
tion as such.

If n is a natural number, let us denote its successor n ∪ {n} by

n′.

Then we have

n ∈ n′, n ⊆ n′. (.)

The recursive definition of the natural numbers makes proof by induction in
the following sense possible. Suppose P names a property that some natural
numbers may have, and suppose moreover that we can establish the following
two conditions.

. P0.
. For every natural number n, if Pn, then P (n′).
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Then we have proved by induction that every natural number must have the
property (named by) P . In the second condition, Pn is called the inductive
hypothesis. The method of proof by induction is first used in Lemma ..
below. In general, an inductive proof consists of two steps:

) the base step, in which P0 is proved;
) the inductive step, in which P (n′) is proved from the inductive hypoth-

esis Pn.
It is not obvious that there is even a class consisting of the natural numbers:

what property do these numbers share? Well, they share the property that they
can be obtained by starting with ∅ and taking successors; but it is not obvious
how to make this property precise. One way that works is the following, as we
shall show in § .. We can first define an ordinal to be a set α such that

) α includes each of its elements (that is, if x ∈ α, then x ⊆ α);
) if α has two distinct elements, then one of them contains the other;
) If A ⊆ α, and A is not empty, then A has an element b that is contained

by all of the other elements of A, though not by b itself.
Then every element of an ordinal is an ordinal. An ordinal is a limit if it is not
empty and is not of the form β∪{β} for any set β. Then a natural number is an
ordinal that neither is a limit nor contains limits. Again, this will be worked out
in § .; meanwhile, let us accept the informal definition of the natural numbers.

The class of natural numbers is denoted by

ω.

This symbol is not the Latin minuscule letter w (the so-called double u); it is
the Greek minuscule omega. Observe that mega means big, so an omega is a big
o—rather, a double o, or oo, which, if written quickly, may come out looking
like ω.

As we have just defined them, the natural numbers can be called more pre-
cisely the von-Neumann natural numbers. The first four von-Neumann
natural numbers are

∅, {∅},
{
∅, {∅}

}
,

{
∅, {∅},

{
∅, {∅}

}}
,

where again ∅ = 0. We have the following standard symbols for some successors:

n 0 1 2 3 4 5 6 7 8
n′ 1 2 3 4 5 6 7 8 9

These natural numbers are instances of the von-Neumann ordinal numbers, defined by
von Neumann in  []. However, in his introduction to von Neumann’s paper, van
Heijenoort cites Bernays as saying that Zermelo had a similar idea for ordinals in ;
also, in this context, Levy [, II.., p. ] cites Zermelo from .
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Also, we may write
n+ 1

for n′. If m and n are in ω, and m ⊆ n, then we usually write

m 6 n.

The class ω has two more properties, besides admitting proofs by induction;
these are given by the next two theorems.

Theorem ... 0 is not the successor of any natural number.

Proof. We argue by contradiction. Suppose 0 is a successor; say 0 = n′. But
n ∈ n′, as noted in (.); so n ∈ 0. This contradicts that 0 is empty. Therefore
0 is not a successor.

Lemma ... Every von-Neumann natural number includes all of its elements.

Proof. We use induction. Let P be the predicate

includes all of its elements.

Since 0 has no elements, trivially 0 includes all of its elements. Therefore P0.
This completes the base step of the proof.

For the inductive step, suppose Pn (as an inductive hypothesis). Say k ∈ n′.
Since n′ = n ∪ {n}, either k ∈ n, or k ∈ {n}. If k ∈ n, then k ⊆ n by inductive
hypothesis. If k ∈ {n}, then k = n, so k ⊆ n. In either case, k ⊆ n. But n ⊆ n′.
Hence k ⊆ n′. (We use the obvious proposition that if A ⊆ B and B ⊆ C, then
A ⊆ C; this proposition will be part of Lemma ...) In short, if k ∈ n′, then
k ⊆ n′. Therefore P (n′). This completes the induction.

Theorem ... Natural numbers with the same successor are the same.

Proof. Suppose k and n are natural numbers, and k′ = n′. We must show k = n.
We have

k ∪ {k} = n ∪ {n}.

In particular, k ∈ n ∪ {n} and n ∈ k ∪ {k}. Suppose if possible k 6= n. Then
we must have k ∈ n and n ∈ k, hence k ⊆ n and n ⊆ k by the previous lemma,
and therefore k = n by the Axiom of Extension, ... This contradicts the
assumption that k 6= n; therefore the assumption is false, and k = n.
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We can callm an immediate predecessor ofm′. By our recursive definition,
every natural number that is not 0 must be m′ for some m; that is, every natural
number n other than 0 has an immediate predecessor. By the last theorem, this
predecessor is unique: it is the immediate predecessor of n, and it can be denoted
by

n− 1.

The von-Neumann definition of the natural numbers is convenient, because ac-
cording to this definition, each natural number n is just the set that can be
denoted by

{0, . . . , n− 1}.
If n = 0, then this is the empty set.

If we do not happen to care about whether each natural number is a particular
set, then we can denote the set of natural numbers by

N;

this is the usual notation when one is not interested in set-theory. Then N is just
a class that contains an element 0, and whose every element n has a successor,
which can be denoted by

n+ (.)

or n+ 1, such that:
) 0 is not the successor of any element of N;
) elements of N with the same successor are the same;
) N is included in every class that contains 0 and that, for every n in N,

contains n+ if it contains n.
These conditions on N are the Peano Axioms; we shall show in Chapter  that
all properties of N follow from them.

Exercises

. Prove by induction that every element of ω either is 0 or contains 0.

. What is wrong with the following proof that every element of ω is equal
to each of its elements?

For all n in ω, if k ∈ n, we show k = n. We use induction
on n. The claim is trivially true when n = 0, since 0 has no
elements. Suppose the claim is true when n = m. Suppose
k ∈ m′. Then either k ∈ m or k = m. If k ∈ m, then by
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inductive hypothesis, k = m. Therefore, in any case, k = m.
That is, every element of m′ is m. But by inductive hypothesis,
m is equal to its immediate predecessor (since this is an element
of m). Let the immediate predecessor of m be ℓ. Then ℓ = m,
so ℓ′ = m′. But ℓ′ = m, since ℓ is the immediate predecessor of
m. Therefore m = m′. If k ∈ m′, we have already shown k = m;
now we can conclude k = m′. This completes the induction.

. From the ‘theorem’ in the preceeding exercise, prove that all natural num-
bers are equal to 0.

.. Algebra of the integers

Now that we have, from the previous section, a precise definition of the natural
numbers, I want to review some things that we know about them from school.
We cannot yet define all of these things precisely, or prove them: this will happen
in Chapter . Meanwhile, we just have a set called N, whose members form the
list

0, 1, 2, 3, . . . .

As we have seen, every natural number n has a successor, which is usually
denoted by n + 1. Some mathematicians start the list of natural numbers at 1
instead of 0; but I shall just say that the members of the set {1, 2, 3, . . . } are
the positive natural numbers.

The number 0 does not have an immediate predecessor that is a natural num-
ber; but it does have the immediate predecessor called −1. This is not a natural
number, but it is an integer. The set of integers comprises every natural num-
ber, along with a negative, denoted by −n, for each positive natural number n.
Then −n has the successor −(n − 1) and the immediate predecessor −(n + 1).
The integers that are not natural numbers are also called negative integers.
Every integer n has a negative, denoted by −n, although this number is itself
negative only if n is positive.
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The set of integers is commonly denoted by

Z.

This set is equipped with three operations, namely addition, additive inver-
sion, and multiplication. (Operations are functions; functions in general and
operations in particular are defined formally in § ..) In particular, if x and y
are integers, then so are

) x+ y (the sum of x and y, which here are addends),
) −x (minus-x, the additive inverse or negative of x), and
) x · y (the product of the factors x and y).

By convention, multiplication is also indicated by juxtaposition; that is, the
product x · y is also denoted by

xy.

Something like the symbol for additive inversion is also used for a fourth op-
eration, subtraction, which can be defined in terms of the other operations.
Subtracting y from x produces a difference, which is denoted by

x− y,

and which is just the sum of x and −y. Note that x − y is not generally the
same as y− x. If we want to assign names, then, in the difference x− y, we can
call x the minuend (from the Latin, with the meaning of that which is to be
diminished), and we can call y the subtrahend (that which is to be subtracted).

Subtraction is thus a composition of two other operations. The process of

Here the letter zed or zee stands for the German Zahl, number. In English, the integers
are also called whole numbers. In fact, the English word integer comes from the Latin
integer, which means whole. This Latin word developed in France into the French word
entier, which entered English and became entire. Thus two English words—integer and
entire—represent the same Latin word. People interested in such matters may refer to
such pairs of words as doublets.

The English verb subtract is sometimes pronounced as if it were substract. The English
verb comes from a participle of the Latin verb whose infinitive is subtrahere. This
verb is in turn built up from trahere (meaning draw or carry) and the preposition sub

(meaning from below or away). According to the OED [], in medieval times, an s was
inserted between sub and trahere, yielding substrahere, from which came substract in
English; but this formation is considered incorrect. The English word abstract is from the
Latin abstrahere, but here the s belongs properly to the preposition abs, although the
preposition is more commonly seen as ab or even a.
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computing x− y can be indicated by a tree, thus:

x y

/.-,()*+−
����

/.-,()*++

/////////
�����

More complicated compositions and trees are possible. For example, the tree

x y z w

/.-,()*+−
����

/.-,()*++

?????
�����

��������·

OOOOOOOOO

ooooooooo

/.-,()*++

*
*
*
*
*
*
*
*
*
*
*
*
*

jjjjjjjjjjjjj

indicates the sum of x and the product of minus-y and the sum of z and w.
Usually this sum is written on one line, as

x+−y · (z + w), (.)

or more simply as
x− y(z + w).

I shall refer to such a string of symbols as an arithmetic term. (The Greek
word for number is ἀριθμός, which is arithmos in Latin letters. Our general
definition of term comes in § ..)

Officially, (arithmetic) terms will be certain strings composed of
) the symbols +, − and · (a dot);
) variables, such as x, y and z;

Trees as such are covered in a later course, Math .
Here the word arithmetic is an adjective and is pronounced with the stress on the penultimate

(next-to-last) syllable.
Strictly, the Greek word ἀριθμός refers to a number of things, in particular, more than

one;—certainly not zero or ‘fewer’ than zero. See [].
In another context, Aristotle’s definition of term is in Appendix A.
The convention of using letters from the end of the Latin alphabet for ‘unknown quantities’

dates back to Descartes; see []. Since we don’t want any limit on the number of variables
we can use, and yet we want to define things precisely, we could declare officially that our
variables must come from the list x, x′, x′′, and so forth.
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) symbols for certain integers, such as 12, 0 and −137—such symbols can
be called numerals or (numeral) constants;

) the parentheses ( and ).
The formal definition of arithmetic terms is recursive, in the sense of the previous
section:

. Every variable is an arithmetic term.
. Every numeral is an arithmetic term.
. If t is an arithmetic term, then so is −t.
. If t0 and t1 are arithmetic terms, then so are (t0 + t1) and (t0 · t1).

Our definition of arithmetic terms is recursive in the following way. Suppose
A is some set of strings of symbols such that each of the following conditions
holds:

. Every variable is in A.
. Every numeral is in A.
. If t is in A, then −t is in A.
. If t0 and t1 are in A, then so are (t0 + t1) and (t0 · t1).

Then A contains all arithmetic terms. Therefore, proof by induction on arith-
metic terms is possible; here is an example:

Proposition ... Every arithmetic term has as many left parentheses as right
parentheses.

Proof. Let A be the set of arithmetic terms that have as many left parentheses
as right parentheses. Then A contains all variables and constants (since these
have no parentheses). Suppose A contains t. Then t has as many left as right
parentheses (just because it is in A), so the same is true of −t. This means −t
is in A. Similarly, if t0 and t1 are in A, then each of them has as many left as
right parentheses, so the same is true of (t0 + t1) and (t0 · t1); this means these
terms are also in A. By the recursive definition of arithmetic terms, every term
is in A.

By the formal definition of arithmetic terms, string (.) above is not strictly

It is probably simplest to think of a numeral as a single symbol, even though, typographically,
it may be a string of digits, possibly preceeded by a minus-sign. For example, the numeral
−137 should be thought of as a single symbol like c−137 (that’s c with the subscript −137).
Our decimal convention for writing numerals is just that, a convention; it has no essential
relation to our definition of arithmetic terms. See also Footnote  below.

Letters from the front of the Latin alphabet are used to denote such constants; again the con-
vention is found in Descartes. Used in this way, the letters can be called literal constants,
where the word literal is just the adjectival form of letter. But for us, literal constants are
not literally parts of terms; they just stand for parts of terms—namely, numerals.
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a term; to satisfy the definition, the term should be written as

(x+ (−y · (z + w))).

By convention, we can leave out the dot between −y and (z + w), and we can
remove some of the parentheses. But we can do this only because we have a
conventional order of operations in terms. By this convention, expressions
in brackets are evaluated before all else, and then multiplication is performed
before addition (and subtraction), but otherwise operations are performed as
they are read from left to right. So, (x + y)z means something different from
x+ yz: the former is an informal version of the term ((x+ y) · z); the latter, of
(x+ (y · z)).

The formal definition of arithmetic terms should ensure that each term indi-
cates uniquely how to calculate an integer, once integral values are assigned to
the variables. In short, arithmetic terms should be uniquely readable. As we
have defined them, they are uniquely readable: this is a theorem with a proof
like that of Theorem .. below.

An arithmetic term is not exactly the same thing as a polynomial. For ex-
ample, the terms (x · (y + z)) and ((x · y) + (x · z)) are different. However, they
always yield the same number if x, y and z are respectively replaced by the same
three integers. We therefore write

x(y + z) = xy + xz, (.)

and we shall say that the two members of this equation represent the same
polynomial. Also, Equation (.) is called an (arithmetic) identity.

An equation of arithmetic terms can be called a Diophantine equation,
in memory of the ancient Alexandrian mathematician Diophantus, who studied
such equations. A Diophantine equation is an example of an (arithmetic)
formula. For example, the equation

y2 = 4x3 − ax− b (.)

Diophantus wrote the Arithmetica, in thirteen books, of which six have come down to us
[, pp. , n. a]. One problem that he considers, for example, is, in our notation, to find
rational solutions to the pair

8x+ 4 = y2,

6x+ 4 = y2

of equations [, pp. –].
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(where a and b are understood to be integers) is an arithmetic formula. Its
solutions are those pairs of integers that satisfy the equation: those pairs
(c, d) of integers such that d2 = 4c3 − ac − b. Formula (.) is not an identity,
because not every pair of integers satisfies it. (For example, if (c, d0) and (c, d1)
satisfy it, then we must have d1 = ±d0; there is no other possibility.)

By our definition, a polynomial is an abstraction from the notion of a term.
It is an equivalence-class of terms, in the sense of § .. You can think of a
polynomial as an operation. Then a term is a set of instructions—a recipe for
how to perform the operation. The point then is that the same operation can
be performed in different ways. This is why different terms can represent the
same polynomial; this is why we have nontrivial identities like (.).

For example, the term x + y says, ‘Start with x, and add y’; the term y + x
says, ‘To y, add x.’ These are different activities, but they yield the same result;
so we write x+ y = y + x.

How can you tell when two terms represent the same polynomial? It is easy to
show when they represent different polynomials. For example, x2 (that is, xx)
represents a different polynomial from x, since (−1)2 6= −1. But how do we know
that the two members of Equation (.) represent the same polynomial? As an
identity, the equation expresses the distributive property of multiplication over
addition. So how do we know that multiplication has this property with respect
to addition? We can check it for certain integers, say x = 5 and y = 17 and
z = −14:

5(17 +−14) = 5 · 3 = 15;

5 · 17 + 5 · −14 = 85− 70 = 15.

But we cannot check the property for all integers in this way, since there are
infinitely many integers.

Strictly speaking, if one wants to use the distributive property with full un-
derstanding, then one should give precise definitions of the integers and their
operations, and then one should prove the distributive property. We shall be
able to do this in Chapter : see Theorem ... However, we did not need to
know all of the properties like the distributive property, just to be able to define
the notion of a polynomial.

Equations like (.) are of ongoing interest to number-theorists. It is a twentieth-century
result that the equation y2 = x3 + 17 has two solutions, (−2, 3) and (2, 5), from which
all rational solutions can be found by certain rules; and only eight of these solutions are
integral [, Example III.., pp.  f.].
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As we have discussed them so far, the integers form the structure

(Z,−,+, ·). (.)

Structures are defined generally in §§ . and .. The structure in (.) is
the set Z equipped with certain specified operations, namely addition, additive
inversion and multiplication. Now, Z also has the named elements 0 and 1.
Moreover, Z is equipped with the ordering denoted by <. An ordering is a kind
of relation; relations are defined generally in § .. So we may think of the
integers as composing the structure

(Z, 0, 1,−,+, ·, <). (.)

The ordering on Z allows us to write some new arithmetic formulas, on of the
simplest being

x < y,

read as x is less than y. There are some ‘derivative’ relations:
. x > y is read as x is greater than y, and means y < x.
. x 6 y means x < y or x = y: that is, x 6 y is satisfied by those (a, b) such

that a < b or a = b.
. x > y is read as x is greater than or equal to y, and means y 6 x.

These are all (arithmetic) inequalities; as such, they are new examples of arith-
metic formulas. In general, an inequality is an expression

t0 ∗ t1,

where t0 and t1 are terms, and ∗ is one of the symbols, <, >, 6, and >. In this
context, we may also speak of the inequation

t0 6= t1,

which is satisfied in Z by just those integers that do not satisfy the equation
t0 = t1.

The positive integers are just the positive natural numbers; symbolically, these
are the integers that satisfy the inequality 0 < x. The negative integers are those
integers that satisfy x < 0. The non-negative integers satisfy 0 6 x and are the
natural numbers, composing the set N as we said in § ..

In fact, every integer can be given a name in decimal notation. Alternatively we can just
write every positive integer as the appropriate sum 1 + 1 + · · · + 1, write zero as 0, and
write every negative integer as −(1 + · · ·+ 1).
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An integer x is a factor or divisor of the integer y if xz = y for some integer z.
In this case, if x 6= 0, then z is unique; we may then say that z is the quotient
of y by x; this quotient is denoted by

y

x

or y/x. In general, for any integer y and non-zero integer x, there is a quotient
y/x, but this quotient may only be an element of the set of rational numbers;
it may not be an integer. The set of rational numbers is denoted by

Q;

but I prefer to work only with integers for now.
If x is a divisor of y, we write

x | y,
and we say that x divides y, or y is divisible by x. So the symbol | denotes a
relation, just as < denotes a relation.

A positive integer is called prime if its only positive factors are 1 and itself,
and these are distinct. So 1 itself is not prime. A positive integer that is not 1
and is not prime is composite. The list of prime numbers begins:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Does the list end? That the list does not end is Proposition IX. of Euclid’s
Elements; a version of Euclid’s proof is in the next section.

Exercises

. Is there a way to define arithmetic terms without using brackets? (See § .
for some ideas.)

. Which of the following equations are arithmetic identities?

(a) xy = yx,

(b) x(yz) = xyz,

(c) (x+ y)2 − 2xy − y2 = x2,

(d) 2x+ 3 = 4,

(e) 2x+ 3y = 4,

(f) x2 + y2 = 2xy,
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(g) x4 + y4 = (x2 + y2)2 − 2x2y2,

(h) (x2 − y2)2 + (2xy)2 = (x2 + y2)2,

(i) x4 + 4y4 = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2).

. There are terms like x + (y + z); are there formulas like x < (y < z)?
Explain.

.. Some classical theorems

We have a few proofs so far, as of Theorem .. and of Proposition ... What
constitutes a proof in general? It is hard to say. By means of reason alone,
a proof should persuade any (sufficiently knowledgeable) reader that a certain
proposition is true. This is the ideal. In practice, the standards for what is
‘reasonable’ in a proof can vary.

I said in the last section that we should be proving the distributive property
of the integers in Chapter . By some standards—ultimately, the standards of
this book—such basic properties of the integers were not proved until about a
century ago. On the other hand, by taking for granted these basic properties,
mathematicians have known for over two thousand years how to prove important
propositions about the integers. Many of these propositions are stated and
proved in Euclid’s Elements [].

Here I shall offer proofs of three of these propositions, namely:
) that there are infinitely many prime numbers;
) that the diagonal and side of a (geometrical) square have no common

measure (that is they are not both integral multiples of the same unit);
) that there is a method for determining the greatest common divisor of two

positive integers.
The proofs of these propositions rely on claims that should be plausible, but
that we have not yet fully justified. A goal of this entire collection of notes is to
provide some of the justification.

Of the three propositions named, the first two might be called theorems, and
the last, a problem, in the ancient sense given by Pappus in § ..

Infinity of primes

Without more ado, we can state the following, and prove it by contradiction:



 . Introduction

Proposition ... There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers. Then there are n
primes for some n in N. We can now list the primes thus:

p0, p1, . . . , pn−1.

The product p0p1 · · · pn−1 must be divisible by each prime pi on our list, and
therefore the sum

1 + p0p1 · · · pn−1

is indivisible by each prime pi (why?). Therefore this sum has a prime factor
not on our list of primes. This contradicts our assumption that our list contains
all primes. Therefore there are infinitely many primes.

Are you satisfied with the proof of Proposition ..? What details does it
leave out? We have not proved that every positive integer (besides 1) has prime
factors. (However, this fact is Euclid’s Proposition VII.; see also Example ..
below.) Nor have we defined what ‘infinitely many’ means. (We shall in § ..)

Still, by some standards, we have given a proof: a proof by contradiction.

Incommensurability of diagonal and side

The next proposition is also proved by contradiction. We first need a definition
and some lemmas.

An integer is even if 2 divides it; otherwise, the integer is odd; so 2n is even,
but 2n+ 1 is odd.

Lemma ... The product of two integers is
) even, if one of the integers is even;
) odd, otherwise.

Proof. Let the two integers be a and b. If a is even, so that 2 | a, then a = 2c for
some integer c, so ab = 2cb, which means ab is even. If a and b are odd, then they
are 2c+ 1 and 2d+ 1 for some integers c and d, so that ab = (2c+ 1)(2d+ 1) =
4cd+ 2c+ 2d+ 1 = 2(2cd+ c+ d) + 1, which is odd.

Euclid puts it a bit differently: Οἱ πρῶτοι ἀριθμοὶ πλείους εἰσὶ παντὸς τοῦ προτεθέντος
πλήθους πρώτων ἀριθμῶν: ‘The prime numbers are more than any given multitude of
prime numbers.’ If for multitude we understand set, then, for Euclid, there is no such thing
as an infinite set; in particular, there is no set such as we have called N.

A proof with a similar level of detail is offered to the general reader by Hardy [, § ].
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The following is a fundamental property of N; we shall use it here and there
before proving it in Chapter . (It is a consequence of the Peano Axioms given
at the end of § ., but it cannot be proved by induction alone.)

Lemma .. (Infinite Descent). Every strictly decreasing sequence of positive
integers must be finite: that is, if there is a sequence (a0, a1, a2, a3, . . . ) of positive
integers such that

a0 > a1 > a2 > a3 > · · · ,
then the sequence must stop—must have a final entry an for some n in N.

Proof. The claim follows because N is well-ordered, which means that every non-
empty subset of N has a least element; we shall discuss this in § .. The set
of terms in a strictly decreasing sequence (a0, a1, . . . ) of positive integers must
have a least element, an; then there can be no term after this, since it would be
less than an.

We can now state and prove the following. Its geometric interpretation is
that there is no unit length into which the diagonal and side of a square can be
divided. Aristotle alludes to a proof similar to ours.

Proposition ... The Diophantine equation

x2 = 2y2 (.)

has no non-zero integral solution.

Proof. Suppose, if possible, that (a0, a1) satisfies the equation, where a0 and a1
are non-zero integers. In particular then,

a0
2 = 2a1

2. (.)

Hence a02 is even, so a0 is even by Lemma .. (since if a0 were odd, then a02

would be odd); say a0 = 2a2. Then a0
2 = 4a2

2; this, with (.), implies

that 2a1
2 = 4a2

2, hence
a1

2 = 2a2
2.

Born around , Pierre Fermat developed the method of infinite descent to prove such
theorems as that no right triangle whose sides are integral has an area that is the square

of an integer: If there were such a triangle, then there would be a smaller one, and so on.
See Weil [, II.IX, pp.  ff.].

In the Prior Analytics; the passage is quoted and discussed at [, pp.  f.].
Here, in the notation of § ., we use P ⇒ Q,¬P ⇒ ¬Q � Q ⇒ P .
The properties of equality that allow this conclusion are discussed in detail in [, Ch. III,

pp. –].
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Thus (a1, a2) is also a solution of (.). In short, given the solution (a0, a1),
we can find a solution (a1, a2). Continuing, we can find an integer a3 such that
a2

2 = 2a3
2, and so forth. That is, there is an infinite sequence

a0, a1, a2, a3, . . .

of integers ak such that (ak, ak+1) is a solution of (.) for each natural number
k. (Strictly, the existence of such a sequence is only justified by the Recursion
Theorem, which is .. below.) But we may also assume (why?) that each
integer ak is positive. Then

a0 > a1 > a2 > a3 > · · · ,

which is absurd: no such sequence can be infinite, by Lemma ... Therefore
such a0 and a1 cannot exist.

Euclidean algorithm

An alternative proof of the last proposition is given in § . in terms of the
Euclidean algorithm for finding the greatest common divisor of two positive
integers.

Suppose a and b are positive integers. Then there is a unique natural number
k such that

ka 6 b < (k + 1)a. (.)

We say that k is the number of times that a goes into b. Then b − ka is the
remainder after division of b by a. Let us denote this remainder by

rem(b, a).

So we have b = ka + rem(b, a) for some integer k, and 0 6 rem(b, a) < a, and
these rules determine rem(b, a).

For the sake of completeness, we can extend this analysis to arbitrary integers.
Every integer a has an absolute value, which is denoted by |a| and is given by
the following rule:

|a| =
{
a, if 0 6 a;

−a, if a < 0.

If a 6= 0, and b is any integer, then there is a unique natural number rem(b, a)
satisfying two requirements:

. 0 6 rem(b, a) < |a|;
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. b = ka+ rem(b, a) for some integer k.
Here k is also uniquely determined. If a and b are positive, then rem(b, a) and
k are as before. We can now say that a | b just in case rem(b, a) = 0.

The following is similar to Euclid’s Proposition VII.. The proof omits some
details; supplying them is left as an exercise.

Proposition ... Any two integers that are not both zero have a greatest
common divisor. This divisor is found by alternately replacing each number
with its remainder after division by the other, until one of the numbers becomes
0; then the other number is the greatest common divisor.

Proof. Let a and b be integers, not both zero. If |a| = |b|, then |a| is the greatest
common divisor of a and b. Suppose now |b| < |a|. We recursively define a
sequence of natural numbers in the following way. Let a0 = |a| and a1 = |b|.
Suppose a0, . . . , ai+1 have been defined. Then let

ai+2 =

{
rem(ai, ai+1), if ai+1 6= 0;

0, if ai+1 = 0.

The sequence is strictly decreasing until it reaches 0; therefore, by Lemma ..,
the sequence must reach 0. Let c be its last non-zero entry. Then c is positive
and divides each ai; in particular, it divides a and b. Also, if d | a and d | b,
then d divides each ai; so d | c. Thus c is the greatest of the common divisors
of a and b.

The greatest common divisor of a and b can be denoted by

gcd(a, b).

The technique of Proposition .. for calculating this number is the Euclidean
algorithm. A modern formulation of this algorithm is found in []:

gcd(a, b) =

{
b, if rem(a, b) = 0;

gcd(b, rem(a, b)), otherwise;

assuming 0 < b 6 a.

The word algorithm is an ‘erroneous refashioning’ [], apparently influenced by ἀριθμός, of
the earlier English algorism, which was adapted from al-Kowārasm̄ı, the surname of Abu
Ja’far Mohammed Ben Musa, whose work in algebra gave the so-called Arabic numerals
to Europe.
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There is a set of real numbers, denoted by

R,

which contains all of the integers and rational numbers, and more. The real
numbers can be thought of as corresponding to points on a geometrical line,
once distinct points corresponding to 0 and 1 are chosen. Richard Dedekind [,
p. ] claims to have discovered a rigorous formulation of this correspondence
only in ; in § . below is a formal definition of the real numbers based
ultimately on Dedekind’s work. One of the real numbers is a positive number,
denoted by √

2,

whose square, (
√
2)2, is 2. Real numbers that are not rational are irrational.

From Proposition .. then, we have the following consequence.

Corollary ... The real number
√
2 is irrational.

I proposed in § . that propositions are sentences that, in context, are either
true or false. In Chapter , we shall develop a formal way to work with propo-
sitions, merely with regard to whether they are true or false. (We have already
worked with them informally in this way, as in defining 6 on p. : the proposi-
tion a 6 b is true if and only if one of the propositions a < b and a = b is true.)
Our formal method will be to think of a true proposition as having the value
1, and to think of a false proposition as having the value 0. Then we shall be
able to do computations involving these values; we shall have a propositional
calculus.

This is a reason why we looked at the structure (Z,+,−, ·). In § ., we shall
develop a similar structure, based on the set {0, 1} instead of Z.

Exercises

. Using Lemma .. (and standard facts about (Z, <)), prove that every
integer different from 1 and −1 has prime factors.

. Suppose x and p are integers, and p is prime. If p | x, prove that p ∤ 1+ x.

This number is also written
√
2. However, the symbol

√
is strictly made up of two parts:

a radical,
√

, and a vinculum, . The vinculum serves merely as a grouping-symbol. So
writing

√
2 is like writing

√
(2); that is, the vinculum is unnecessary. Note the properly

omitted vincula in the facsimile from a  publication at [, p. ]. Note also that√
(4 + 5) =

√
4 + 5 = 3, while

√
4 + 5 = 7.
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. Use the Euclidean algorithm to find gcd(136,−192).

. Prove that
√
3 is irrational.

. Prove that
√
p is irrational, whenever p is prime.

. Prove that
√
n is irrational, unless n is a square.

. Prove that
√
[3]2 is irrational.

. In the proof of Proposition .., why may we assume that ak > 0?

. Supply the missing details of the proof of Proposition ..; specifically,
for all n in N, prove:

(a) an+1 < an if an 6= 0;

(b) c | an;

(c) if d | a and d | b, then d | an.

.. Excursus on anthyphaeresis

We have now proved three important propositions about integers. In this section,
an alternative proof of Proposition .. is developed; a version of this proof may
possibly have been known in ancient times, even before the proof above. Suppose
a, b, c and d are integers such that ad = bc. Let us then write

a : b :: c : d

and say that a is to b as c is to d. This expresses the relation called propor-
tionality among the four numbers.

Lemma ... If a : b :: c : d, and k is an integer, then

a : b :: a− kc : b− kd.

Proof. If a : b :: c : d, then ad = bc, so ab− kad = ab− kbc, that is,

a(b− kd) = b(a− kc),

so a : b :: a− kc : b− kd.
Why not write a/b = c/d? Just because I prefer to work only with integers for now.
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Lemma ... Suppose a, b, c and d are positive integers such that a : b :: c : d.
Then b goes into a just as many times as d goes into c.

Proof. The assumption is that ad = bc. Then nad = nbc, that is,

a(nd) = (nb)c,

for all natural numbers n. Hence a < nb if and only if c < nd, and nb 6 a if and
only if nd 6 c. Consideration of (.) yields the claim.

Proposition ... There are no positive integers a and b such that

b : a :: a : rem(b, a).

Proof. Suppose a0 and a1 are positive integers, and let a2 = rem(a0, a1). Sup-
pose if possible

a0 : a1 :: a1 : a2. (.)

We shall derive a contradiction. Now, a2 < a1, so we may assume a1 < a0
(otherwise (.) is false). We may also assume a2 6= 0. By Lemma ..,
if a0 = ka1 + a2, then a1 = ka2 + a3, where a3 = rem(a1, a2); hence, by
Lemma ..,

a0 : a1 :: a2 : a3.

Thus, applying the Euclidean algorithm yields a strictly decreasing sequence a0,
a1, a2, . . . , such that a0 : a1 :: an : an+1 for all natural numbers n; this is
absurd. Therefore Proportion (.) fails.

For another proof of Proposition .., suppose 2a2 = b2. Then a2 = b2−a2 =
(b+ a)(b− a), so

b+ a : a :: a : b− a.

But also, a < b < 2a; so a goes into a + b exactly twice, leaving the remainder
b− a. This contradicts the last proposition.

This proof of the irrationality of
√
2 can be recast as a positive result. Sup-

pose we take two positive real numbers a0 and a1; we can apply a version of
the Euclidean algorithm to them (as Euclid himself does in his Propositions X.
and ). Then a1 goes into a0 some number n0 (possibly zero) of times, leaving a
remainder a2; so 0 6 a2 < a1. If a2 is not 0, then it goes into a1 some number n1
of times, leaving a remainder a3; so 0 6 a3 < a2. We can continue this process
of alternating subtraction or anthyphaeresis, generating a sequence a0,

ἀνθυψαίρεσις; see [, pp. –].
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a1, a2, . . . , possibly finite, of non-negative real numbers, and a corresponding
sequence, n0, n1, . . . , of natural numbers. Call the latter sequence the anthy-
phaeretic sequence of (a0, a1). Then we have shown that the anthyphaeretic
sequence of (1 +

√
2, 1) is 2, 2, 2, . . . , never ending.

That the Ancients found interest in such sequences can be inferred from certain
old texts: see the brief discussion at [, pp.  f.]. In modern notation, we
have

ak = nk · ak+1 + ak+2,

ak
ak+1

= nk +
ak+2

ak+1
= nk +

1
(ak+1

ak+2

),

a0
a1

= n0 +
1

n1 +
1

n2 +
1

n3 +
1

. . .

.

Thus we can express quotients of real numbers as continued fractions. In
particular, we have

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

. . .

,

although we cannot here say exactly what this means.

Exercises

. Give a geometrical argument for the incommensurability of the diagonal
and side of a square. (One way to start is to let ABCD be a square. Draw
a circle with center A and radius AC. Extend AB to meet the circle at
E; extend BA to meet the circle at F . Then FB : BC :: BC : BE.)

. The expression for
√
2 as a continued fraction determines a sequence of

rational numbers that approaches
√
2 as a limit. Calculate a few terms of

this sequence, and find a recursive definition of the sequence.
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.. Parity

Here I propose one possible approach to the so-called Boolean connectives, which
will be defined in § .. I also give a warning about how not to write a proof.

Every integer has a parity, which is 0 if the integer is even, and 1 if it is odd.
Let the parity of the integer x be denoted by

p(x).

Some basic facts about evenness and oddness can be expressed in terms of this:

Lemma ... The equation p(x+ 2) = p(x) is an identity.

Proof. If a is even, then so is a+ 2, so each member of the equation is 0. If a is
odd, then so is a+ 2, so each member of the equation is 1. Hence the equation
is satisfied by all integers.

The taking of parities respects multiplication in the following sense:

Lemma ... The equation p(xy) = p(x) p(y) is an identity.

Parity respects addition too, but in a more complicated sense:

Lemma ... The equation p(x+ y) = p(p(x) + p(y)) is an identity.

Finally, applying the parity-operation twice is the same as applying it once:

Lemma ... The equation p(p(x)) = p(x) is an identity.

I have introduced parity so as to be able to define two new operations on Z
in the following way. By definition of the operations ⊙ and ⊕, the following
equations are identities:

x⊙ y = p(xy),

x⊕ y = p(x+ y).

These symbols are not standard, and they will not be used beyond the next
section. I define two more operations. The following are also identities, by
definition:

⊖x = x⊕ 1, (.)

x ⊔ y = (x⊙ y)⊕ (x⊕ y). (.)

For ⊔, an alternative (but equivalent) definition is possible:

Therefore parity can be called idempotent.



.. Parity 

Theorem ... The equation

x ⊔ y = ⊖(⊖x⊙⊖y) (.)

is an identity.

There are two ways we can proceed.

Proof . We reduce everything to the ordinary arithmetic operations. By the
definitions and Lemma .., we have the following chain of identities:

x ⊔ y = (x⊙ y)⊕ (x⊕ y)

= p((x⊙ y) + (x⊕ y))

= p(p(xy) + p(x+ y))

= p(xy + x+ y).

Similarly,

⊖(⊖x⊙⊖y) = ((x⊕ 1)⊙ (y ⊕ 1))⊕ 1

= p(p(p(x+ 1) p(y + 1)) + 1)

= p(p(p((x+ 1)(y + 1))) + 1) [by Lemma ..]

= p(p((x+ 1)(y + 1)) + 1) [by Lemma ..]

= p(p((x+ 1)(y + 1)) + p(1)) [by definition of parity]

= p((x+ 1)(y + 1) + 1) [by Lemma ..]

= p(xy + x+ y + 2) [by arithmetic]

= p(xy + x+ y) [by Lemma ..].

Our computations show that x⊔ y and ⊖(⊖x⊙⊖y) are equal to the same thing
(namely p(xy + x + y)); so they are equal to each other. This completes one
possible proof.

Alternatively, we show that all that matters is the parities of x and y.

Proof . By definition of ⊕ and by Lemma .., we have

p(x)⊕ p(y) = p(p(x) + p(y)) = p(x+ y) = x⊕ y.

By definition of ⊙ and by Lemmas .. and .., we have

p(x)⊙ p(y) = p(p(x) p(y)) = p(p(xy)) = p(xy) = x⊙ y.
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Therefore, to verify any identity involving only ⊙ and ⊕ (and operations derived
from them, like ⊖ and ⊔), it suffices to replace each variable with its parity. More
precisely, to verify (.), it is enough to check the four possibilities when x and
y are chosen from the set {0, 1}. We have the following computations:

x y x⊙ y x⊕ y x ⊔ y ⊖x ⊖y ⊖x⊙⊖y ⊖(⊖x⊙⊖y)
0 0 0 0 0 1 1 1 0
1 0 0 1 1 0 1 0 1
0 1 0 1 1 1 0 0 1
1 1 1 0 1 0 0 0 1

The columns headed by the two members of (.) are identical, so this equation
is an identity.

Either of the two proofs just offered should be sufficient to establish the the-
orem as true. Note well the format of the first proof. The aim was to arrive
at (.). The proof did not begin with this equation; it began with one of the
members of the equation, and it showed that this member was equal to a new
term. Then the other member of (.) was shown to be equal to the same
term. To write the proof as follows would not be good style:

x ⊔ y ?
= ⊖(⊖x⊙⊖y),

(x⊙ y)⊕ (x⊕ y)
?
= ((x⊕ 1)⊙ (y ⊕ 1))⊕ 1,

p((x⊙ y) + (x⊕ y))
?
= p(p(p(x+ 1) p(y + 1)) + 1),

. . .
?
= . . . ,

p(xy + x+ y) = p(xy + x+ y).

(.)

Do not write proofs this way! It does not show the connexion between consecu-
tive lines. Equations (.) don’t tell the reader that, for example, ⊖(⊖x⊙⊖y) =
((x⊕1)⊙ (y⊕1))⊕1. In fact, the equations tell us nothing that can be assumed
to be correct.

Think of the following example:

−1
?
= 1

(−1)2
?
= (1)2

1 = 1.

(.)

It certainly does not show that −1 = 1.



.. Boolean connectives 

If you are searching for a proof of (.), then you might possibly write
something like Equations (.). Then, after you have found a correct line of
argument, you should rewrite your findings before presenting them to somebody
else as a proof. The next chapter will make this point again with the notion of
formal proof : What one writes down when looking for a formal proof is generally
a lot different from the formal proof itself.

Exercises

. Prove Lemmas .., .. and ...

. Explain why the equations (.) do not constitute a valid proof of the
equation −1 = 1.

. Suppose  is a new arithmetic operation defined on the set {0, 1} as
follows:

x y x y
0 0 1
1 0 1
0 1 0
1 1 1

Find an arithmetic term t such that the equation p(t) = p(x)  p(y) is
an identity.

.. Boolean connectives

In memory of George Boole, let us refer to the set {0, 1} as B. In the last
section, I defined some operations that convert integers into elements of B. Con-
sidering the elements of B as integers, I want to restrict those operations on Z
so as to apply only to elements of B. In so doing, I change their names:

on Z: ⊗ ⊕ ⊖ ⊔
on B: N < ¬ ∨

I shall not use the four operations ⊗, ⊕, ⊖ and ⊔ anymore. Operations on B
can be called (Boolean) connectives. Specific English names can be given as
follows:

) N is conjunction;

See Boole himself [, III., [], p. ].
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) ¬ is negation;
) ∨ is (inclusive) disjunction;
) < is exclusive disjunction or (material) non-equivalence.

Since B is finite, the definitions of connectives can be given in tables like the
table in the last section:

P Q P NQ P ∨Q P < Q
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 1 0

P ¬P
0 1
1 0

It will be convenient to have two more connectives, namely:
) (material) implication or the conditional: ⇒;
) (material) equivalence or the biconditional: ⇔.

Again the definitions can be given in a table:

P Q P ⇒ Q P ⇔ Q
0 0 1 1
1 0 0 0
0 1 1 0
1 1 1 1

Certain identities should be evident: For example, P < Q seems to mean the
same thing as ¬(P ⇔ Q). Here though, we shall not put a sign of equality
between the two expressions. Rather, as will be discussed more fully in § .,
we shall write

P < Q ∼ ¬(P ⇔ Q), (.)

using the swung dash ∼ rather than the sign = of equality. Why? First,
by analogy with the definition of arithmetic terms in § ., we define Boolean
terms recursively as follows. Boolean terms are certain strings containing (some
of) the following symbols:

) N, ¬, ∨, <, ⇒, ⇔ (or other connectives, should we choose to define them);
) the constants 0 and 1;
) variables from the list P0, P1, P2, . . . ;
) the parentheses ( and ).

Then the Boolean terms are determined by the following rules:
. Variables and constants are Boolean terms;
. If F is a Boolean term, then so is ¬F ;
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. If F and G are Boolean terms, then so is (F ∗G), where ∗ is one of the
connectives N, ∨, <, ⇒, ⇔.

Note that the constants 0 and 1 can also be considered as Boolean connectives,
since they give values (namely, themselves) in B.

We could now define Boolean polynomials, and we could make from them what
me might call Boolean polynomial equations; these would be examples of so-called
Boolean formulas. We shall not use such expressions however, since our main
interest will lie in Boolean terms as such. To suggest this, we shall refer to
Boolean terms mainly as (propositional) formulas.

As with arithmetic terms, so with propositional formulas, we can establish a
conventional order of operations so as to avoid writing too many parentheses.
We can always leave out an outer pair of parentheses. Then:

) ¬ has priority over all other connectives;
) N and ∨ have priority over ⇒, ⇔, and <;
) in case of two instances of ⇒, the one on the right has priority—we shall

use this convention, because propositional formulas like (P0 ⇒ (P1 ⇒ P2))
are more common than ((P0 ⇒ P1) ⇒ P2); so it will be convenient to let
P0 ⇒ P1 ⇒ P2 stand for the former;

) in case of two instances of N or of ∨ or of <, the one on the right has
priority—we could just as well give priority to the one on the left; we just
want to allow ourselves to let strings like P0 N P1 N P2 denote Boolean
terms.

Also, instead of writing variables Pk, we may use P , Q and R instead. Similarly,
we may use letters like F , G and H to stand for formulas.

The symbols P0, P1, and so on are the variables that can appear officially in
propositional formulas. The symbols P , Q are syntactical variables; in the
sense of [, § ] we use them to refer to the variables in formulas. Likewise,
F and so on are not literally formulas; we use them as syntactical variables for
formulas.

Examples ... By the order of operations,
) the propositional formula denoted by P ⇒ Q ∨R is (P ⇒ (Q ∨R));
) ¬P N Q is ((¬P ) N Q);
) P N Q ∨ R is ambiguous; the writer must say whether (P N Q) ∨ R or

P N (Q ∨R) is intended;
) P N Q N R is (P N (Q N R));
) P N Q N R ∨ P is ambiguous;
) P ⇒ Q ⇒ R is P ⇒ (Q ⇒ R);
) P < Q < R is (P < (Q < R));
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) P ⇒ Q N R ⇒ S is (P ⇒ ((Q N R) ⇒ S)).

A propositional formula like 0 ⇒ 1 can be called closed, because it has no
variables. By definition of the connective ⇒, this formula 0 ⇒ 1 has the value 1.
The formulas 0 ⇒ 1 and 1 are not equal as formulas; but the former can be
considered as a name for the latter (considered as an element of B).

Propositional formulas are so defined that every closed formula is the name of
a unique element of B. We shall prove this in § .; meanwhile, some applications
are in the following exercises.

Exercises

. By the order of operations, which propositional formulas, if any, are de-
noted by the following?

(a) P N ¬Q < R ∨ P ;

(b) P ⇒ Q < R;

(c) P0 ⇒ P1 ⇒ P2 ⇒ P3;

(d) P0 ⇒ P1 ⇒ . . .⇒ Pn.

. The following closed formulas are names of which elements of B?

(a) 1 ⇒ 1 ⇒ 1,

(b) 1 ⇒ 0 ⇒ 1,

(c) (0 ⇒ 1) ⇔ 1,

(d) ¬(0 < 1) ⇔ (0 ⇔ 1),

(e) ¬¬¬0,
(f) (1 ∨ 0) N 0,

(g) 1 ∨ (0 N 0).

.. Propositional formulas and language

In one sense of the word, a model is a representation or description of something
that one wants to build or understand. Think of an architect’s model, or an
orrery (a model of the solar system). In this sense, symbolic logic can be seen as
a model of ordinary language. In propositional logic, the Boolean connectives
represent words such as and, but, or, if, and not, some of which are traditionally
called conjunctions (bağlaçlar). Our main interest here is how such words affect
the truth of statements, especially statements in mathematics.
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Truth

Aristotle defines truth in the Metaphysics (IV, vii, :  b ). A literal
translation of his words is:

To declare the being not to be, or the not being to be, is false;—the
being to be, and the not being not to be, is true.

Alternatively, ‘It is false to say that what is, is not, or what is not, is; it is true
to say that what is, is, and what is not, is not.’

I propose (inspired by Alfred Tarski []) to refine this definition as follows:
Let A be a statement. Then:

A is true if A, and A is false if not A.

This is a definition; implicitly then, A is true only if A, and A is false only if
not A. The definition is obscure. It becomes slightly less cryptic in an example
where we can use the typographical convention established in the Preface:

Grass is green is true if grass is green;
Grass is green is false if grass is not green.

Note what happens when we translate this into Turkish:

Çimen yeşilse, Grass is green doğrudur;
çimen yeşil değilse, Grass is green yanlıştır.

Compound statements

We can now analyse certain compound statements. Let A and B be statements.

Conjunctions, disjunctions, and negations

The statement A and B is true if and only if A and B; hence A and B is true
if and only if A is true and B is true. Compare this with the observation that
P NQ takes the value 1 if and only if P takes the value 1 and Q takes the value
1. If 1 represents truth, then the connective N represents the conjunction and.
The proposition A and B and the propositional formula F NG can alike be called

The words are in []: τὸ μὲν γὰρ λέγειν τὸ ὂν μὴ εἴναι ἢ τὸ μὴ ὂν εἶναι ψεῦδος, τὸ δὲ τὸ ὂν
εἶναι καὶ τὸ μὴ ὂν μὴ εἶναι ἀληθές (Varlığın var olmadığını veya varolmayanın var olduğunu
söylemek yanlıştır. Bunu karşılık varlığın var olduğunu, var olmayanın var olmadığını söylemek
doğrudur).
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conjunctions. Note well, however, that the proposition A and B belongs to
our ordinary language, while the formula F NG belongs to propositional logic.

Similarly, A or B is true if and only if A is true or B is true. Also, P ∨ Q

takes the value 1 if and only if P takes the value 1, or Q takes the value 1. So
the connective ∨ represents the conjunction or. The proposition A or B and the
propositional formula F ∨G can alike be called disjunctions.

More precisely, ∨ represents or in its inclusive sense. The exclusive sense of
or is intended in a sentence like You may have tea or coffee after your meal, if
this means that you are allowed to have tea, and you are allowed to have coffee,
but you are not allowed to have both. The exclusive or is represented by the
connective <.

The sentence Not-A is true if and only if A is false; and ¬P takes the value 1
if and only if P takes the value 0. If now 0 represents falsity, then ¬ represents
not. Both Not-A and ¬F can be called negations. (In fact the negation of an
English statement is almost never formed simply by the prefixing of the word
not; the not goes inside, perhaps with some other changes.)

Mathematics often involves ignoring certain distinctions. From the proposi-
tions A and B, we can form several compound propositions:

A and B
A, but B
A; B

Each of these may have its own rhetorical coloration, but we shall take them all
to have the same truth-value. We may use for any of them the abbreviation

A & B.

(Note the slight typographical distinction between & and N.) The sentence
A & B here is not a propositional formula; it is just a proposition or sentence
of ordinary language.

Implications

We can form some more compounds, all having the same truth-value:

If A, then B
When A, then B
A implies B
B if A

B, provided A
A only if B
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These can be called implications and conditional statements. Each of them
has the antecedent A and the consequent B. We shall understand the com-
pounds to be true if B is true or A is false (or both); otherwise, the compounds
are false. We may use the abbreviation

A =⇒ B.

The propositional formula P ⇒ Q can be analysed similarly, and we can apply
the same terminology.

The formulation B if A can be understood as emphasizing that A is a suf-
ficient condition for B. The formulation A only if B emphasizes that B is a
necessary condition for A.

In ordinary language, the sentence If A, then B suggests causation. If you drop
that İznik vase, then it will break—you will cause the vase to break by dropping it.
In mathematics though, the sentence If A, then B means no more than B is true
or A is false. This is why the connective ⇒ is called material implication;

it is to be distinguished from formal implication, that is, the implication
suggested by a sentence like If A, then B in ordinary language. I suggest the
following mnemonic device. In Platonic philosophy, the form of something has
a higher level of reality than its matter. In the sentence about a vase, there
is a formal connexion between antecedent and consequent: they both refer to
the same vase, for example. Such a connexion is missing in a sentence like If
water is wet, then Constantine founded Constantinople; but we count the sentence
as ‘materially’ true if we accept the consequent as true. (In this case, it is
irrelevant that the antecedent is true.)

There is a saying in English, If wishes were horses, then beggars would ride. We
cannot analyse this as a material implication, simply because the antecedent
See the discussions in Church [, § , n. , pp. f.] and Tarski [, §§ , ]; but these

sources do not discuss the origin of the terminology.
I suspect Descartes alludes to this distinction when he says in the third of the Meditations

on First Philosophy (p. )

That this idea contains this or that objctive reality rather than some other one
results from the fact that the idea gets its objective [that is, material?] reality
from a cause in which there is at least as much formal reality as there is objective
reality contained in the idea. []

Ama bu idea belirli bir nesnel olgusallık kapsadığı için, onu hiç kuşkusuz en
azından kendisinin kapsadığı nesnel olgusallık denli biçimsel olgusallık kapsayan
bir nedenden türetiyor olmalıdır. []

Elsewhere in mathematics, the term formal is used to denote what might be called a lower

level of reality than usual. An expression a + b may be called a formal sum if a and b
cannot ‘really’ be added, except to produce the expression a+ b.
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and consequent are not propositions. We can try to recast the sentence as, If
wishes are horses, then beggars ride. Then we can argue that the sentence is true,
simply because the antecedent is false: wishes are not horses. This observation
says nothing about the truth of the original saying.

In some mathematical writing, one sees statements like

A =⇒ B =⇒ C.

This should be understood as an abbreviation for

(A =⇒ B) & (B =⇒ C).

This conjunction is not the same statement as the implication

A =⇒ (B =⇒ C),

even though we understand the formula F ⇒ G ⇒ H as an abbreviation for
the formula F ⇒ (G ⇒ H).

In mathematics, we often have occasion to write sentences like A is true, and
therefore B is true, or more simply, A, therefore B. Logically, the truth-value
of the sentence is the same as the truth-value of A & B; so please resist the
temptation to write the sentence as A =⇒ B, or as

A

=⇒ B.

Instead of an arrow, just use words, such as therefore, hence, consequently, or as
a result.

Equivalences

In ordinary language, we can write indifferently

A if and only if B
A just in case B

These are equivalences and biconditional statements, and for them we can
use the abbreviation

A ⇐⇒ B.

The formula P ⇔ Q has a similar analysis and description. In mathematical
writing, one may see statements like

A ⇐⇒ B ⇐⇒ C;
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this should be understood an abbreviation for

(A ⇐⇒ B) & (B ⇐⇒ C).

Reasoning with compounds

Some fundamental rules of reasoning can be abbreviated thus:

A & (A =⇒ B) =⇒ B; (.)

not-(A =⇒ B) ⇐⇒ A & not-B. (.)

(We are using a convention like that established in § .: the expression &
has priority over =⇒ and ⇐⇒ .)

The operations of conversion and contraposition can be performed on
implications:

) the converse of A =⇒ B is B =⇒ A;
) the contrapositive of A =⇒ B is not-B =⇒ not-A.

The contrapositive of an implication is true if and only if the original implication
is true:

(A =⇒ B) ⇐⇒ (not-B =⇒ not-A).

This observation is of great value in the proving of mathematical propositions.
In particular, it often allows for proofs that are superior in style to proofs by
contradiction. The stylistic problem with a proof by contradiction is that it con-
tains false or even meaningless statements. The proof may still be correct, but it
is inelegant. For example, in the proof of the Russell Paradox (Theorem ..),
since R turns out not to be a set, the expressions R ∈ R and R /∈ R turn out
to be meaningless. A proof that avoids this problem is the following.

Alternative proof of the Russell Paradox. Let A be an arbitrary set. Then either
A ∈ A, or A /∈ A. If A ∈ A, then A /∈ R, so A 6= R. If A /∈ A, then A ∈ R, so
again A 6= R. Thus A 6= R. That is, no set is equal to R; so R is not a set.

Exercises

. Find a true implication whose converse is true.

. Find a true implication whose converse is false.

. Recast all foregoing proofs-by-contradiction to avoid any contradictions.
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.. Quantifiers

As the Boolean connectives are used to model the conjunctions of ordinary
language, so the symbols called quantifiers can be used to model certain so-
called determiners, especially all and some. Quantifiers are a part of predicate
logic.

In a section of the ‘XVII. Meditation’ of his Devotions upon Emergent Occa-
sions of , the clergyman and so-called metaphysical poet John Donne uses
the determiners no, every, and any, in addition to the indefinite article a(n). The
Meditation begins as follows (and here I preserve Donne’s original spelling and
typography, as found in [, pp. f.]): ‘Perchance hee for whom this Bell
tolls, may be so ill, as that he knowes not it tolls for him;’ later, the Meditation
continues:

No man is an Iland, intire of it selfe; every man is a peece of the
Continent, a part of the maine; if a Clod bee washed away by the
Sea, Europe is the lesse, as well as if a Promontorie were, as well as
if a Mannor of thy friends or of thine owne were; any mans death
diminishes me, because I am involved in Mankinde; And therefore
never send to know for whom the bell tolls; It tolls for thee.

This text contains the following three clauses (and now I modernize the spelling):

No man is an island.
Every man is a piece of the continent.
Any man’s death diminishes me.

The first clause is contradicted some  years later by a verse of a popular song
by Simon and Garfunkel []:

I am a rock, I am an island.

Donne says that the proposition I am an island is false, no matter who says it: it
is false that some man is an island. (I take Donne’s man to be a human being,
male or female.) So we can abbreviate the first two of Donne’s clauses above
by:

Not-(some x is an island) & (every x is a piece of the continent),

where the variable x is understood to range over humanity. We can expand this
to



.. Quantifiers 

Not-(there is some x such that x is an island) & (for every x, x is a
piece of the continent).

The reason for this expansion is that the predicate [is] an island might be denoted
by P , and [is] a piece of the continent might be denoted by Q. For the phrase
there is some x such that, we write

∃x;

for the phrase for all x, we write
∀x.

Then Donne’s two clauses can be written

¬∃x Px & ∀x Qx.

The symbol ∃ is the existential quantifier; the symbol ∀ is the universal
quantifier. We have just seen that these correspond respectively to the de-
terminers some and every, and ¬∃ corresponds to no. We shall discuss, by and by,
what ¬∀ corresponds to.

Let U be some universal set as in § ., let P be a predicate, and let A be
the resulting set {x ∈ U : Px}. We can form several equations and inequations
whose members are ∅, A and U ; with quantifiers, we can describe them.

. ∀x Px means A = U .
. ∃x Px means A 6= ∅.
. ¬∃x Px means A = ∅.
. ¬∀x Px means A 6= U .

The set denoted by
{x ∈ U : ¬Px}

consists of those elements of U that are not in A: it is the set

Ac, (.)

called the complement of A (in U). Then we can form more equations, inequa-
tions and propositions on the pattern of those above:

. ∀x ¬Px means Ac = U .
. ∃x ¬Px means Ac 6= ∅.
. ¬∃x ¬Px means Ac = ∅.

With Chiswell and Hodges [], one may prefer to say that the compound symbols ∃x and
∀x are the quantifiers.
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. ¬∀x ¬Px means Ac 6= U .
But we have, for example,

Ac = U ⇐⇒ A = ∅;

Ac 6= ∅ ⇐⇒ A 6= U .

Correspondingly, we also have

¬∃x Px ⇐⇒ ∀x ¬Px; (.)

¬∀x Px ⇐⇒ ∃x ¬Px. (.)

These equivalences are valuable tools for understanding propositions written
with quantifiers.

Example ... In calculus, a function f on R is said to be continuous at a
real number a if, for every positive real number ε, there is a positive real number
δ such that, for every real number x, if |x − a| < δ, then |f(x) − f(a)| < ε. In
our new symbolism, we can write the definition as

∀ε (ε > 0 =⇒ ∃δ (δ > 0 & ∀x (|x− a| < δ =⇒ |f(x)− f(a)| < ε))). (.)

Some people abbreviate this proposition to

∀ε > 0 ∃δ > 0 ∀x (|x− a| < δ =⇒ |f(x)− f(a)| < ε).

By (.) and (.) above, as well as (.) in § ., along with the proposition
that, in R, x < y fails if and only if x > y,—by all of this, the negation of (.)
is

∃ε (ε > 0 N ∀δ (δ > 0 =⇒ ∃x (|x− a| < δ N |f(x)− f(a)| > ε))),
which some people write as

∃ε > 0 ∀δ > 0 ∃x (|x− a| < δ & |f(x)− f(a)| > ε).

For a specific example, let f be the function given by

f(x) =




sin

1

x
, if x 6= 0;

0, if x = 0;

and a = 0. We can show that f is not continuous at a as follows. The function
x 7→ sinx is periodic, with period 2π: that is,

∀x sin(x+ 2π) = sinx.
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Also, sin(π/2) = 1. Let ε = 1/2. Say δ > 0. There is some integer n greater
than 1/2πδ. Then 2nπ + π/2 > 2nπ > 1/δ. Let x = 1/(2nπ + π/2). Then
|x − a| = x < δ, but |f(x) − f(a)| = |f(x)| = sin(2nπ + π/2) = 1 > ε. This
proves that f is not continuous at 0.

In (.), note that the expression

|x− a| < δ =⇒ |f(x)− f(a)| < ε (.)

can be understood as a predicate with three subjects—let’s call them argu-
ments: x, δ, and ε. If we wanted to abbreviate (.), we might write it
as Sxδε. Then S is a ternary predicate. Ternary predicates are common in
mathematics, at least implicitly; for example, the equations

x+ y = z, xy = z

can be understood as featuring ternary predicates. The signs = and < are bi-
nary predicates. Singulary predicates—predicates that take a single argument—
are uncommon in mathematics, though they are needed in general treatments
such as ours.

Quantifier elimination and introduction

Let us return to the general setting where U is some set, P is a singulary pred-
icate, and A = {x ∈ U : Px}. In proofs, there are several moves we might make
that involve introducing or eliminating quantifiers from known propositions.
∀-elimination: If we know ∀x Px, and b is some element of U , then b ∈ A, so

we can conclude
Pb.

∃-introduction: If c is an element of U such that Pc, then c ∈ A, so a 6= ∅, and
therefore

∃x Px.
∀-introduction: If b is an arbitrary element of U , and we can show Pb, then it

must be the case that
∀x Px.

Of course it is essential that b be arbitrary. This means, in the proof of
Pb, nothing about b can be used, except its membership in U .

∃-elimination: Suppose ∃x Px. If, by assuming Pb for some unknown element
of U , we are able to prove a proposition σ that says nothing about b, then
we can conclude that σ is true.

These rules are illustrated in the next subsection.
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Prenex forms

In compound propositions involving quantifiers, it may be desirable to move all
of the quantifiers to the front, in order to better understand the complexity of
the proposition, or simply to avoid confusion. The result is said to be in prenex
form. For example, (.) can be rewritten in prenex form as

∀ε ∃δ ∀x (ε > 0 =⇒ (δ > 0 N (|x− a| < δ =⇒ |f(x)− f(a)| < ε))).

This is a consequence of the following lemmas, where σ is a statement and P is
a singulary predicate.

Lemma ... (σ =⇒ ∃x Px) ⇐⇒ ∃x (σ =⇒ Px).

Proof. (⇒) Suppose σ =⇒ ∃x Px. We consider two cases.
Suppose first σ is true. Then so is ∃x Px, and hence for some a in U we
have Pa and therefore σ =⇒ Pa. By ∃-introduction, we can conclude
∃x (σ =⇒ Px).
On the other hand, if σ is false, then for all a in U , we have σ =⇒ Pa.
Since in particular there is some a in U , again by ∃-introduction we can
conclude ∃x (σ =⇒ Px).

(⇐) Suppose ∃x (σ =⇒ Px). By ∃-elimination, σ =⇒ Pa for some a in U .
If σ is false, then σ =⇒ ∃x Px is true. If σ is true, then so is Pa, and
therefore ∃x Px is true; hence also σ =⇒ ∃x Px is true.

Lemma ... (σ & ∀x Px) ⇐⇒ ∀x (σ & Px).

Proof. (⇒) Say σ & ∀x Px. Let a be arbitrary. then Pa (by ∀-elimination),
so σ & Pa, hence ∀x (σ & Px) by ∀-introduction (since a was arbitrary).

(⇐) Say ∀x (σ & Px). Let a be arbitrary. Then σ & Pa (by ∀-elimination), so
∀x Px by ∀-introduction (since a was arbitrary) and hence σ & ∀x Px.

Lemma ... (σ =⇒ ∀x Px) ⇐⇒ ∀x (σ =⇒ Px).

Now, writing Sxδε for (.), we can rewrite (.) as

∀ε (ε > 0 =⇒ ∃δ (δ > 0 & ∀x Sxδε)),
∀ε ∃δ (ε > 0 =⇒ (δ > 0 & ∀x Sxδε)),
∀ε ∃δ (ε > 0 =⇒ ∀x (δ > 0 & Sxδε)),

∀ε ∃δ ∀x (ε > 0 =⇒ (δ > 0 & Sxδε)).

The various rules must be applied with sensitivity to variables:
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Lemma ... (∀x Px =⇒ ∀x Qx) ⇐⇒ ∀y ∃x (Px =⇒ Qy).

Proof. The following are equivalent.

∀x Px =⇒ ∀x Qx,
∀x (∀x Px =⇒ Qx),

∀x Px =⇒ Qa for arbitrary a,

¬Qa =⇒ ∃x ¬Px for arbitrary a,

∃x (¬Qa =⇒ ¬Px) for arbitrary a,

∃x (Px =⇒ Qa) for arbitrary a,

∀y ∃x (Px =⇒ Qy).

Models

The assertion that the Diophantine equation x2 − y2 = (x + y)(x − y) is an
identity is the proposition

∀x ∀y x2 − y2 = (x+ y)(x− y),

where x and y are understood to range over Z. To express this last qualification,
we can write

Z � ∀x ∀y x2 − y2 = (x+ y)(x− y)

(a notation to be developed in § .). The expression Z � σ can be read as one
of

σ is true in Z,
Z satisfies σ,

Z is a model of σ;

here Z is the context in which σ is true (see § .). The symbol � can be
called the semantic turnstile: semantic, because it concerns the meaning of
propositions (rather than the form), and turnstile, because that is roughly what
it looks like: a gate with a horizontal bar that you can turn away if you are
allowed to pass (as for example when leaving the METU library). The syntactic
turnstile ⊢ will be introduced in § ..

The notation Z 2 σ means σ is false in Z, that is, Z � ¬σ.

Example ... The sentence ∀x (x 6= 0 =⇒ ∃y xy = 1) is false in Z, but
true in Q, that is,

Z 2 ∀x (x 6= 0 =⇒ ∃y xy = 1), Q � ∀x (x 6= 0 =⇒ ∃y xy = 1).
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Hence also Z � ∃x (x 6= 0 N ∀y xy 6= 1); for example, Z � (2 6= 0 N ∀y 2y 6= 1).

Ordinary language

Look again at the equations

A = U , A 6= ∅, A = ∅, A 6= U .

These can be verbalized respectively as
) everything is in A,
) something is in A,
) nothing is in A,
) not everything is in A.

The first three of these clauses are obtained from the clause thing is in A by
adding, respectively, a universal, an existential, and a negative determiner. The
last clause needs the addition of not every; alternatively, the clause could be
written as something is not in A. Apparently, in English, there is not a one-word
expression with the meaning of not every and some. . . not.

Some people might write the last clause on the list as Everything is not in A,
or All things are not in A. For example, there is a saying:

All that glitters is not gold.

It is pretty clear that what is meant is that some things that glitter are not
gold: some shiny attractive things are not worth much. But the saying looks
as if it could be written as All that glitters fails to be gold. This does not have
the intended meaning, since gold itself does glitter. To avoid possible misunder-
standing, it seems better to write

Not all that glitters is gold,

with not moved to the beginning.
Turkish avoids the ambiguities possible from a misplaced not. In the Antalya

otogar, I once bought a bag of bananas with the brand name Asal. The bag
displayed the slogan

Her muz Asal muz değildir.

This should be translated as Not every banana is a Prime banana. According to
our understanding, the sentence Every banana is not a Prime banana would be
rendered in Turkish as
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Hiçbir muz Asal muz değildir.

The words a(n) and any are ambiguous. If you say A dog has three legs, you
probably mean the a existentially: there is a dog that has three legs. But if you
say A dog has four legs, probably you are describing dogs in general: every dog
has four legs. The sentence Anybody can come could be a general invitation to
everybody, or it could express a worry over the possibility that somebody will
come.

Still, the word any seems useful in ordinary life. Again, Donne writes:

Any man’s death diminishes me.

Could he write, instead, Every man’s death diminishes me? In a mathematical
context, the every is preferable; but every man’s death suggests the image of all
people dying at once; any man’s death takes the deaths one by one.

Exercises

. Prove Lemma ...

. Find (with proof) prenex forms for the following:

a) σ & ∃x Px,
b) ∀x Px =⇒ σ,

c) ∃x Px =⇒ σ,

d) ∃x Px =⇒ ∀x Qx,
e) ∀x Px =⇒ ∃x Qx.

. Rewrite ∀x ∃y Rxy in a form that does not use ∃.

. Write the negation of ∃x (Px =⇒ ∀y Rxy) in prenex form.

. Write the following sentences σ in symbolic form, with quantifiers, and in
each case, determine whether M � σ, where M is N, Z, Q, or R:

a) every number has a square root;

b) every positive number has a square root;

c) for all coefficients b and c, the equation x2 + bx + c = 0 has two
distinct solutions, provided b2 6= 4c;

d) there is no least number;

e) between any two distinct numbers, there is another number.
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.. Truth-tables

Propositional formulas were defined in § .. It was suggested there that every
closed propositional formula F has a value. Let us denote this value by

F̂ ;

it is an element of B and can be found in the following way. First note that F

meets one of the following conditions:

) F is a constant from B (that is, 0 or 1), or
) F is ¬G for some closed formula G, or
) F is (G ∗ H) for some closed formulas G and H, where ∗ is one of the

connectives N, ∨, ⇒, ⇔, and <.

Then we can find F̂ by the following recursive procedure:

. If F is in B, then F̂ is F itself.
. If F is ¬G, then F̂ is the value of ¬Ĝ as determined by the table in § ..
. If F is (G ∗H), then F̂ is the value of Ĝ ∗ Ĥ as determined by the tables

in § ..

In the terminology introduced at the end of § ., F is a name for F̂ . It is
proved in the next section below that F̂ is uniquely determined by the procedure
just given for finding it; we can then indeed call F̂ the value, or more precisely
the truth-value, of F .

If a formula is not closed, then it does not have a value in B. However,
any formula can be made into a closed formula by substitution of values for its
variables.

For each propositional formula F , there is some n in N such that, for each k
in N, if the variable Pk appears in F , then k < n. Then we can write F as

F (P0, . . . , Pn−1),


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and we may refer to F as an n-ary formula. A 3-ary formula is also called
ternary; a 2-ary formula, binary; a 1-ary formula, singulary. A 0-ary or
nullary formula has no variables: it is closed in the sense of § .. An n-ary
formula is also (n+ 1)-ary, (n+ 2)-ary, and so on.

Examples ...
. Suppose F is P0NP1 ⇒ P0∨P1 (that is, ((P0NP1) ⇒ (P0∨P1)), according

to the convention established in § .). Then F is binary and can be described
as

F (P0, P1).

It can also be considered as the ternary formula F (P0, P1, P2), but not as the
singulary F (P0).

. By the convention established here, the formula P4 ∨ P21 is 22-ary and
175-ary; it is not 21-ary, much less binary.

If F is an (n + 1)-ary formula, then it can be converted to an n-ary formula
in two different ways by substitution. Indeed, if e is one of the two elements
of B, then each occurrence of the variable Pn in F can be replaced with e; all
the remaining variables of F belong to {P0, . . . , Pn−1}, so F has become n-ary.
In turn, other elements of B can be substituted for other variables in F , so that,
in the end, a closed formula results.

In general, if F is an n-ary formula, and (e0, . . . , en−1) is a list of n elements
of B, then there is a closed formula

F (e0, . . . , en−1),

which is the result of subtituting ek for Pk in F for each k that is less than n.
The list (e0, . . . , en−1) can be called an n-tuple from B and can be abbreviated
by

~e .

The word unary is often used instead of singulary. Following Quine, Church [, § , p. ,
n. ] suggests singulary as a more etymologically correct word than unary. Indeed, whereas
the first five Latin cardinal numbers are un-, du-, tri-, quattuor, quinque, the first five
Latin distributive numbers—corresponding to the Turkish birer, ikişer, üçer, dörder, beşer
[]—are singul-, bin-, tern-, quatern-, quin-. It is the latter sequence that gives us
binary and ternary—also quaternary and quinary, if these are desired. So singulary appears
to be a better word than unary. In fact, singulary does not appear in the original Oxford

English Dictionary []. The word unary does appear in this dictionary, but it is considered
obsolete: only one use of the word, from , was discovered in English literature. There,
unary meant unit, although the word unit was not actually invented until , when it
was introduced by [John] Dee to correspond to the Greek μονάδ-.
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(The definition of n-tuple will be refined in § ..) Here the tuple ~e is an n-
ary truth-assignment (or a truth-assignment for the n-ary formula F ). The
truth-value of F (~e ) can be denoted by

F̂ (~e ).

Example ... Again suppose F is P0 N P1 ⇒ P0 ∨ P1; consider this as
F (P0, P1). If ~e = (0, 1), then F (~e ) is 0N1 ⇒ 0∨1; the value of this is the value
of 0 ⇒ 1, which is 1. That is, F̂ (0, 1) = 1.

A truth-table is a list of the values attained by a propositional formula under
its possible truth-assignments. If a formula is n-ary, then its truth-table has n+1
columns: a column for each variable, and one column for the formula itself; also,
aside from the headings of the columns, the table must have 2n rows.

Example ... Truth-tables defining certain connectives were given in § ..

If k < 2n, then

k = ek0 + 2ek1 + 4ek2 + · · ·+ 2n−1ekn−1 =
∑

j<n

2jekj

for some ekj in B; that is, k is ekn−1e
k
n−2 · · · ek1ek0 in binary notation. Then the

truth-table for an arbitrary n-ary formula F (P0, . . . , Pn−1) has the form of

P0 P1 P2 · · · Pn−1 F

0 0 0 · · · 0 F̂ (0, 0, 0, . . . , 0)

1 0 0 · · · 0 F̂ (1, 0, 0, . . . , 0)

0 1 0 · · · 0 F̂ (0, 1, 0, . . . , 0)

1 1 0 · · · 0 F̂ (1, 1, 0, . . . , 0)

0 0 1 · · · 0 F̂ (0, 0, 1, . . . , 0)
...

...
... · · ·

...
...

ek0 ek1 ek2 · · · ekn−1 F̂ (ek0 , e
k
1 , e

k
2 , . . . , e

k
n−1)

...
...

... · · ·
...

...

To be able to compute the truth-table of a formula, we need to know the truth-
tables of the proper sub-formulas of the given formula. The sub-formulas of a
formula are determined by the following conditions:
The notation is from [, Definition .., p. ].
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. F is a sub-formula of itself.
. F is a sub-formula of ¬F .
. F and G are sub-formulas of (F ∗ G) (where ∗ is N, ∨, ⇒, ⇔ or <;

remember that, by the convention established in § ., F and G here are
not just strings, but formulas).

. Every sub-formula of a sub-formula of F is a sub-formula of F .
A sub-formula of F is a proper sub-formula if it is not F itself.

The sub-formulas of a given formula can be arranged in a tree. For example,
the sub-formulas of P0 ∨ ¬P0 are the nodes of the following tree:

P0 ∨ ¬P0

��
� ??

?

P0 ¬P0

??
?

P0

The sub-formulas of P0 ∨¬P0 are thus P0, P0 ∨¬P0 itself, ¬P0, and P0 again. I
write P0 twice because it appears twice as a sub-formula of P0 ∨¬P0. However,
we can give the truth-table for P0 ∨ ¬P0 (along with an extra column for our
computations) thus:

P0 ¬P0 P0 ∨ ¬P0

0 1 1
1 0 1

.

Alternatively, we can include a column for each sub-formula (even if it is the
same as another sub-formula):

P0 P0 ∨ ¬P0 ¬P0 P0

0 1 1 0
1 1 0 1

.

Why would we do this? The sub-formulas of any formula are in one-to-one
correspondence with the variables and the connectives in the formula (that is,
there is a bijection between them, in the sense of § .). Indeed, compare the
previous tree with the following:

∨
��

�� ??
??

P0 ¬
??

??

P0
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We have the following correspondence between sub-formulas and symbols:

P0 ! P0

P0 ∨ ¬P0 ! ∨
¬P0 ! ¬
P0 ! P0

Using this correspondence, we can rewrite the last truth-table thus:

P0 ∨ ¬ P0

0 1 1 0
1 1 0 1

I propose to call this the full truth-table of P0 ∨ ¬P0; from it we can extract
the proper truth-table of P0 ∨¬P0 by taking only one column headed by P0,
along and the column headed by ∨ (which corresponds to the whole formula):

P0 P0 ∨ ¬P0

0 1
1 1

For another example, let F be the formula P0 ⇒ ¬P1 ∨P2. The sub-formulas
of F compose the tree

P0 ⇒ ¬P1 ∨ P2

��
� TTTTTTT

P0 ¬P1 ∨ P2

ooooo ??
?

¬P1

??
? P2

P1

The corresponding tree of variables and connectives is:

⇒
��

��

TTTTTTTTTTTTT

P0 ∨
oooooooo

??
??

¬
??

??
P2

P1
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From this we can get the full truth-table as described below. This table itself is:

P0 ⇒ ¬ P1 ∨ P2

0 1 1 0 1 0
1 1 1 0 1 0
0 1 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 1
1 1 1 0 1 1
0 1 0 1 1 1
1 1 0 1 1 1

.

We can construct this in stages, working our way through the trees drawn above,
starting with the variables:

P0 ⇒ ¬ P1 ∨ P2

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

,

P0 ⇒ ¬ P1 ∨ P2

0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1

,

then

P0 ⇒ ¬ P1 ∨ P2

0 1 0 1 0
1 1 0 1 0
0 0 1 0 0
1 0 1 0 0
0 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 0 1 1 1

and finally the complete table given earlier. The column giving the values of F
itself is the last to be filled in: in this case, the second column, under ⇒. The
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proper truth-table for F is then

P0 P1 P2 F

0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 0
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1

.

Exercises

. Write full truth-tables and proper truth-tables for the formulas:

(a) P0 ⇒ P1 ⇒ P0;

(b) P0 N P1 N P2;

(c) P0 < P1 < P2;

(d) (P0 ⇒ P1 ∨ P2) ⇒ ¬P0 ∨ P1;

(e) (P0 ⇒ P1 ∨ ¬P2) N (P1 ⇒ P0 N P2) ⇒ P0 ⇒ P2;

(f) ¬(¬P2 ⇒ P0 ⇒ ¬(P2 ⇒ P1)).

How many columns has each table?

. What does the truth-table for a nullary (closed) formula look like?

. For each n in N, describe the n-ary formulas whose full truth-tables have
fewer columns than their proper truth-tables.

.. Unique readability

We have to justify our definition of F̂ for closed formulas F : that is, we have to
confirm that only one value of F̂ can be computed for each F .

We have called a propositional formula n-ary if its variables are among the
first n variables on the list (P0, P1, P2, . . . ). The notion of arity applies to
connectives themselves:

. N, ∨, ⇒, ⇔ and < are binary, because they are used to join two formulas.
. ¬ is singulary.
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. The constants 0 and 1 are nullary.
Although, by our convention, an n-ary formula is also (n+ 1)-ary, a connective
has a unique arity: since ¬ is singulary, it is not binary.

The formulas joined by a connective in a formula are the arguments of the
connective. In the formula

P ⇒ ¬Q N 1

(which stands for (P ⇒ (¬QN 1))), the arguments of ⇒ are P and ¬QN 1 (in
that order); the arguments of N are ¬Q and 1; the argument of ¬ is Q; and 1
has no argument.

By definition, each propositional formula F meets one of the following condi-
tions:

) F is a variable;
) F is a nullary connective;
) F is ¬G for some G;
) F is (G ∗H) for some G and H and some binary connective ∗.

It is obvious that F can meet only one of these conditions. It is not obvious
that a formula (G∗H) cannot also be written (G′ ∗′H ′), where G′ is a different
formula from G.

Let G be (P NQ), and let H be R. Then (G ∨H) is ((P NQ) ∨R), which
can be written as (U N V ), where U is (P , and V is Q) ∨R. But U is not a
formula (why not?); neither is V .

How do we know that, if G and H are more complicated, (G∗H) still cannot
be analyzed as a different application of a binary connective? How do we know
that (G ∗ H) is uniquely readable? Our definition of F̂ (~e ) requires unique
readability. To prove unique readability; we can use the notion of an initial
segment of a formula.

Every formula is a string of symbols, written left to right. If we cut the string,
then it is divided into two segments: an initial and a final segment. I allow the
cut to come at an end: that is, I allow one of the two segments to be empty, so
that the other segment is the whole string:

Example ... The initial segments of (P ∨¬P ) are (P ∨¬P ) itself, (P ∨¬P ,
(P ∨ ¬, (P ∨ , (P , (, and the empty string.

An initial segment of F that is not F itself is a proper initial segment
of F .

Lemma ...
. Every propositional formula has just as many left parentheses as right

parentheses.
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. If F is a variable, a constant, or a negation, then every initial segment of
F has at least as many left parentheses as right parentheses.

. If F is a propositional formula that is not a variable, a constant, or a
negation, then every non-empty proper initial segment of F has more left
parentheses than right parentheses.

Proof. To prove the first claim, follow the pattern of Proposition ..
To prove the second and third claims, let A be the set of formulas F that do

satisfy those claims. Then, trivially, A contains all variables and constants. If
A contains F , then F has at least as many left as right parentheses, hence so
does ¬F , which is a negation, so ¬F is in A. Finally, suppose A contains F

and G, and ∗ is a binary connective. Every non-empty proper initial segment
of (F ∗ G) is either (F ∗ U for some initial segment U of G, or (V for some
initial segment V of F . But then U and V must have at least as many left as
right parentheses, since F and G are in A; so (F ∗ U and (V have more left
than right parentheses. Therefore (F ∗G) is in A. By the recursive definition
of propositional formulas, A contains all propositional formulas.

Lemma ... No proper initial segment of a propositional formula is a propo-
sitional formula.

Proof. Let A comprise all formulas F such that no proper initial segment of F
is a formula. Then A contains all variables and constants. Suppose A contains
F , and U is an initial segment of ¬F that is a formula. Then U is ¬V for
some initial segment V of F that is also a formula; so V is F ; hence U is ¬F .
Therefore ¬F is in A.

Finally, suppose F and G are in A, and ∗ is a binary connective. Every proper
initial segment of (F ∗G) is either empty or has more left than right parentheses,
by Lemma .., so it is not a formula. Thus (F ∗G) is in A. By definition of
propositional formulas, A contains all of them.

An alternative proof of this lemma is by the method of infinite descent:
that is, it relies on something like Lemma ... Suppose some proper initial
segment of a formula is also a formula. Then the original formula is either ¬F
or (F ∗ G). If it is ¬F , then its proper initial segment is ¬F ′, where F ′ is a
formula that is a proper initial segment of F . If the original formula is (F ∗G),
then its proper initial segment must have the form (F ′ ∗′ G′), and then there
are two possibilities:

) one of F and F ′ is a proper initial segment of the other, or
) F and F ′ are the same formula, and G′ is a proper initial segment of G.
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Thus, for every formula with a proper initial segment that is a formula, there is a
shorter formula with the same property. In this way, we get an infinite sequence
of formulas, each one strictly shorter then the preceding, which is absurd.

Theorem .. (Unique Readability). If (F ∗G) and (F ′ ∗′ G′) are the same
propositional formula, then F and F ′ are the same (hence ∗ is ∗′, and G is G′).

Proof. If (F ∗G) and (F ′ ∗′ G′) are the same formula, then one of F and F ′ is
an initial segment of the other, so they are the same by Lemma ...

Now we know that F̂ (~e ) is well defined, so truth-tables are uniquely deter-
mined.

It may seem as if parentheses are required to ensure unique readability. We
do have a convention that allows us to dispense with some parentheses: we
can write P ⇒ Q ⇒ R for (P ⇒ (Q ⇒ R)). But we cannot dispense with
the parentheses in (P ⇒ Q) ⇒ R, unless we come up with a completely new
system of notation.

Polish notation

When we move into a second dimension and write formulas as trees, then
) P ⇒ Q ⇒ R becomes ⇒

��
��
��
��
�

OOOOOOOO

⇒
��

�� ??
??

P Q R

) (P ⇒ Q) ⇒ R becomes ⇒
oooooooo

//
//

//
//

/

⇒
��

�� ??
??

P Q R

The arrangement of the branches takes the place of parentheses. Now convert
the trees back into strings, but write the symbols in the following orders, re-
spectively:

0

��
��
��
�� OOOOOOOOO

2

��
�� ??

??

1 3 4

0

ooooooooo

//
//

//
//

1

��
�� ??

??

2 3 4
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The resulting strings are

⇒P⇒QR; ⇒⇒PQR.

These are formulas written in Łukasiewicz or Polish notation.

A signature is a set of connectives. Our definition of propositional formulas
in § . is a definition of the formulas of the signature {0, 1,¬,N,∨,⇒,⇔,<}
in infix notation. Infix notation makes sense only when the connectives in use
are 0-, 1- or 2-ary. Of a signature L containing connectives of possibly higher
arities, the formulas in Polish notation can be defined as follows:

. All variables are formulas of L in Polish notation;
. if n ∈ N, and ∗ is an n-ary connective in L, and if F0, F1, . . . , Fn−1 are

formulas of L in Polish notation, then

∗ F0F1 · · ·Fn−1

is a formula of L in Polish notation.
(The latter condition includes the case n = 0; in this case, the list (F0, . . . ,Fn−1)
is empty, so the nullary connective by itself is a formula.) Thus, in Polish
notation, every connective is followed by the list of its arguments. In reverse
Polish notation (or RPN), the connective comes after its arguments. The
corresponding RPN for arithmetic can be convenient for electronic calculators,
and it bears some resemblance to Turkish word-order. Compare:

One plus two is three.
infix notation: 1 + 2 = 3

Bir iki daha üç -tür.
RPN: 1 2 + 3 =

Exercises

. Prove part  of Lemma ...

. For each symbol in the formula (P ⇒ Q∨¬R)N(1 ⇒ P NR) ⇒ (0 ⇒ R),
give the list of arguments, if it exists. Write the formula in Polish notation.

. Prove that formulas in Polish notation have unique readability. (You can
use infinite descent; but can you avoid using this technique?)

Church [, p. , n. ] calls it Łukasiewicz notation, after its inventor—who was Polish;
the common term today seems to be Polish notation.
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. Letting ▽ be the ternary operation on B that converts a triple (x, y, z) to
p((x+1)(y+1)(z+1)) (where p is as in § .), construct a truth-table for
▽PQR.

.. Logical equivalence

Recall the distinction, stated in § ., between terms and polynomials. Suppose
F and G are two n-ary Boolean terms, that is, propositional formulas. They
represent the same Boolean polynomial if

F̂ (~e ) = Ĝ(~e )

for all truth-assignments ~e . In this case, as suggested in § ., we shall write

F ∼ G;

and we shall say that F and G are logically equivalent (or just equivalent).
Here we have a clear test for equivalence: Two formulas are equivalent if and
only if they have the same proper truth-table; more precisely, the formulas must
have the same truth-table when the formulas are treated as being n-ary for the
same n. Let us call this test for equivalence the truth-table method.

Example ... Are the formulas P0 and (P1 ∨ ¬P1) ⇒ P0 equivalent? Their
full truth-tables are

P0

0
1

(P1 ∨ ¬ P1) ⇒ P0

0 1 1 0 0 0
0 1 1 0 1 1
1 1 0 1 0 0
1 1 0 1 1 1

.

As a binary formula, each formula has the same proper truth-table

P0 P1 F

0 0 0
1 0 1
0 1 0
1 1 1

;

so the formulas are equivalent.
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The truth-table method is a method of proving that two formulas are equiva-
lent. The method is highly specific: For example, it cannot obviously be used
to prove the arithmetic identities mentioned in § ., or to prove trigonometric
identities like

tan2 x+ 1 = sec2 x.

To prove this identity, we can write a chain of recognizable identities:

tan2 x+ 1 =
sin2 x

cos2 x
+ 1 =

sin2 x

cos2 x
+

cos2 x

cos2 x
=

sin2 x+ cos2 x

cos2 x
=

1

cos2 x
= sec2 x.

This proof is an example of the method of simplification. This method can
also be used for propositional formulas. In this context, we shall develop the
theoretical background of simplification in the next section; the method itself is
developed in § ., but will rely on the lemma below. A proof by simplification,
suitably expressed, will be an example of a formal proof .

Lemma ...
. Definitions:

P ⇒ Q ∼ ¬P ∨Q,

P ⇔ Q ∼ (P ⇒ Q) N (Q ⇒ P ),

P < Q ∼ ¬(P ⇔ Q).

. Double negation:

¬¬P ∼ P .

. De Morgan’s Laws:

¬(P ∨Q) ∼ ¬P N ¬Q, ¬(P N Q) ∼ ¬P ∨ ¬Q.

. Commutativity:

P N Q ∼ Q N P , P ∨Q ∼ Q ∨ P .

A one-variable nonzero polynomial of degree n has at most n zeros; so if f(x) and g(x) are
polynomials of degree n at most, and

0 = f(x0)− g(x0) = f(x1)− g(x1) = · · · = f(xn)− g(xn),

where all of the xk are distinct, then ∀x f(x) = g(x). This method does not work for
polynomials in more than one variable.
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. Associativity:

(P N Q) N R ∼ P N (Q N R), (P ∨Q) ∨R ∼ P ∨ (Q ∨R).

. Distributivity:

P N (Q∨R) ∼ (P NQ)∨ (P NR), P ∨ (QNR) ∼ (P ∨Q)N (P ∨R).

. Redundancies:

P N P ∼ P , P N ¬P ∼ 0, P N 1 ∼ P , P N 0 ∼ 0,

P ∨ P ∼ P , P ∨ ¬P ∼ 1, P ∨ 0 ∼ P , P ∨ 1 ∼ 1.

. New variables:

P ∼ (P N Q) ∨ (P N ¬Q), P ∼ (P ∨Q) N (P ∨ ¬Q).

The proof of the lemma is an exercise. (The label Definitions in part  of the
lemma is not a literal account of how the connectives were defined in § ..)

The problem of checking for equivalence can be formulated in other ways. If
F ∼ 1, then we write

� F , (.)

and we say that F is a tautology. (The semantic turnstile � was introduced
in § .. To be consistent with the notation in that earlier section, we might
write (.) as B � F ; but the variables in propositional formulas will always range
over B.) If F ∼ 0, we call F a contradiction. We say F is satisfiable if it is
not a contradiction. If both F and ¬F are satisfiable, then F is a contingency.
Hence, in the truth-table for F , if the column for F itself contains:

) only 1s, then F is a tautology;
) only 0s, then F is a contradiction;
) at least one 1, then F is satisfiable;
) at least one 1, and at least one 0, then F is a contingency.

Also, the following statements mean the same thing:
) F ∼ G;
) � F ⇔ G;
) ¬(F ⇔ G) is not satisfiable.

Thus, in effect, a test for equivalence is a test for tautology, which is a test for
satisfiability.

From the Greek το αὐτο, meaning the same. Originally a tautology was a redundant expres-
sion, such as cease and desist.
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Exercises

. Test for the equivalence of the following pairs of formulas by the truth-table
method:

a) P and Q ⇒ P ;

b) P and Q ⇒ (P N Q);

c) P ⇒ (Q ⇒ R) and P ⇒ Q ⇒ (P ⇒ R).

. Give examples of tautologies, contradictions, and contingencies.

. Prove Lemma ...

. Establish the following equivalences:

(a) ¬P ∼ 1 < P ;

(b) P ∨Q ∼ P < Q < P N Q;

(c) P < Q ∼ Q < P ;

(d) (P < Q) < R ∼ P < Q < R;

(e) P N (Q < R) ∼ P N Q < P N R;

(f) P < P ∼ 0.

. Is there a formula F such that

� (F ⇒ (P ⇔ Q)) N (P ∨ (Q ∨ F ))?

(One way to solve this problem is to write out a truth table for (R ⇒
(P ⇔ Q)) N (P ∨ (Q ∨ R)), then try to write a truth-table for F . An
alternative is to use the next two sections to write the original formula in
an equivalent form (G ⇒ F )N (F ⇒ H), then check whether � G ⇒ H.)

.. Substitution and replacement

If F is a formula for which (e0, . . . , en−1) is a truth-assignment, then the constant
formula F (e0, . . . , en−1) is obtained by substitution. In this substitution, it is
not essential that each ei be in the set B, that is, {0, 1}; if (G0, . . . ,Gn−1) is a
list of n formulas, then from F we can obtain the formula

F (G0, . . . ,Gn−1)
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by substitution of Gj for each instance of Pj in F , for each j less than n. Note
that, if we are using the usual infix notation (see § .), but have removed
parentheses as allowed by our conventions, then the substitutions must be done
with parentheses as necessary to ensure that each substituted formula becomes
a sub-formula of the new formula.

Example ... Suppose F is P0 N (P1 ⇒ P0), and G0 is P0 ⇒ P1, and G1 is
P1 ⇒ (P0 ∨ P2). Then F (G0,G1) is

(P0 ⇒ P1) N ((P1 ⇒ (P0 ∨ P2)) ⇒ P0 ⇒ P1).

rather than P0 ⇒ P1 N (P1 ⇒ (P0 ∨ P2) ⇒ P0 ⇒ P1).

Substitution is associative in that, if we substitute some formulas Gi into F ,
and then substitute some formulas Hj into the result, we get the same formula as
if we substitute the Hj first into the Gi, and then the results into F . Likewise,
if you put a book in a box, then put the box on a table, you get the same result
as if you first put the box on the table before putting the book in the box. The
formal statement is the following:

Lemma .. (Associativity). Suppose F is an n-ary formula, and

(G0, . . . ,Gn−1)

is a list of n formulas, each one of them being ℓ-ary. Let H be the formula
F (G0, . . . ,Gn−1). Then H is ℓ-ary. Suppose (K0, . . . ,Kℓ−1) is a list of ℓ
formulas. Then the formula

H(K0, . . . ,Kℓ−1)

is the formula

F (G0(K0, . . . ,Kℓ−1), . . . ,Gn−1(K0, . . . ,Kℓ−1)).

Finally, suppose ~e is a truth-assignment for the Gj. Then ~e is a truth-assign-
ment for H. If also

Ĝj(~e ) = fj

for each j in {0, . . . , n− 1}, then (f0, . . . , fn−1) is a truth-assignment ~f for F ,
and

Ĥ(~e ) = F̂ (~f ).
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Proof. I claim that the proposition is obvious, in the sense that no written
proof will make the truth of the proposition clearer than it already is to the
reader who has understood the proposition.

Is a truth-assignment for F (G0, . . . ,Gn−1) also a truth-assignment for the
Gj? It is, if all of the variables P0, . . . , Pn−1 actually appear in F ; otherwise it
may not be:

Example ... Suppose F is just P0, considered as a binary formula. Let Gi

be Pi when i ∈ {0, 1}. Then F (G0,G1) is P0. Now, (0) is a truth-assignment
for the formula P0; but (0) is not long enough to be a truth-assignment for G1.

Theorem .. (Substitution). If

F (P0, . . . , Pn−1) ∼ G(P0, . . . , Pn−1),

and (H0, . . . ,Hn−1) is a list of n formulas, then

F (H0, . . . ,Hn−1) ∼ G(H0, . . . ,Hn−1).

Proof. Since F ∼ G, we have

F̂ (~e ) = Ĝ(~e ) (.)

for all truth-assignments ~e for F and G. Let F ′ be F (H0, . . . ,Hn−1), and let
G′ be G(H0, . . . ,Hn−1). Suppose ~f is a truth-assignment for the Hj , and let
Ĥj(~f ) = ej . Then

F̂ ′(~f ) = F̂ (~e ) [by Lemma ..]

= Ĝ(~e ) [by (.)]

= Ĝ′(~f ) [by Lemma ..].

Therefore F ′ ∼ G′. This completes the proof.

Corollary ... A tautology remains a tautology when arbitrary formulas are
substituted for the variables.

Example ... Since P ∨ ¬P is a tautology, so is (P ⇒ Q) ∨ ¬(P ⇒ Q).

However, Church [, § , p. ] proves a version of this lemma by induction.
This is also Burris’s proof [, § ., pp. f.], although Burris’s use of the fact given in

Lemma .. is not entirely explicit.
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In ordinary language, the words substitution and replacement are nearly syn-
onyms, although there is a distinction. From the expression abc, we get adc in
a way that can be described in two ways:

. by replacing b with d, or
. by substituting d for b.

When doing logic, we shall make another important distinction. If F is a sub-
formula of G, then we may replace F with another formula F ′. Here, to replace
F is to replace a particular occurrence of F (since possibly F appears more than
once as a sub-formula of G).

Example ... In P ∨¬P , replacing the second occurrence of P with Q yields
P ∨ ¬Q.

Theorem .. (Replacement). Suppose F is a sub-formula of G, and

F ∼ F ′.

Let G′ be the result of replacing F with F ′ in G. Then

G ∼ G′.

Proof. Say G is n-ary. Let H(P0, . . . , Pn) be the result of replacing F with Pn

in G. Then G itself is the formula

H(P0, . . . , Pn−1,F ),

and G′ is H(P0, . . . , Pn−1,F
′). The remainder of the proof is an exercise

involving Lemma ...

Corollary ... A tautology remains a tautology when a sub-formula is re-
placed with an equivalent sub-formula.

Example ... Since � (P ⇒ Q) ∨ ¬(P ⇒ Q) by Example .., and

¬(P ⇒ Q) ∼ P N ¬Q,

we have � (P ⇒ Q) ∨ (P N ¬Q).

Burris [, § ., pp. ff.] gives an elaborate proof using induction; but I think the work is
unnecessary, once one has Lemma ... Church’s proof [, § , p. ] leaves details to
the reader, but also involves induction. Moreover, Church’s proof refers to the principle of
unique readability, which Burris seems not to discuss.
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The Substitution and Replacement Theorems work together in the following
way. From known equivalences, Substitution lets us derive many more. By
Replacement, we can use these equivalences to write given formulas in different
(but equivalent) form.

That, in short, is the method of simplification, to be developed in § .. Our
first example of the procedure will be in § .. Meanwhile, in § ., we shall
describe some formulas such that every formula is equivalent to one of them.
These equivalences can be established by the procedure just described, using the
stock of equivalences presented in Lemma ...

Exercises

. If F (P ) is P ⇒ P ⇒ P , what is F (F (P )), written with the fewest
possible parentheses?

. Prove Corollary ...

. Complete the proof of the Replacement Theorem (..).

. Prove Corollary ...

.. Normal forms

We noted in § . that different arithmetic terms may represent the same poly-
nomial. Among those terms, there may be a preferred term, which might be
called a normal form of the polynomial.

Example ... The normal form of (5+x2−2x)(1+x)− (x−1+2x2)(x3+6)
might be

11− x− 13x2 + 2x3 − x4 − 2x5,

since the latter term is usually easier to work with.

If we have the truth-table of a formula, then we can read off an equivalent
formula in so-called disjunctive normal form. The general procedure is described
immediately, then illustrated by Example ...

Suppose we have the truth-table for a formula F (P0, . . . , Pn−1). Say there are
m rows in which the entry for F itself is 1. Then m 6 2n. If we ignore the other
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rows (namely, those rows in which the entry for F is 0), then what remains has
the form

P0 P1 . . . Pn−1 F

e00 e01 . . . e0n−1 1

e10 e11 . . . e1n−1 1
...

...
...

...

em−1
0 em−1

1 . . . em−1
n−1 1

where each eij is in B. If i < m and j < n, then let us define P i
j to be the formula

{
¬Pj , if eij = 0;

Pj , if eij = 1.

If i < m, let Gi be the conjunction

P i
0 N · · · N P i

n−1.

The formulas Gi can be called the normal disjunctive constituents of F .
Their disjunction,

G0 ∨G1 ∨ · · · ∨Gm−1,

is called a disjunctive normal form for F . (The other disjunctive normal
forms for F are obtained by re-ordering the constituents Gi.) It is Theorem ..
below that every formula is equivalent to its disjunctive normal forms.

Note here that we speak of conjunctions and disjunctions of arbitrarily many
formulas. The disjunction of the formulas H0, . . . ,Hr−1 is

H0 ∨H1 ∨ · · · ∨Hr−1,

which can also be written as ∨

i<r

Hi. (.)

If r = 1, then this formula is just H0. If r = 0, then, by convention, the formula
in (.) is understood to be 0. In particular, the disjunctive normal form of a
contradiction is 0. The conjunction

∧

i<r

Hi

The convention is reasonable: Instead of (.), we could write
∨{H0, . . . ,Hr−1}; informally,

this says that at least one of the formulas Hi is true. If r = 0, then there are no formulas
Hi, and in particular there is no such true formula, so

∨{H0, . . . ,Hr−1} is false.
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is defined analogously, and is 1 if r = 0.

Example ... Here is the full truth-table of a particular disjunction:

¬ (P0 ⇒ P1) ∨ (P2 N ¬ P0)
0 0 1 0 0 0 0 1 0
1 1 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1 0
1 1 0 0 1 1 0 0 1
0 0 1 1 1 1 1 1 0
0 1 1 1 0 1 0 0 1

.

Extract the rows in which the column headed ∨ features 1, and take only one
each of the columns for P0, P1 and P2:

P0 P1 P2

1 0 0
0 0 1
1 0 1
0 1 1

.

The disjunctive normal form for ¬(P0 ⇒ P1) ∨ (P2 N ¬P0) is therefore

(P0 N ¬P1 N ¬P2) ∨ (¬P0 N ¬P1 N P2) ∨ (P0 N ¬P1 N P2) ∨ (¬P0 N P1 N P2).

An n-ary formula is in disjunctive normal form if the formula is precisely
∨

i<m

∧

j<n

P i
j ,

where each sub-formula P i
j is either Pj or ¬Pj , but all of the constituents∧

j<n P
i
j are distinct. Note especially that each constituent must contain the

same variables.

Example ... The formula ¬(P0 ⇒ P1) ∨ (P2 N ¬P0) is equivalent to

(P0 N ¬P1) ∨ (¬P0 N ¬P1 N P2) ∨ (¬P0 N P1 N P2),

but this is not a disjunctive normal form, since one of the constituents does not
contain P2.
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Theorem ... Every formula is equivalent to its disjunctive normal forms.

Proof. Let us use the notation of the definition above, in which F has the DNF∨
i<m Gi. Write H for the latter formula. Then we have to show F ∼ H.

For the truth-assignment (ei0, . . . , e
i
n−1), let us write ~e i. For arbitrary truth-

assignments ~f for the Gi, we have

Ĝi(~f ) =

{
1, if ~f = ~e i;

0, if ~f 6= ~e i.

Then

Ĥ(~f ) =

{
1, if ~f ∈ {~e 0, . . . , ~em−1};
0, if ~f /∈ {~e 0, . . . , ~em−1}.

Hence H and F have the same truth-table.

There is also a conjunctive normal form or CNF; it looks like the dis-
junctive form, except that the N and the ∨ have switched roles. You read it
off from the truth-table again, but you look for 0 (not 1) in the column for the
formula, and P j

i resolves to Pi if there is 0 in the corresponding column and
row.

In particular, if a disjunctive form for an n-ary formula has m constituents,
then a conjunctive form for the same formula will have 2n − m constituents.
Whether it is easier to work with the disjunctive or the conjunctive normal form
depends on how big m is.

Example ... To obtain the conjunctive normal form of the formula in Ex-
ample .., from its truth-table we extract

P0 P1 P2

0 0 0
0 1 0
1 1 0
1 1 1

,

from which we read off

(P0 ∨ P1 ∨ P2) N (P0 ∨ ¬P1 ∨ P2) N (¬P0 ∨ ¬P1 ∨ P2) N (¬P0 ∨ ¬P1 ∨ ¬P2).

Theorem ... Every formula is equivalent to its conjunctive normal form.



 . Propositional logic

If F is a tautology in the variables P0, . . . , Pn−1, then its disjunctive normal
form will be the disjunction of the 2n possible constituents

P j
0 N . . .N P j

n−1.

Suppose in general that we have a method of finding disjunctive normal forms
that does not rely on truth-tables. (In § . we shall describe such a method.)
Applying this method to a formula in n variables, if we arrive at a disjunction of
2n distinct constituents, then the original formula must have been a tautology.

Exercises

. Find a CNF for P0 ⇒ P1 ⇒ · · · ⇒ Pn.

. Find two formulas F with the truth-table P0 P1 P2 F

0 0 0 1
1 0 0 1
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 0
1 1 1 0

.

. Find a DNF for P0 < P1 < · · · < Pn.

. What is the DNF for a tautology in no variables?

. Find the disjunctive and conjunctive normal forms for:

(a) P0 ⇒ P1 ⇒ P2;

(b) (¬P0 ⇒ P1) N (¬P1 ⇒ P0) ⇒ (¬P0 ∨ ¬P1);

(c) P0 < P1 ⇔ P2.

. Prove Theorem ...

. Show that for any formula F (P0, P1, P2, P3), either the disjunctive or the
conjunctive normal form has no more than 8 constituents.
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. Here is an alternative approach to disjunctive normal forms. Supposing
I ⊆ {0, . . . , n− 1} and j < n, let

eIj =

{
1, if j ∈ I,

0, if j /∈ I.

Then let ~e I = (eI0, . . . , e
I
n−1). If F is an n-ary formula, show

F ∼
∨

F̂ (~e I)=1

(∧

j∈I

Pi N

∧

k/∈I
k<n

¬Pk

)
.

. This exercise develops a new kind of normal form.

A. Supposing F has the DNF G0 ∨ · · · ∨Gm−1, show

F ∼ G0 < · · · < Gm−1.

B. For a formula G0 < · · · < Gm−1, use also the notation
∑

i<m Gi. If
I ⊆ {0, . . . , n− 1}, show

∧

j∈I

Pj N

∧

k/∈I
k<n

¬Pk ∼
∑

I⊆J
J⊆{0,...,n−1}

∧

k∈J

Pk.

C. Show that every satisfiable n-ary formula is equivalent to a formula

F0 < F1 < · · · < Fm−1,

where all of the Fi are distinct, and, for each i in {0, 1, . . . ,m − 1},
there is a subset I of {0, 1, . . . , n− 1} such that Fi is the conjunction∧

j∈I Pj .

.. Adequacy

In § ., a set of connectives is called a signature. I said in § . that propositional
logic was the study of propositional formulas. I want now to say more precisely
that a propositional logic is (the study of) the set of propositional formulas
of a particular signature. Then we have been studying the propositional logic of
the signature

{N,∨,¬,⇒,⇔,<, 0, 1}.
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However, we have just seen that every formula with a truth-table is equivalent to
a formula with the smaller signature {N,∨,¬}. (If the formula is a contingency,
then just take a conjunctive or disjunctive normal form. For a contradiction,
take P0 N ¬P0; for a tautology, P0 ∨ ¬P0.)

Another way to say this is that every Boolean polynomial is represented by
a formula in {N,∨,¬}. A technical term for this feature of a signature is ad-
equacy. A signature L is adequate if every formula in every signature is
equivalent to a formula in L. The following is obvious.

Lemma ... If L is an adequate signature, and L′ is a signature that includes
L, then L′ is adequate.

In short, if a signature is adequate, then so is any larger signature.
There are proper subsets of {N,∨,¬} that are adequate. The following was

proved by Emil Post in .

Theorem ... The signature {∨,¬} is adequate.

Proof. Since {N,¬,∨} is adequate, it is enough to show that any formula in
this signature is equivalent to a formula in {N,¬}. Suppose F is in {N,¬,∨}.
Every instance of N in F determines (as in § .) a sub-formula of F that is a
conjunction. Say this conjunction is G N H, where G and H are sub-formulas
of F . We have an equivalence

P N Q ∼ ¬(¬P ∨ ¬Q)

(as can be checked by truth-tables); therefore, by the Substitution Theorem
(..), we have

G N H ∼ ¬(¬G ∨ ¬H).

By the Replacement Theorem (..), in F we can replace GNH with ¬(¬G∨
¬H). In this way, we can remove all instances of N from F , obtaining a formula
in {∨,¬} that is equivalent to F .

Similarly, we have:

Theorem ... The signature {N,¬} is adequate.

Corollary ... The signature {N,<, 1} is adequate.

Post’s method is different from ours; see his article [, pp.  f.].
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Proof. The signature {N,¬} is adequate, but the connective ¬ can be expressed
in terms of < and 1, since

¬P ∼ 1 < P

by § ., Exercise (a); so {N,<, 1} is adequate.

The proofs of the last three numbered propositions are examples of a general
method for proving adequacy of a signature L: Take a signature L′ that is known
to be adequate, and show that every connective in L′ can be expressed with the
connectives of L. Note well the two ingredients of the argument:

. L′ is known to be adequate.
. The elements of L′ can be expressed in terms of L.

Although students sometimes do it anyway, it would be useless to observe in
this context that the elements of L can be expressed in terms of L′. Remember
that this observation is immediate if L ⊆ L′; then surely the adequacy of L′

says nothing about the adequacy of L.
For another example, let f be the Schröder connective; this is defined

so that
P fQ ∼ ¬P N ¬Q.

So f is defined in terms of N and ¬. This fact by itself tells us nothing about
the adequacy of {f}; it has no relevance to the proof of the following:

Theorem ... The signature {f} is adequate.

Proof. It is enough to write ¬P and P NQ using only f. We have ¬P ∼ P fP ,
and also

P N Q ∼ (¬P )f (¬Q)

∼ (P f P )f (QfQ).

Hence all formulas in the adequate signature {N,¬} can be written in terms
of f. Thus {f} is adequate.

Adequate n-ary connectives where n > 2 can also be found (this is an exercise).
How might we show that a certain signature is not adequate? Note that the

signature {N,¬} is adequate, even though it contains no nullary connectives:
the two constant Boolean polynomials are represented in {N,¬} by P N¬P and
¬(P N ¬P ) respectively.

According to Burris [, § .., p. ], Schröder showed in  that the ‘standard
connectives’—say, the ones we have been using so far—can be expressed using this connec-
tive. Post’s later result—our Theorem ..—then establishes the adequacy of {f}.
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Theorem ... The signature {N,<} is not adequate.

Proof. We shall show that no formula in {N,<} represents 1. Now, if

F (P0, P1, P2, . . . , Pn) ∼ 1,

then F (P0, P0, P0, . . . , P0) ∼ 1 by the Substitution Theorem. Hence it is enough
to show that no singulary formula in {N,<} represents 1. In {N,<}, we can
represent 0 by P < P . We also have

0 N 0 ∼ 0, 0 < 0 ∼ 0,

0 N P ∼ 0, 0 < P ∼ P ,

P N 0 ∼ 0, P < 0 ∼ P ,

P N P ∼ P , P < P ∼ 0.

By the Replacement Theorem, we can create no singulary formula in {N,<}
that is not equivalent to 0 or a variable.

Exercises

. Prove Theorem ...

. Prove that {¬,⇒} is adequate.

. Prove that ¬ by itself is not adequate.

. Prove the adequacy of the Sheffer stroke, namely the connective | such
that P | Q ∼ ¬ (P N Q).

. Find an adequate ternary (3-ary) connective. (See § ., Exercise .)

.. Simplification

In proving Theorem .., we used a known equivalence, and the Theorems of
Substitution and Replacement, to ‘simplify’ a formula in the sense of eliminating
instances of disjunction. In the same way, we can simplify any formula to dis-
junctive normal form. The procedure relies on Lemma ... Using this lemma,
given any formula, we can:

) eliminate instances of ⇒, ⇔, and <;
) eliminate multiple negations, and make sure that the only arguments of ¬

are variables;
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) eliminate conjunctions of disjunctions;
) eliminate redundancies; now the formula is a disjunction of conjunctions

of variables and negated variables, so we can finally:
) add variables as necessary to obtain a disjunctive normal form.

Example ... Suppose F is the formula ¬(P ⇒ Q) ∨Q. The reduction of
F to disjunctive normal form can proceed as follows:

F ∼ ¬(¬P ∨Q) ∨Q [def’n of ⇒]

∼ (¬¬P N ¬Q) ∨Q [De Morgan]

∼ (P N ¬Q) ∨Q [double negation]

∼ (P N ¬Q) ∨ (Q N P ) ∨ (Q N ¬P ) [new variable]

∼ (P N ¬Q) ∨ (P N Q) ∨ (¬P N Q) [commutativity]

There may be more than one way to proceed:

Example ... Let F be ¬(¬P ⇒ Q) N (Q ∨ ¬P ). Then

F ∼ ¬(¬¬P ∨Q) N (Q ∨ ¬P ) [def’n of ⇒]

∼ ¬(P ∨Q) N (Q ∨ ¬P ) [double neg.]

∼ (¬P N ¬Q) N (Q ∨ ¬P ) [De Morgan]

∼ ((¬P N ¬Q) N Q) ∨ ((¬P N ¬Q) N ¬P ) [dist.]

∼ (¬P N (¬Q N Q)) ∨ (¬P N (¬P N ¬Q)) [assoc.; comm.]

∼ (¬P N 0) ∨ ((¬P N ¬P ) N ¬Q) [red.; assoc.]

∼ 0 ∨ (¬P N ¬Q) [red.]

∼ ¬P N ¬Q [red.]

Alternatively,

F ∼ ¬(P ∨Q) N (Q ∨ ¬P ) [def’n of ⇒; double neg.]

∼ (¬P N ¬Q) N (Q ∨ ¬P ) [De Morgan]

∼ ¬P N (¬Q N (Q ∨ ¬P )) [assoc.]

∼ ¬P N ((¬Q N Q) ∨ (¬Q N ¬P )) [dist.]

∼ ¬P N (0 ∨ (¬Q N ¬P )) [red.]

∼ ¬P N (¬Q N ¬P ) [red.]

∼ (¬P N ¬P ) N ¬Q [comm; assoc]

∼ ¬P N ¬Q [red.]
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Lemma .. (Absorption Laws).

P N (P ∨Q) ∼ P , P ∨ (P N Q) ∼ P .

If two formulas F and G are equivalent, then we can use simplification to
show this as follows.

. Simplify F to a disjunctive normal form F ′.
. Simplify G to a disjunctive normal form G′.
. Note that F ′ ∼ G′. (They should be the same formula, except possibly in

the order of the constituents.)
However, it may be easier to simplify directly from one formula to the other, or
to use conjunctive normal forms.

Example ... The formulas P0 ⇒ P1 ⇒ P2 and P1 ⇒ P0 ⇒ P2 are equiva-
lent, because

P0 ⇒ P1 ⇒ P2 ∼ ¬P0 ∨ (P1 ⇒ P2) [def’n of ⇒]

∼ ¬P0 ∨ ¬P1 ∨ P2 [def’n of ⇒]

∼ ¬P1 ∨ ¬P0 ∨ P2 [comm.]

∼ ¬P1 ∨ (P0 ⇒ P2) [def’n of ⇒]

∼ P1 ⇒ P0 ⇒ P2. [def’n of ⇒]

(Associativity was used silently.) The reduction of each formula to disjunctive
normal form would be tedious, since that normal form is

(¬P0 N ¬P1 N ¬P2) ∨ (P0 N ¬P1 N ¬P2) ∨ (¬P0 N P1 N ¬P2) ∨
∨ (¬P0 N ¬P1 N P2) ∨ (P0 N ¬P1 N P2) ∨ (¬P0 N P1 N P2) ∨ (P0 N P1 N P2);

but the conjunctive normal form is just the formula ¬P0 ∨ ¬P1 ∨ P2, found in
the original simplification.

Exercises

. Given a formula in normal form, how would you write down its truth-table?

. Prove the Absorption Laws (..) using simplification.

. Use simplification to prove the following equivalences:

a) ¬(P N Q) ∨R ∼ P N Q ⇒ R;
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b) (P ⇒ Q) N (R ⇒ Q) N ¬Q ⇒ ¬(P ∨R) ∼ 1;

c) P ⇒ (Q ⇒ R) ∼ P ⇒ Q ⇒ (P ⇒ R);

d) (P ∨R) N (Q ∨ ¬R) ∼ (P N ¬R) ∨ (Q N R);

e) (P0 ∨ P1) N (Q0 ∨Q1) ∼
∨

i<2

∨
j<2(Pi N Qj).

. For (¬P0 ⇒ P1)N (¬P1 ⇒ P0) ⇒ (¬P0∨¬P1), find the disjunctive normal
form using simplification.

. Use simplification to verify the equivalences listed in § ., Exercise .

. Use simplification to establish P ⇔ Q ∼ P < ¬Q.

.. Logical entailment

Simplification is a way to prove that two formulas are logically equivalent. There
are other relations between formulas that we may want to prove. If F is an n-ary
formula such that F̂ (~e ) for all truth-assignments ~e , then as in § . we write

� F .

Suppose (F0, . . . ,Fm) is a list of m+1 formulas, each of them n-ary, such that,
for all n-ary truth-assignments ~e , if F̂i(~e ) = 1 for each i in {0, . . . ,m− 1}, then
F̂m(~e ) = 1. Then we say that Fm is a logical consequence of {F0, . . . ,Fm−1},
or {F0, . . . ,Fm−1} logically entails Fm, and we write

F0, . . . ,Fm−1 � Fm;

if the set {F0, . . . ,Fm−1} is denoted by Σ, then we can also write

Σ � Fm.

Logical entailment can in principle be established by truth-tables. However,
this method is practical only when the numbers of variables and formulas are
low.

Examples ... . P � P ∨Q because the table

P ∨ Q

0 0 0
1 1 0
0 1 1
1 1 1
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shows P ∨Q is true whenever P is true. (It is irrelevant that P ∨Q can
be true when P is false.)

. Similarly P ,Q � P N Q.

. P ∨Q, Q ⇒ R � P ∨R by consideration of the starred rows in the table:

P Q R P ∨Q Q ⇒ R P ∨R

0 0 0 0 1 0
1 0 0 1 1 1 ∗
0 1 0 1 0 0
1 1 0 1 0 1
0 0 1 0 1 1
1 0 1 1 1 1 ∗
0 1 1 1 1 1 ∗
1 1 1 1 1 1 ∗

There are alternative methods for establishing logical entailment. The follow-
ing should be compared with Lemma ...

Lemma ... If Σ � F , and Σ ⊆ Σ′, then Σ′ � F .

Proof. If Σ � F , and Σ ⊆ Σ′, and ~e is a truth-assignment under which every
formula in Σ′ is true, then every formula in Σ is true under ~e , so F̂ (~e ) = 1.
This means Σ′ � F .

Corresponding to Theorem .., we have

Theorem .. (Substitution). If (F0, . . . ,Fm) is a list of n-ary formulas such
that

F0, . . . ,Fm−1 � Fm,

and (G0, . . . ,Gn−1) is a list of n formulas, then

H0, . . . ,Hm−1 �Hm,

where Hi is Fi(G0, . . . ,Gn−1) for each i in {0, . . . ,m}.

Proof. Say ~e is a truth-assignment for the Gj such that Ĥi(~e ) = 1 when i < m.
Let fj = Ĝi(~e ) when j < n. Then F̂i(~f ) = 1 when i < m, by the associativity
of substitution (Lemma ..). Hence also Ĥm(~e ) = F̂m(~f ) = 1 (since Fm is a
logical consequence of {F0, . . . ,Fm−1}). Therefore H0, . . . ,Hm−1 �Hm.



.. Logical entailment 

The following is immediate from the definitions.

Theorem ... If F ∼ G, then F � G.

Theorem .. (Transitivity). If Σ and Π are finite sets of formulas, and
Σ � F for every F in Π, and Π � G, then Σ � G.

Proof. Under the given assumptions, suppose also that every formula in Σ is
true under ~e . Then every formula in Π is true under ~e , so Ĝ(~e ) = 1. Thus
Σ � G.

Example ... Since P ∨ Q, Q ⇒ R � P ∨ R as in the last example, and
Q ⇒ R ∼ ¬Q ∨R, we have

P ∨Q, ¬Q ∨R � P ∨R

by the last two theorems, hence F ∨G,¬G ∨H � F ∨H by substitution.

A number of rules for establishing logical entailments correspond to some
standard forms of argument in mathematical proofs.

Lemma ...
. Contradiction: If Σ ∪ {¬F } � G and Σ ∪ {¬F } � ¬G, then

Σ � F .

. Contraposition: If Σ ∪ {¬F } � ¬G, then

Σ ∪ {G} � F .

. Deduction: If Σ ∪ {F } � G, then

Σ � F ⇒ G.

Lemma ...
. Detachment:

F , F ⇒ G � G, F ⇒ G, ¬G � ¬F .

. Simplification:

P N Q � Q.

These rules also have the Latin names Modus Ponens (method of affirming) and Modus

Tollens (method of denying).
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. Cases:

P ⇒ Q0 ∨ · · · ∨Qn, Q0 ⇒ R, . . . , Qm ⇒ R � P ⇒ R.

. Addition:

P � P ∨Q, P � Q ∨ P .

. Hypothetical Syllogism:

P ⇒ Q, Q ⇒ R � P ⇒ R. (.)

. Disjunctive Syllogism:

P ∨Q, ¬P � Q, P ∨Q, ¬Q � P .

. Constructive Dilemma:

P0 ⇒ Q0, P1 ⇒ Q1, P0 ∨ P1 � Q0 ∨Q1.

Proof. To prove Detachment, is enough to show P0, P0 ⇒ P1 � P1, by the
preceding Substitution Theorem. The truth-table

P0 P0 ⇒ P1 P1

0 0 1 0 0
1 1 0 0 0
0 0 1 1 1
1 1 1 1 1

shows that (1, 1) is the only truth-assignment where both P0 and P0 ⇒ P1 are
true. Under this assignment, P1 is true.

Exercises

. Show that F0, . . . , Fm−1 � G if and only if
∧

k<m Fk � G.

. Show that P ⇒ Q, R ⇒ Q, ¬Q � ¬(P ∨R).

. Prove Lemma ...

. Prove Lemma ...

. Prove the following:

(a) P ⇔ Q, Q ⇔ R � P ⇔ R;

(b) P < Q, Q < R � P ⇔ R.
A syllogism is a classical form of argument; Aristotle’s definition is quoted in Appendix A.
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.. Formal proofs

For a given propositional logic, a proof-system consists of:
) certain distinguished formulas, called axioms;
) rules of inference, which are clearly described ways of obtaining new

formulas from finitely many given formulas.
One can think of an axiom F as the rule of inference that allows F to be

obtained from no given formulas.
Suppose N is a proof-system, and Σ is a set {F0, . . . ,Fm−1} of formulas. In

N , a deduction or formal proof of a formula Fm from Σ is a finite sequence

G0, . . . ,Gℓ,

where Gℓ is Fm and, for each k in {0, . . . , ℓ}, the formula Gk is:
) an axiom of N , or
) one of the formulas Fi, where i < m, or
) a formula obtainable from (some of) the formulas in {G0, . . . ,Gk−1} by

one of the rules of inference of N .
If there is such a deduction, then we may write one of

F0, . . . ,Fm−1 ⊢N Fm, Σ ⊢N Fm,

and we say that Fm is derivable or formally provable in N from Σ, or that Σ
formally entails Fm in N . In this case, Σ is a set of hypotheses from which
Fm can be derived. In case m = 0, we write

⊢N F0

and say that F0 is a validity of N or a theorem of N . Here ⊢ is the syntactic
turnstile. We may drop the subscript N on ⊢ if the identity of N is clear.

Many proof-systems are possible. Some are more useful than others. As a
minimum requirement, we should like a proof-system N to be

) sound:

Σ ⊢N G =⇒ Σ � G;

) complete:

Σ � G =⇒ Σ ⊢N G.

The remainder of this section establishes two such systems.
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The system of detachment

Let D be the proof-system in which
) the axioms are just the tautologies;
) the rules of inference are two:

a) if the formula F is given, and F ∼ G, then G may be obtained;
b) Detachment: if the formulas F and F ⇒ G are given, then the

formula G may be obtained.

Example ... F N G ⊢D G, because the following is a deduction in D of G
from F N G:

() F N G [hyp.]
() 1 [taut.]
() ¬F ∨ 1 [red.]
() ¬F ∨ ¬G ∨G [red.]
() ¬(F N G) ∨G [De Morgan]
() (F N G) ⇒ G [def’n of ⇒]
() G [Detachment, lines  & ]

Strictly, the deduction itself is just the list

F N G, 1, ¬F ∨ 1, ¬F ∨ ¬G ∨G, ¬(F N G) ∨G, (F N G) ⇒ G, G

of formulas. In fact, there is a shorter deduction of F from F N G, namely

F N G, F N G ⇒ G, G.

However, recognizing this as a deduction requires, in part, recognizing that F N

G ⇒ G is a tautology.

Theorem ... The proof-system D is sound and complete.

Proof. We shall prove the following circle of implications:

(F0, . . . ,Fm−1 � Fm) +3 ( � F0 ⇒ F1 ⇒ . . .⇒ Fm)

��
(F0, . . . ,Fm−1 ⊢D Fm)

KS

( ⊢D F0 ⇒ F1 ⇒ . . .⇒ Fm)ks

Or Modus Ponens.
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Suppose F0, . . . ,Fm−1 � Fm. Then for every truth-assignment ~e for the Fi,
either F̂m(~e ) = 1, or F̂i(~e ) = 0 for some i in {0, . . . ,m − 1}. If F̂i(~e ) = 0 and
i < m, then Fi ⇒ Fi+1 ⇒ . . .⇒ Fm is true at ~e , and hence so is F0 ⇒ . . .⇒ Fm.
For the same reason, if F̂m(~e ) = 1, then F0 ⇒ . . . ⇒ Fm is true at ~e . Hence
� F0 ⇒ . . .⇒ Fm.

Suppose � F0 ⇒ . . . ⇒ Fm. Then, since it is a tautology, the formula F0 ⇒
. . .⇒ Fm is its own proof of itself. Hence ⊢D F0 ⇒ . . .⇒ Fm.

Suppose ⊢D F0 ⇒ . . . ⇒ Fm. Let G0, . . . ,Gℓ be a deduction of F0 ⇒ . . . ⇒
Fm. Then we have the following deduction of Fm from {F0, . . . ,Fm−1}.

(0) G0

. . . . . .
(ℓ− 1) Gℓ−1

(ℓ) F0 ⇒ . . .⇒ Fm

(ℓ+ 1) F0 [hyp.]
(ℓ+ 2) F1 ⇒ . . .⇒ Fm [Detachment]
(ℓ+ 3) F1 [hyp.]
(ℓ+ 4) F2 ⇒ . . .⇒ Fm [Detachment]

. . . . . .
(ℓ+ 2m− 2) Fm−1 ⇒ Fm [Detachment]
(ℓ+ 2m− 1) Fm−1 [hyp.]

(ℓ+ 2m) Fm [Detachment]

Thus F0, . . . ,Fm−1 ⊢D Fm.
Suppose finally F0, . . . ,Fm−1 ⊢D Fm. We use the method of infinite descent.

Let G0, . . . ,Gℓ−1,Fm be a deduction of Fm from {F0, . . . ,Fm−1}. Let ~e be a
truth-assignment such that F̂i(~e ) = 1 whenever i < m. Suppose if possible that
F̂m(~e ) = 0. Then Fm is not in {F0, . . . ,Fm−1}, nor is Fm a tautology. Hence,
by the definition of a deduction, either Fm ∼ Gi for some i in {0, . . . , ℓ − 1},
or there are i and j in {0, . . . , ℓ − 1} such that Gj is Gi ⇒ Fm. In the first
case, Gi is false at ~e ; in the second case, either Gi or Gj is false at ~e . In either
case, Ĝk(~e ) = 0 for some k in {0, . . . , ℓ−1}. But G0, . . . ,Gk is still a deduction
from {F0, . . . ,Fm−1}, strictly shorter then the original one, but with the same
property (namely that its last formula is false at ~e ). We cannot take shorter
deductions indefinitely. Hence F̂m(~e ) = 1. Therefore F0, . . . ,Fm−1 � Fm.

The system D can be simplified, at the cost of requiring longer deductions:

Corollary ... That proof-system is sound and complete which has only 1 as
an axiom, and which has, as rules of inference,
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() Deduction,
() From F , obtain G, if F ∼ G or G ∼ F directly by Lemma .. and

Substitution (..).

Łukasiewicz’s proof system

Here is developed the proof-system L (named for its inventor Łukasiewicz). It
is of interest for the simplicity of its definition. It involves only formulas in
the signature {⇒,¬}. (We know from § ., Exercise  that this signature is
adequate.) The only rule of inference of L is Detachment (as in the definition
of D above). The axioms of L are of three kinds:

) Affirmation of the Consequent:

⊢L F ⇒ G ⇒ F ;

) Self-Distributivity of Implication:

⊢L (F ⇒ G ⇒ H) ⇒ (F ⇒ G) ⇒ F ⇒ H;

) Contraposition:
⊢L (¬F ⇒ ¬G) ⇒ G ⇒ F .

Theorem ... System L is sound.

To prove completeness, we shall need the following.

Lemma ... ⊢L F ⇒ F .

Proof. The formal proof is

F ⇒ F ⇒ F ,

F ⇒ (F ⇒ F ) ⇒ F ,

(F ⇒ (F ⇒ F ) ⇒ F ) ⇒ (F ⇒ F ⇒ F ) ⇒ F ⇒ F ,

(F ⇒ F ⇒ F ) ⇒ F ⇒ F ,

F ⇒ F ,

where the first three entries are axioms (), (), and () respectively, and the
last two follow by Detachment.

Frege had an earlier proof-system in this signature that used three additional kinds of
axioms.
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Lemma ... If F0, . . . ,Fn−1 ⊢L G ⇒ H, then F0, . . . ,Fn−1,G ⊢L H.

The converse of Lemma .. is the following; the proof is by cases (and the
method of infinite descent).

Theorem .. (Deduction). If F0, . . . ,Fn−1,G ⊢L H, then

F0, . . . ,Fn−1 ⊢L G ⇒ H.

Proof. There are three possibilities for H:
If H is an axiom of L, or is one of the formulas Fi, then F0, . . . ,Fn−1 ⊢L H;

but also ⊢L H ⇒ G ⇒ H; hence F0, . . . ,Fn−1 ⊢L G ⇒ H by Detachment.
If H is G, then ⊢L G ⇒ H by Lemma ...
Finally, suppose K0, . . . ,Km is the formal proof in L of H from F0, . . . ,Fn−1

and G, and suppose the last step in the proof is by Detachment. (If it is not,
then we have already treated this possibility.) Then Ki is F , and Kj is F ⇒ H,
for some formula F , and for some i and j that are less than m. If G ⇒ Ki

and G ⇒ Kj can be deduced in L from {F0, . . . ,Fn−1}, then, by Detachment
and the Self-Distributivity Axiom, so can G ⇒ H. Also, both Ki and Kj have
shorter deductions than H in L. Hence, if G ⇒ H cannot be deduced, then
neither can G ⇒ K for some K with a shorter deduction than H, which would
be absurd.

Lemma ... The following are validities of L:

) ¬G ⇒ G ⇒ F ;

) ¬¬F ⇒ F ;

) F ⇒ ¬¬F ;

) (F ⇒ G) ⇒ ¬G ⇒ ¬F ;

) F ⇒ ¬G ⇒ ¬(F ⇒ G).

) (F ⇒ G) ⇒ (¬F ⇒ G) ⇒ G.

Proof. . The following is a formal proof in L from ¬G:

¬G, ¬G ⇒ (¬F ⇒ ¬G), ¬F ⇒ ¬G, ¬F ⇒ ¬G ⇒ (G ⇒ F ), G ⇒ F .

So ¬G ⊢L G ⇒ F . By the Deduction Theorem, the claim follows.
. By part () (and Lemma ..) we have ¬¬F ⊢L ¬F ⇒ ¬¬¬F . Use

contraposition to get ¬¬F ⊢L F , then use the Deduction Theorem to get the
claim.
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We know how to evaluate a formula at a given truth-assignment. The following
shows that we can prove in L the correctness of our computation.

Theorem ... Let F be an n-ary formula in the signature {⇒,¬}. Let ~e be
a truth-assignment for F . Define

P ′
i =

{
Pi, if ei = 1;

¬Pi, if ei = 0;
and F ′ =

{
F , if F̂ (~e ) = 1;

¬F , if F̂ (~e ) = 0.

Then P ′
0, . . . , P

′
n−1 ⊢L F ′.

Proof. If F is Pi, then P ′
i is F ′, so P ′

0, . . . , P
′
n−1 ⊢L F ′.

Now we can suppose F is not just a variable, and use infinite descent. So,
assume F ′ is not deducible in L from P ′

0, . . . , P
′
n−1. There are two cases:

Say F is ¬G for some formula G. Then

F ′ =

{
G′, if F̂ (~e ) = 1;

¬¬G′, if F̂ (~e ) = 0.

Hence G′ is also not deducible; but G is shorter then F .
Say F is G ⇒ H for some formulas G and H. Then

P ′
0, . . . , P

′
n−1 ⊢L G′ P ′

0, . . . , P
′
n−1 ⊢L H ′.

There are three sub-cases to consider, according as
) G′ is ¬G, or
) H ′ is H, or
) G′ is G and H ′ is ¬H.

Corollary ... The proof-system L is complete.

Proof. Suppose F0, . . . ,Fm−1 � Fm, the formulas being n-ary. Let G be the
tautology F0 ⇒ . . .⇒ Fm. Then for all n-ary truth-assignments ~e , we have

P ′
0 . . . , P

′
n−1 ⊢L G.

If n = 0, we are done. If n > 0, then by the Deduction Theorem we have

P ′
0 . . . , P

′
n−2 ⊢L Pn−1 ⇒ G, P ′

0 . . . , P
′
n−2 ⊢L ¬Pn−1 ⇒ G,

so P ′
0 . . . , P

′
n−2 ⊢L G by Lemma .. (). Continuing, we find ⊢L G, so

F0, . . . ,Fm−1 ⊢L Fm.



.. Compactness 

Exercises

. Prove Corollary ...

. Prove Theorem ...

. Prove Lemma ...

. Prove parts (), (), () and () of Lemma ...

. Supply the missing details in the proof of Theorem ...

.. Compactness

So far, we have dealt with only finitely many formulas at once. But suppose A
is a possibly infinite set of formulas. If N is a proof-system, then the expression

A ⊢N F

has the same meaning as before. So does the expression

A � F , (.)

except that there may be no n such that each formula in A ∪ {F } is n-ary.
A truth-assignment, simply, is a function from N to B. Then A is satisfied

by a truth-assignment k 7→ ek if Ĝ(e0, . . . , en−1) = 1 for every n-ary formula G

in A, for every n in N; and F is true in this assignment if F̂ (e0, . . . , en−1) = 1
(assuming F is n-ary). Then (.) holds, by definition, if F is true in every
truth-assignment that satisfies A. Hence the following are equivalent:

) A does not logically entail F ;
) A∪{¬F } is satisfiable (that is, satisfied by some truth-assignment; note

that this definition is compatible with the one in §.).

Theorem .. (Compactness). If every finite subset of a set of formulas is
satisfiable, then the whole set is satisfiable.

Proof. Suppose A is an infinite set of formulas such that every finite subset of
A is satisfiable. For any n in N, let An consist of the n-ary formulas in A. Then
An is finite, so it is satisfiable by assumption. In particular, An is satisfied by
a certain truth-assignment

(en0 , e
n
1 , . . . , e

n
n−1).
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For each n, let such an assignment be chosen. So for each pair (i, n) of natural
numbers, if i < n, then we have chosen an a certain element eni of B.

In the following way, we can recursively define an infinite truth-assignment
(e0, e1, e2, . . . ) satisfying A. Suppose (e0, . . . , ek−1) has been chosen so that
there are infinitely many values of n such that k 6 n and

(en0 , . . . , e
n
k−1) = (e0, . . . , ek−1).

(This is a trivial assumption if k = 0.) Then choose ek so that

(en0 , . . . , e
n
k ) = (e0, . . . , ek)

for infinitely many values of n. (Why does this ek exist?)
We now have that (e0, . . . , en−1) satisfies An for each n in N. Therefore the

whole assignment (e0, e1, . . . ) satisfies A.

Corollary ... If N is a sound, complete proof-system, then

A � F ⇐⇒ A ⊢N F

for all formulas F and sets A of formulas.

Proof. If A ⊢N F , then G0, . . . ,Gm−1 ⊢N F for some formulas Gi in A, since
proofs are finite. Hence G0, . . . ,Gm−1 � F , so A � F .

If F is not derivable in N from A, then it is not derivable from any finite
subset of A. This means F is not a consequence of any finite subset of A, which
means that every finite subset of

A ∪ {¬F }

is satisfiable. Hence the whole set is satisfiable by the Compactness Theorem,
so F is not a consequence of A.

Exercise

Identify the parts of the proof of Theorem .. that do not seem fully justified,
and justify them if you can.
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.. Boolean operations on sets

As observed in § ., propositional logic is a model of the use of conjunctions
in ordinary language. A basic application of propositional logic is to sets. In
fact, the sets that will be discussed here need only be classes; I call them sets,
because this is the usual terminology.

As in §§ . and ., suppose U is some large set—a universal set, which
will include all of the other sets that we shall work with. Again, by the Axiom
of Separation, .., if P is a predicate and U is a set, then we can form a set

{x ∈ U : Px}. (.)

We have not yet said much about what P might be. Now we do.
If A ⊆ U and c ∈ U , then we can form the proposition

c ∈ A,

which is either true or false. We can analyze this proposition into two parts:

c ∈ A
subject predicate

With the predicate ∈ A and an individual variable, x, we can make the
formula

x ∈ A.

This is not a propositional formula, since ∈ is not a symbol of propositional
logic. Let us call the formula a set-theoretic formula or an ∈-formula. In
particular, it is an ∈-formula with A as a parameter. We may replace this
parameter with other sets, but for now, our only individual variable will be x.
We shall allow more variables in § ..

Meanwhile, we can create new ∈-formulas in x from formulas x ∈ A, just as
we create new propositional formulas from the propositional variables Pk. So 0


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and 1, along with x ∈ A, are ∈-formulas in x, and if ϕ(x) and ψ(x) are arbitrary
∈-formulas in x, then so are ¬ϕ(x) and (ϕ(x) ∗ ψ(x)), where ∗ is one of N, ∨,
<, ⇒, and ⇔. Then each ∈-formula in x can be written as

F (x ∈ A0, . . . , x ∈ An−1)

for some n in N, where F is an n-ary propositional formula, and each parameter
Ak is a set. We shall always choose these parameters from among the subsets
of U .

Suppose ϕ(x) is an ∈-formula, and c ∈ U . Then we can obtain the ∈-sentence
ϕ(c), which is the result of replacing each x in ϕ(x) with c. This sentence
is true or false. Indeed, the sentence c ∈ A is true if and only if c is in A;
and ¬ϕ(c) is true if and only if ϕ(c) is false; and (ϕ(c) N ψ(d)) is true if and
only if both ϕ(c) and ψ(c) are true; and so forth. Alternatively, if ϕ(x) is
F (x ∈ A0, . . . , x ∈ An−1), then ϕ(c) is true if and only if

F̂ (~e ) = 1,

where ~e is defined by

ek =

{
1, if c ∈ Ak,

0, if c /∈ Ak.
(.)

Now each ∈-formula ϕ(x) can be understood as a predicate applied to x. By
the Axiom of Separation (..) then, the formula defines a subset of U , namely

{x ∈ U : ϕ(x)},

comprising those c in U such that ϕ(c) is true.
In particular, the set {x ∈ U : x ∈ A} is just A itself. We usually write the

negation ¬ x ∈ A as
x /∈ A.

Then by § ., this formula defines the complement of A in U :

{x ∈ U : x /∈ A} = Ac.

Suppose also B ⊆ U . Using both of the formulas x ∈ A and x ∈ B, we obtain
the following standard combinations:

{x ∈ U : x ∈ AN x ∈ B} = A ∩B,
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A

A��
�� A ∩B

A B��
��
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�� A ∪B

A B��
��

��
��

Ac

A��
�� A △ B

A B��
��

��
�� ArB

A B��
��

��
��

Figure .. Venn diagrams of combinations of sets

the intersection of A and B, which contains everything that is in both A and B;

{x ∈ U : x ∈ A ∨ x ∈ B} = A ∪B,

the union of A and B, which contains everything that is in (at least) one of A
and B (the union was defined first in § .);

{x ∈ U : x ∈ A< x ∈ B} = A △ B,

the symmetric difference of A and B, which contains everything that is in
exactly one of A and B;

{x ∈ U : x ∈ AN x /∈ B} = ArB,

the difference of A and B, which contains everything that is in A, but not
in B.

Pictures of these combinations are in Figure .. The symbols c, ∩, ∪, △,
and r, along with ∅, stand for Boolean operations. If ϕ(x) is F (x ∈
A0, . . . , x ∈ An−1), then {x ∈ U : ϕ(x)} is a Boolean combination of the
sets Ak. A set is a Boolean combination of itself; beyond this, there are two
trivial Boolean combinations:

{x ∈ U : 0} = ∅, {x ∈ U : 1} = U .
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We now have a sort of correspondence between propositional logic and set-
theory:

N ! ∩
∨ ! ∪
< ! △

¬ ! c

0 ! ∅
1 ! U

The set U depends on the situation.
We can determine membership in Boolean combinations of sets by means of

truth-tables:

Example ... From the truth-table

P ⇒ Q

0 1 0
1 0 0
0 1 1
1 1 1

,

by considering the lines where the formula P ⇒ Q takes the value 1, we can
conclude that the set {x ∈ U : x ∈ A ⇒ x ∈ B} consists of those c in U such
that one of the following holds:

) c /∈ A & c /∈ B, or
) c /∈ A & c ∈ B, or
) c ∈ A & c ∈ B.

Alternatively, from the line of the truth-table where P ⇒ Q takes the value 0,
we conclude that the set {x ∈ U : x ∈ A⇒ x ∈ B} consists of those c such that
either c /∈ A or c ∈ B.

The foregoing example should recall the notions of disjunctive and conjunctive
normal forms in § ..

The Axiom of Extension, .., is that sets are determined by their members.
That is, two subsets A and B of U are equal if

c ∈ A ⇐⇒ c ∈ B (.)

for all c in U . Strictly, we need this to conclude A = {x ∈ U : x ∈ A}. The
converse of the Extension Axiom is obviously true: If two sets are equal, then
in particular, they have the same members.
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Theorem ... Two subsets A and B of U are equal if and only if

{x ∈ U : x ∈ A⇔ x ∈ B} = U . (.)

Proof. If (.) holds, then, for all c in U , the sentence c ∈ A is true if and only
if the sentence c ∈ B is true—that is, (.) holds, so A = B by the Axiom of
Extension. Conversely, if A = B, then the two members of (.) have the same
elements, so the equation is true by the Axiom.

Another consequence of the Axiom of Extension is that equivalent proposi-
tional formulas give rise to equal sets in the following sense.

Theorem ... Suppose F0 and F1 are n-ary propositional formulas such that

F0 ∼ F1.

When e ∈ B, let ϕe(x) be the ∈-formula Fe(x ∈ A0, . . . , x ∈ An−1). Then

{x ∈ U : ϕ0(x)} = {x ∈ U : ϕ1(x)}. (.)

Proof. If c ∈ U , let the n-ary truth-assignment ~e be as defined by (.) above.
Then

c ∈ {x ∈ U : ϕ0(x)} ⇐⇒ F̂0(~e ) = 1 ⇐⇒ F̂1(~e ) = 1 ⇐⇒ c ∈ {x ∈ U : ϕ1(x)},

so (.) holds.

Hence for example we have

Ac = U rA.

Equation (.) is an identity, more precisely a set-theoretic identity, because
it holds for all choices of A0, . . . , An−1.

Example (.. continued). Because P ⇒ Q ∼ ¬P ∨Q, we have

{x ∈ U : x ∈ A⇒ x ∈ B} = {x ∈ U : x /∈ A ∨ x ∈ B}.

Again, we have {x ∈ U : x ∈ A N x ∈ B} = A ∩ B by definition; therefore, it
seems obvious that

{x ∈ U : ϕ(x) N ψ(x)} = {x ∈ U : ϕ(x)} ∩ {x ∈ U : ψ(x)} (.)
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for all ∈-formulas ϕ(x) and ψ(x). However, (.) is not immediate, since the for-
mulas x ∈ A and x ∈ B are only special cases of ∈-formulas. We can prove (.)
by letting {x ∈ U : ϕ(x)} = A and {x ∈ U : ψ(x)} = B. Then

c ∈ {x ∈ U : ϕ(x) N ψ(x)} ⇐⇒ ϕ(c) N ψ(c) is true

⇐⇒ ϕ(c) is true and ψ(c) is true

⇐⇒ c ∈ A is true and c ∈ B is true

⇐⇒ c ∈ AN c ∈ B is true

⇐⇒ c ∈ {x ∈ U : x ∈ AN x ∈ B}
⇐⇒ c ∈ A ∩B
⇐⇒ c ∈ {x ∈ U : ϕ(x)} ∩ {x ∈ U : ψ(x)},

so (.) follows.
We can also obtain (.) from

{x ∈ U : x ∈ AN x ∈ B} = {x ∈ U : x ∈ A} ∩ {x ∈ U : x ∈ B}

by replacing the formula x ∈ A with ϕ(x), and x ∈ B with ψ(x). That such
an action preserves equality is a consequence of the following, which should be
compared with Theorem ...

Theorem .. (Replacement). Suppose F is a sub-formula of the n-ary for-
mula G, so that G itself is H(P0, . . . , Pn−1,F ) for some formula H. Let

B = {x ∈ U : F (x ∈ A0, . . . , x ∈ An−1)}.

Then the set {x ∈ U : G(x ∈ A0, . . . , x ∈ An−1)} is equal to

{x ∈ U : H(x ∈ A0, . . . , x ∈ An−1, x ∈ B)}.

Theorem ... For all ∈-formulas ϕ(x) and ψ(x),

{x ∈ U : ϕ(x) N ψ(x)} = {x ∈ U : ϕ(x)} ∩ {x ∈ U : ψ(x)}, (.)

{x ∈ U : ϕ(x) ∨ ψ(x)} = {x ∈ U : ϕ(x)} ∪ {x ∈ U : ψ(x)},
{x ∈ U : ϕ(x) < ψ(x)} = {x ∈ U : ϕ(x)} △ {x ∈ U : ψ(x)},

{x ∈ U : ¬ϕ(x)} = {x ∈ U : ϕ(x)}c.

Proof. We have already proved (.); but to obtain it from Theorem .., we
can argue as follows. Let A = {x ∈ U : ϕ(x)} and B = {x ∈ U : ψ(x)}, and let
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H be the binary formula P0 N P1. Then

{x ∈ U : ϕ(x) N ψ(x)}
= {x ∈ U : H(ϕ(x), ψ(x))} [by def’n of H]

= {x ∈ U : H(x ∈ A, x ∈ B)} [by Replacement]

= {x ∈ U : x ∈ AN x ∈ B} [by def’n of H]

= A ∩B [by def’n of ∩]

= {x ∈ U : ϕ(x)} ∩ {x ∈ U : ψ(x)} [by def’n of A and B].

The other identities are established likewise.

Example (.. continued again). We now have

{x ∈ U : x ∈ A⇒ x ∈ B} = {x ∈ U : x /∈ A ∨ x ∈ B}
= {x ∈ U : x /∈ A} ∪ {x ∈ U : x ∈ B}
= Ac ∪B,

and similarly, {x ∈ U : x ∈ A⇒ x ∈ B} = (Ac∩Bc)∪ (Ac∩B)∪ (A∩B). Hence
the equation

Ac ∪B = (Ac ∩Bc) ∪ (Ac ∩B) ∪ (A ∩B)

is an identity.

Example ... From the truth-table

P N (Q ∨ R)
0 0 0 0 0
1 0 0 0 0
0 0 1 1 0
1 1 1 1 0
0 0 0 1 1
1 1 0 1 1
0 0 1 1 1
1 1 1 1 1

we can infer that the set {x ∈ U : x ∈ AN (x ∈ B ∨ x ∈ C)} is precisely

(A ∩B ∩ Cc) ∪ (A ∩Bc ∩ C) ∪ (A ∩B ∩ C);

alternatively, the set is A ∩ {x ∈ U : x ∈ B ∨ x ∈ C}, which is A ∩ (B ∪ C).
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As a consequence of Lemmas .. and .., we have:

Lemma ... The following are set-theoretic identities.
. Definition:

A △ B = (A ∪B)r (A ∩B) (.)

= (ArB) ∪ (B rA), (.)

ArB = A ∩Bc; (.)

. Double complementation:

Acc = A; (.)

. De Morgan’s Laws:

(A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc;
(.)

. Commutativity:

A ∩B = B ∩A, A ∪B = B ∪A; (.)

. Associativity:

(A ∩B) ∩ C = A ∩ (B ∩ C), (A ∪B) ∪ C = A ∪ (B ∪ C), (.)

. Mutual Distributivity of ∩ and ∪:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C); (.)

. Redundancy:

∅c = U , Uc = ∅; (.)

A ∩A = A, A ∩Ac = ∅, A ∩ U = A, A ∩∅ = ∅, (.)

A ∪A = A, A ∪Ac = U , A ∪∅ = A, A ∪ U = U , (.)

. New set:

A = (A ∩B) ∪ (A ∩Bc); (.)
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. Absorption:

A ∩ (A ∪B) = A,

A ∪ (A ∩B) = A.
(.)

We can now prove other set-theoretic identities by a process of simplification
parallel to the one we use for logical equivalences:

Theorem ... The equations

Ar (B ∩ C) = (ArB) ∪ (Ar C), (.)

Ar (B ∪ C) = (ArB) ∩ (Ar C) (.)

are identities of sets.

Proof. For (.), we have the chain of identities

Ar (B ∩ C) = A ∩ (B ∩ C)c [def’n of r]

= A ∩ (Bc ∪ Cc) [De Morgan]

= (A ∩Bc) ∪ (A ∩ Cc) [distributivity]

= (ArB) ∪ (Ar C) [def’n of r].

Equation (.) is an exercise.

An alternative method for proving set-theoretic identities uses the original
statement of the Axiom of Extension on § .. To prove (.) for example,
it is enough to prove A r B ⊆ A ∩ Bc and A ∩ Bc ⊆ A r B. To prove the
former, suppose c ∈ Ar B. Then c ∈ A, but c /∈ B. Hence also c ∈ Bc. Hence
c ∈ A ∩ Bc. Therefore A r B ⊆ A ∩ Bc. The other inclusion can be proved
similarly.

Exercises

. Prove the converse of Theorem .. in the following sense: Show that, if
F and G are not equivalent, then there is a set U with subsets Ak such
that {x ∈ U : F (x ∈ A0, . . . , x ∈ An−1)} 6= {x ∈ U : G(x ∈ A0, . . . , x ∈
An−1)}. (Suggestion: Let U be a set of truth-assignments, and let Ak

comprise those ~e such that ek = 1.)

. Prove Theorem ...
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. Complete the proof of Theorem ...

. Complete the proof of Lemma ...

. Complete the proof of Theorem ...

. Prove that (ArB) ∪ (B rA) = A △ B.

. Prove that (A ∩B) ∪ (A ∪B)c = {x : x ∈ A⇔ x ∈ B}.

. Prove the following set-theoretic identities:

(a) (ArB)c = Ac ∪B
(b) Bc rAc = ArB

(c) Ar (B r C)c = (A ∩B)r C

.. Inclusions and implications

We consider inclusion in place of equality. Corresponding to Theorem .., we
have

Theorem ... For two subsets A and B of U , we have A ⊆ B if and only if

{x ∈ U : x ∈ A⇒ x ∈ B} = U .

Corresponding to Theorem .., we have:

Theorem ... Suppose F0 and F1 are n-ary propositional formulas such that

F0 � F1.

When e ∈ B, let ϕe(x) be the ∈-formula Fe(x ∈ A0, . . . , x ∈ An−1). Then

{x ∈ U : ϕ0(x)} ⊆ {x ∈ U : ϕ1(x)}.

Some of the rules of inference in Lemma .. now translate into tautological
inclusions (inclusions that are true for all sets):

Lemma ... The following inclusions are tautological:

A ∩B ⊆ B; (.)

A ⊆ A ∪B; (.)

(A ∪B) ∩Ac ⊆ B. (.)
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Proof. The first two inclusions are translations (justified by Theorem ..) of
the logical consequences P N Q � Q and P � P ∨ Q; the last inclusion is a
translation of the rule of Disjunctive Syllogism, in view of § ., Exercise .

There is no common symbol for the Boolean operation corresponding to the
connective ⇒; so Rules of inference like Hypothetical Syllogism and Construc-
tive Dilemma, which involve ⇒, do not translate into inclusions like those in the
lemma. However, Theorem .. shows a connexion between ⇒ itself and inclu-
sion. Moreover, logical entailment corresponds to implication in the following
sense.

Theorem ... Suppose F0, . . . , Fm are n-ary propositional formulas such
that

F0, . . . ,Fm−1 � Fm.

When e 6 m, let ϕe(x) be the ∈-formula Fe(x ∈ A0, . . . , x ∈ An−1). Then

{x ∈ U : ϕ0(x)} = U & . . . & {x ∈ U : ϕm−1(x)} = U
=⇒ {x ∈ U : ϕm(x)} = U .

Now Hypothetical Syllogism and Constructive Dilemma can be expressed set-
theoretically as implications: tautological implications.

Lemma ... The following implications are tautological:

A ⊆ B & B ⊆ C =⇒ A ⊆ C; (.)

A ⊆ B & C ⊆ D =⇒ A ∪ C ⊆ B ∪D & A ∩ C ⊆ B ∩D. (.)

Proof. Here (.) is a direct translation of (.) by means of the theorems
above. Alternatively, suppose A ⊆ B and B ⊆ C and d ∈ A. Then d ∈ B, so
d ∈ C. Thus A ⊆ C.

For (.), suppose A ⊆ B and C ⊆ D. Say d ∈ A∪C. Then d ∈ A or d ∈ C.
If d ∈ A, then d ∈ B, so d ∈ B ∪ D. The same conclusion follows similarly if
d ∈ C. Therefore A ∪ C ⊆ B ∪D. The remaining inclusion is an exercise.

By (.), we can reasonably abbreviate the proposition A ⊆ B & B ⊆ C by

A ⊆ B ⊆ C.

By (.) and (.) above, (.) has the special cases:

A ⊆ B & A ⊆ C =⇒ A ⊆ B ∩ C, (.)

A ⊆ B & C ⊆ B =⇒ A ∪ C ⊆ B. (.)

Their converses are a part of the following:
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Lemma ... The following are true for all sets.

. A ⊆ B ∩ C =⇒ A ⊆ B.

. A ∪B ⊆ C =⇒ A ⊆ C.

. A ∩B = ∅ & A ⊆ B =⇒ A = ∅.

. Ac ⊆ A ⇐⇒ Ac = ∅ ⇐⇒ A = U .

. ArB = ∅ ⇐⇒ A ⊆ B.

Proof. Suppose A ⊆ B ∩ C. Since B ∩ C ⊆ B by Lemma .., we get A ⊆ B
by Lemma ... The remaining implications are exercises.

We are now equipped to prove some non-obvious claims:

Example ... Suppose Ac ∪ (B △ C) ⊆ A ∩Bc ∩ C. Then

A ∩ (B ∪ C) = (A ∪B) ∩ C. (.)

Indeed, to see this, note first

Ac ⊆ Ac ∪ (B △ C) [by Lemma ..]

⊆ A ∩Bc ∩ C [by assumption]

⊆ A. [by Lemma ..]

Then Ac ⊆ A by Lemma .., and therefore

A = U
by Lemma ... By the same lemmas, and Lemma .., our assumption now
gives us

(B r C) ∪ (C rB) = B △ C ⊆ Bc ∩ C = B r C;

therefore C rB ⊆ B r C, that is,

C ∩Bc ⊆ B ∩ Cc.

Say a ∈ C ∩ Bc. Then a ∈ Bc. But also, a ∈ B ∩ Cc, so a ∈ B. Thus
a ∈ Bc ∩B = ∅, which is absurd. So C ∩Bc must be empty, which means

B ⊆ C.

Finally then,
A ∩ (B ∪ C) = B ∪ C = C = (A ∪B) ∩ C

since A = U = A ∪B.
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Where did this example come from? And, where did the proof come from?
First, note that variations of the proof are possible: For example, part of the
proof is showing

C ∩Bc ⊆ B ∩ Cc =⇒ C ∩Bc = ∅.

But if C ∩Bc ⊆ B ∩ Cc, then

C ∩Bc ⊆ (B ∩ Cc) ∩ (C ∩Bc) = B ∩ (Cc ∩ C) ∩Bc = ∅.

Thus there is no need to look at individual elements of C ∩ Bc, as in the proof
above.

Whatever minor adjustments we make, the proof in Example .. does not
seem to follow a general pattern. Each step is justified, and the conclusion is as
desired; so the proof is correct. But this observation does not tell us how to find
the proof.

There is an alternative proof that follows a general pattern; this proof also
suggests how the proposition being proved was discovered. The key is the set-
theoretic analogue of the disjunctive normal forms of § .:

Example (.. continued). We can analyze the given Boolean combinations
of A, B, and C as follows. First note that

Ac = (Ac ∩Bc) ∪ (Ac ∩B)

= (Ac ∩Bc ∩ Cc) ∪ (Ac ∩Bc ∩ C) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩B ∩ C),

while

B △ C = (B ∩ Cc) ∪ (Bc ∩ C)
= (Ac ∩B ∩ Cc) ∪ (A ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C) ∪ (A ∩Bc ∩ C).

Therefore

Ac ∪ (B △ C) = (Ac ∩Bc ∩ Cc) ∪ (Ac ∩Bc ∩ C) ∪ (Ac ∩B ∩ Cc) ∪
∪ (Ac ∩B ∩ C) ∪ (A ∩B ∩ Cc) ∪ (A ∩Bc ∩ C).

The six constituents of this union are disjoint, and the whole set Ac ∪ (B △ C)
is assumed to be a subset of its last constituent, A ∩Bc ∩ C; therefore the first
five constituents are empty. We aim to prove Equation (.). Analyzing the
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two members of this equation, we have

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
= (A ∩B ∩ Cc) ∪ (A ∩B ∩ C) ∪ (A ∩Bc ∩ C),

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)
= (A ∩Bc ∩ C) ∪ (A ∩B ∩ C) ∪ (Ac ∩B ∩ C).

Under the assumption, two constituents in each case are empty, and each mem-
ber of Equation (.) is A ∩B ∩ C.

Thus the alternative proof takes more writing, although it follows a general
procedure that involves writing every set in question as a union of intersections
of the sets A, B, and C and their complements.

Exercises

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Complete the proof of Lemma ...

. Complete the proof of Lemma ...

. Prove the following tautological inclusions:

a) A ∩ (ArB)c ⊆ B

b) Ar C ⊆ (ArB) ∪ (B r C)

c) (ArB)c ∩ (B r C)c ⊆ (Ar C)c

d) Ar C ⊆ (Ar (B r C)c) ∪ (ArB)

e) A ⊆ Ar (B ∩Bc)

f) (Ac rA)c ⊆ A

g) Ac ⊆ Ac rA

h) (A ∪B)r C ⊆ (Ar C) ∪ (B r C)

i) Bc ⊆ (ArB) ∪ (Ac rB)

j) ArB ⊆ Bc
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k) B rA ⊆ B

. Prove the following implications:

a) U ⊆ B =⇒ U = B

b) A ⊆ B & A ⊆ (B r C)c =⇒ A ⊆ C

c) Ac ⊆ B ∩Bc =⇒ A = U
d) A ⊆ B & A ⊆ Bc =⇒ A = ∅

e) Ac = U =⇒ A ⊆ B

f) A ⊆ B =⇒ A ∩ C ⊆ B ∩ C

. Prove the following equivalences:

a) A ⊆ B ⇐⇒ Ac ∪B = U
b) A 6⊆ B ⇐⇒ A ∩Bc 6= ∅

c) A ⊆ B ⇐⇒ Bc ⊆ Ac

d) A ⊆ (B r C)c ⇐⇒ A ∩B ⊆ C

. Simplify the following to the form Ac ∪ (B △ C):

(Ac ∩Bc ∩ Cc) ∪ (Ac ∩Bc ∩ C) ∪ (Ac ∩B ∩ Cc) ∪
∪ (Ac ∩B ∩ C) ∪ (A ∩B ∩ Cc) ∪ (A ∩Bc ∩ C).

. Compose an example like ...

.. Cartesian products, and relations

Suppose ϕ(x) is an ∈-formula as in § .. Again, this formula defines, in U , the
set {x ∈ U : ϕ(x)}. This set can be called the interpretation of ϕ(x) in U . The
interpretation of ϕ(x) may change if U changes. For example, the interpretation
of x /∈ A in U is U rA, which depends on U . However, as long as U includes A,
the interpretation of x ∈ A in U does not change: it is just A.

We now allow variables besides x, and we ask, for example, whether the
binary ∈-formula

x ∈ AN y ∈ B

defines a set. It does define a set, which is denoted by

A×B
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A

B A×B

Figure .. Cartesian product

and called the Cartesian product of A and B. This set A×B can be depicted
as in Figure .. If a ∈ A and b ∈ B, then there will be an element of A × B,
denoted by

(a, b)

and called an ordered pair. Such objects will have the property that

(a, b) = (a′, b′) ⇐⇒ a = a′ & b = b′; (.)

consequently,
(a, b) ∈ A×B ⇐⇒ a ∈ A & b ∈ B.

But what is an ordered pair?
So far (in this chapter), all of our sets have been Boolean combinations of

given sets. But recall that the Adjunction Axiom (..) and its consequence,
the Pairing Theorem (..), give alternative ways of producing new sets. If
a 6= b, then the {a, b} is an (unordered) pair.

Lemma ... {{a}, {a, b}} = {{c}, {c, d}} ⇐⇒ a = c & b = d.

Now we can define ordered pairs so as to have the desired Property (.): by
definition,

(a, b) = {{a}, {a, b}}.
Note well that we make this definition solely so that ordered pairs will have
Property (.). It is true but unimportant that {a} ∈ (a, b)—except that, in

Some discussion of this point is in [, § ].
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the usual treatment of set-theory, one still needs the precise definition of (a, b)
to justify axiomatically the existence of the set A×B. I shall discuss this point
later. Meanwhile, we can write

A×B = {(x, y) ∈ U × U : x ∈ AN y ∈ B}.
Suppose now F is a 2n-ary propositional formula. Then we have the binary

∈-formula

F (x ∈ A0, . . . , x ∈ An−1, y ∈ A0, . . . , y ∈ An−1). (.)

Call this ϕ(x, y). Its interpretation in U is a subset of U × U , namely

{(x, y) ∈ U × U : ϕ(x, y)}, (.)

which consists precisely of those (c, d) in U × U such that

F̂ (~e , ~f ) = 1,

where ~e and ~f are the n-ary truth assignments such that

ek = 1 ⇐⇒ c ∈ Ak,

fk = 1 ⇐⇒ d ∈ Ak

for each k in {0, . . . , n− 1}. As special cases, we have

{(x, y) ∈ U × U : x ∈ A} = A× U ;
{(x, y) ∈ U × U : y ∈ B} = U ×B.

These sets are also the interpretations in U × U of (x, y) ∈ A × U and (x, y) ∈
U ×B respectively. Hence, for example, the formulas x ∈ A and (x, y) ∈ A× U
are interchangeable or, as we may say, equivalent as binary formulas. In (.),
we can now replace ϕ(x, y) with the formula

F ((x, y) ∈ A0 × U , . . . , (x, y) ∈ An−1 × U ,
(x, y) ∈ U ×A0, . . . , (x, y) ∈ U ×An−1), (.)

without changing the set.
Since we have a new operation on sets, we may wonder how it interacts with

the ones that we already have. Let use first establish the notational convention
that × has priority over ∩, ∪, △, and r, but not over c, so that, for example,

A×B ∩ C = (A×B) ∩ C;
A×Bc = A× (Bc).

Then we have:
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Theorem ... The following are set-theoretic identities:

A× (B ∩ C) = A×B ∩A× C, (A ∩B)× C = A× C ∩B × C,

A× (B ∪ C) = A×B ∪A× C, (A ∪B)× C = A× C ∪B × C,

U ×Ac = (U ×A)c, Ac × U = (A× U)c.
Proof. We prove the first identity in two ways; the rest are exercises.

Suppose (a, b) ∈ A × (B ∩ C). Then a ∈ A, and b ∈ B ∩ C. Hence also
b ∈ B and b ∈ C. Therefore (a, b) ∈ A × B and (a, b) ∈ A × C. Consequently
(a, b) ∈ (A×B)∩ (A×C). Thus A× (B ∩C) ⊆ (A×B)∩ (A×C). The reverse
inclusion is an exercise.

Alternatively, by (a slight variant of) Theorem .., we have

A× (B ∩ C) = {(x, y) ∈ U × U : x ∈ AN y ∈ B ∩ C}
= {(x, y) ∈ U × U : x ∈ AN y ∈ B N y ∈ C}
= {(x, y) ∈ U × U : (x ∈ AN y ∈ B) N (x ∈ AN y ∈ C)}
= {(x, y) ∈ U × U : (x, y) ∈ A×B N (x, y) ∈ A× C},

which is (A × B) ∩ (A × C) by definition of intersection. To save writing, we
might just note that A× (B∩C) is the interpretation of the following equivalent
formulas:

x ∈ AN y ∈ B ∩ C, x ∈ AN y ∈ B N y ∈ C,

(x ∈ AN y ∈ B) N (x ∈ AN y ∈ C), (x, y) ∈ A×B N (x, y) ∈ A× C

—while the last formula defines (A×B) ∩ (A× C).

The identity for A×Bc is not so neat: see Exercise . Part of the last theorem
can be generalized:

Theorem ... The equation

A×B ∩ C ×D = (A ∩ C)× (B ∩D)

is an identity.

Proof. A×B ∩ C ×D is the interpretation of

x ∈ AN y ∈ B N x ∈ C N y ∈ D,

which is equivalent to

x ∈ AN x ∈ C N y ∈ B N y ∈ D,

which is the interpretation of (A ∩ C)× (B ∩D).
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Figure .. The less-than relation on Z

For A×B ∪ C ×D and (A×B)c, see Exercise .
We have observed that (.) and (.) are equivalent. This suggests a

further generalization: If (R0, . . . , Rn−1) is a list of n subsets of U × U , and G

is an n-ary propositional formula, then we have a binary ∈-formula

G((x, y) ∈ R0, . . . , (x, y) ∈ Rn−1).

A subset of U × U is a binary relation on U . If R ⊆ U × U , and (a, b) ∈ R,
then we may also write

a R b.

Then R = {(x, y) ∈ U × U : x R y}.

Example ... The less-than relation on Z (named in § .) is the set

{(x, y) ∈ Z× Z : x < y},

which can be depicted as in Figure ..

There are two generalizations:
. If R ⊆ A × B, then R is a relation from A to B; then A can be called

the domain of R, and B can be called the co-domain of R.
. There are n-ary relations on U for every n in N.

The first of these will be taken up in the next section. On the latter point, note
that we can form an n-ary ∈-formula

x0 ∈ A0 N . . .N xn−1 ∈ An−1;
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its interpretation in U can be denoted by

A0 × · · · ×An−1.

This is a subset of U × · · · × U︸ ︷︷ ︸
n

, which we can also denote by

Un.

The elements of Un are just the (ordered) n-tuples, written as one of

(c0, . . . , cn−1), ~c

where each ck is in U . Such an n-tuple is just what we have called a list of n
elements of U . In particular, an n-ary truth-assignment is an element of Bn.

Instead of A×A, we can write A2. We can let A1 be A itself. We can define
A3 to be A2 × A; define A4 to be A3 × A; and so on. By our precise definition
then,

(a0, . . . , an) = ((a0, . . . , an−1), an) = {{(a0, . . . , an−1)}, {(a0, . . . , an−1), an}},
but this is not important; we could also use the definition

(a0, . . . , an−1) = {{a0}, {a0, a1}, . . . , {a0, a1, . . . , an−1}}
for example. (See also § ..) In any case, we should understand

(a0, . . . , an−1) =

{
a0, if n = 1;

∅, if n = 0;

that is, (a) is just a, and ( ) is ∅. Then A1 = A as we said; also, A0 = {∅}, which
is 1 in the von-Neumann definition of the natural numbers in § .. Finally, if ~a
is the n-tuple (a0, . . . , an−1), and ~b is the m-tuple (b0, . . . , bm−1), then we treat
the ordered pair (~a ,~b ) as the ordered (n+m)-tuple (a0, . . . , an−1, b0, . . . , bm−1).
Then we have

Am ×An = Am+n

for all m and n in ω. (We do not have a meaning for An if n is a negative
integer.)

An n-ary relation on U is a subset of Un. In particular, a singulary relation
on U is just a subset of U . A nullary relation on U is a subset of U0; which is
{∅}; so a nullary relation is either ∅ or {∅}. In the von-Neumann definition,
these sets are 0 and 1 respectively; so a nullary relation is just a truth-value.

An n-ary predicate is a name for an n-ary relation. An n-ary relation is
then a possible interpretation of an n-ary predicate.
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Exercises

. Prove Lemma ...

. Complete the proof of Theorem ...

. Prove the identity A×Bc = A× U r U ×B.

. Prove the identities:

a) (A △ B)× C = A× C △ B × C;

b) (ArB)× C = A× C rB × C.

. Prove the identities:

a) A×B ∪ C ×D = ((A ∪ C)× (B ∪D)rAc ×Dc)r Cc ×Bc;

b) (A×B)c = Ac × U ∪ U ×Bc.

.. Functions

A relation R from a set A to a set B is a function from A to B if it has two
properties:

. For every a in A there is some b in B such that (a, b) ∈ R.
. If R contains both (a, b) and (a, c), then b = c.

One might abbreviate these properties as follows:
. (∀x ∈ A) (∃y ∈ B) x R y.
. (∀x ∈ A) (∀y ∈ B) (∀z ∈ B) (x R y & x R z =⇒ y = z).

Alternatively, R is a function if it has the property:
• For every a in A, there is a unique b in B such that a R b.

Unique existence—existence of exactly one—is sometimes abbreviated by the
quantifier

∃!.
Then the last property can be abbreviated:

• (∀x ∈ A) (∃! y ∈ B) a R b.
Often a function is denoted by a letter like f ; then, instead of writing (a, b) ∈

f , or a f b, one writes
f(a) = b.

Suppose f is a function from A to B. This can be indicated by one of

f : A −→ B, A
f−→ B.
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In accordance with the definitions in the previous section, A is then the domain
of f , and B is the co-domain of f . Also, f is a function on A, and f is a function
from A to B. Functions are sometimes called maps; in the present case, f can
be said to map A into B.

Considered as a string of symbols, f(x) is a term. Then the function f might
be given by the notation

x 7−→ f(x),

and we might say that f takes or sends x to f(x). As we shall see presently, the
term f(x) might be replaced with another term that does not contain a specific
name for f itself.

Note that, considered as a set, a function uniquely determines its domain, but
not its co-domain. If f : A→ B, then

A = {x : ∃y f(x) = y}, {y : ∃x f(x) = y} ⊆ B.

An n-ary operation on a set A is a function from An to A. Then there is
at least one singulary operation on A, namely the identity on A: this is the
function

x 7−→ x

on A, which can be denoted by
idA.

More generally, if k < n, then there is an n-ary operation

(x0, . . . , xn−1) 7−→ xk

on A. (This operation is idA if n = 1 and k = 0.) But there are all sorts of
operations besides these:

Examples ...
. In §., the successor of a number n in N is denoted by n+ or n+ 1. This

means there is a function x 7→ x+ from N to itself; this is a singulary operation
on N.

. The operations + and · named in § . are binary operations on Z and can
be denoted by (x, y) 7→ x+ y and (x, y) 7→ xy respectively.

. Hence any arithmetic term t in an n-tuple (x0, . . . , xn) of variables deter-
mines the n-ary operation ~x 7→ t on Z.

. The fundamental theorem of calculus is that if f is a continuous function
on R, and a ∈ R, then the function x 7→

∫ x

a
f is a primitive for f (that is, a

function whose derivative is f).
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Several refinements of the notion of a function are useful. Suppose again that
f : A→ B. Then f is:

) surjective or onto, if every element of B is f(a) for at least one a in A;
) injective or one-to-one, if every element of B is f(a) for at most one a

in A;
) bijective, if it is one-to-one and onto (injective and surjective).

A surjective function is a surjection; an injective function is an injection; a
bijective function is a bijection. An injection is also called an embedding; a
bijection is also called a one-to-one correspondence. More symbolically, f
is:

) surjective, if (∀y ∈ B) (∃x ∈ A) f(x) = y;
) injective, if (∀x ∈ A) (∀y ∈ A) (f(x) = f(y) =⇒ x = y).

Examples ...
. idA is a bijection.
. The squaring function x 7→ x2 is injective on N, but not on Z; as a function

from C to C, it is surjective, but not as a function from R to R.
. The tangent-function x 7→ tanx from R to R is surjective, but not injective.
. The cubing function x 7→ x3 from R to R is bijective.

Again suppose f : A→ B. The range of f is the set

{y ∈ B : (∃x ∈ A) f(x) = y};

this is a subset of the co-domain of f , and can be denoted by

{f(x) : x ∈ A},

or more simply by f(A). However, since the latter notation suggests—usually
wrongly—that A is actually an element of the domain of f , I prefer to use the
notation

f [A].

A function is surjective if and only if its range is equal to its co-domain.

Examples ...
. The co-domain of x 7→ sinx is usually considered to be R, although the

range of the function is the interval [−1, 1].
. The function x 7→ 1 + x2, as a function on R, has range [1,∞).

Suppose also g : B → C. The composition of f and g is

{(x, z) ∈ A× C : g(f(x)) = z};
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This can be denoted by
g ◦ f,

which can be read as g composed with f . Showing that g ◦ f is a function
is Exercise  below; it is Exercise  to show that the composition of injective
functions is injective, and the composition of surjective functions is surjective.

Many of the foregoing ideas are connected by the following:

Theorem ... Suppose A 6= ∅ and f : A→ B.
. The function f is injective if and only if g ◦ f = idA for some function g

from B to A.
. The function f is surjective if and only if f ◦ g = idB for some function g

from B to A.
. The function f is bijective if and only if g ◦ f = idA and f ◦ g = idB for

some function g from B to A.

Proof. . Suppose f is injective. Then for every b in f [A], there is exactly one
a in A such that f(a) = b. This means that the set {(f(x), x) : x ∈ A} (which
is the range of the function x 7→ (f(x), x) from A to B × A) is a function from
f [A] to A. Since A 6= ∅, there is some c in A; then y 7→ c is a function from
B r f [A] to A. The union of these two functions, as sets, is a function g from
B to A, and g(f(a)) = a for all a in A, so g ◦ f = idA.
Suppose conversely that g ◦ f = idA. If f(a) = f(a′), then g(f(a)) = g(f(a′)),
that is, idA(a) = idA(a

′), which means a = a′. Thus f is injective.
. Suppose f is surjective. Then for every b in B, there is at least one a in

A such that f(a) = b. Now we have to do something sneaky: We pick one such
a, and define g(b) = a. We do this for all b in B, and this gives us g as desired.
(That such picking can be done once for all is perhaps not obvious, but it is a
consequence of the set-theoretic Axiom of Choice.)
The converse, and the remaining part, are left as an exercise.

Theorem ... Suppose f : A→ B and is bijective. Then there is exactly one
function g from B to A such that g ◦ f = idA and f ◦ g = idB.

Proof. By the last theorem, there is at least one such function. Suppose g0 and
g1 are such functions, and b ∈ B. Then b = f(a) for some a in A, since f is
surjective. Hence

g0(b) = g0(f(a)) = g0 ◦ f(a) = idA(a) = g1 ◦ f(a) = g1(f(a)) = g1(b).

Thus g0 = g1.
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The unique function g in the theorem is the inverse of f and can be denoted
by

f−1.

A bijection can also be called an invertible function.
In general, if f : A→ B and C ⊆ A, then f ∩ (C ×B) is a function from C to

B; this can be denoted by

f ↾ C;

it is the restriction of f to C, and its range is f [C]. This range is also called
the image of C under f .

Exercises

. Show that the composition of two functions is a function.

. Show that the composition if injective functions is injective; of surjective,
surjective.

. Complete the proof of Theorem ...

. Suppose f and g are functions from A to B. For each of the relations

f ∪ g, f ∩ g,

• prove whether it is always a function; and

• prove whether it is always not a function.

. Let f : A→ B and g : B → C.

a) Supposing g and f are invertible, write (g ◦ f)−1 as a composition of
inverses (rather than an inverse of compositions).

b) If g ◦ f is injective, does it follow that f is injective?—that g is
injective?

c) Same question, with surjective for injective.

d) Same question, with bijective for surjective.
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.. More functions

Induced functions

If f : A → B and C ⊆ A, then we have defined f [C] as a subset of B. This
suggests that we have a function X 7→ f [X]; but what are its domain and
co-domain?

I noted at the beginning of the chapter that the sets we would discuss need
only be classes. This is no longer the case. In particular, if C is a class, we define
the power class of C to be the class of all subsets of C; there is not necessarily
a class of subclasses of C. The power class of a set A is denoted by

P(A).

If f : A → B, then the function X 7→ f [X] has domain P(A) and co-domain
P(B).

The power class of a set is called its power set because of the following.

Axiom .. (Power Set). The power class of a set is a set.

We shall not actually use this axiom until § ..

Examples ...
. P(∅) = {∅}, that is, P(0) = 1 in the definition of von Neumann;
. P({∅}) = {∅, {∅}}, that is, P(1) = 2.
. ∅ ∈ P(A) and A ∈ P(A) for all sets A.

Lemma ... Suppose f : A→ B. Then

X ⊆ Y =⇒ f [X] ⊆ f [Y ]

for all subsets X and Y of A.

Proof. Suppose x ∈ f [X]. Then x = f(u) for some u in X. But X ⊆ Y , so
u ∈ Y , and hence f(u) ∈ f [Y ], that is, x ∈ f [Y ].

Theorem ... Suppose f : A→ B. Then

f [X ∪ Y ] = f [X] ∪ f [Y ], (.)

f [X ∩ Y ] ⊆ f [X] ∩ f [Y ] (.)

for all subsets X and Y of A.
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Proof. We have that f [X] and f [Y ] are subsets of f [X ∪ Y ] by the last lemma.
Hence

f [X] ∪ f [Y ] ⊆ f [X ∪ Y ]

by (.). For the reverse inclusion, suppose x ∈ f [X ∪ Y ]. Then x = f(u) for
some u in X ∪ Y . Either u ∈ X or u ∈ Y , hence, either x ∈ f [X] or x ∈ f [Y ].
In either case, x ∈ f [X] ∪ f [Y ]. This proves (.).

For (.), note that if f [X ∩ Y ] is a subset of both f [X] and f [Y ], by the
last lemma; we are now done, by (.).

The inclusion (.) can be strict. To see this, one need only consider a
non-injective function on a set of size 2:

Example ... If f is {(0, 0), (1, 0)} and X = {0} and Y = {1}, then X∩Y =
∅, but f [X] ∩ f [Y ] = {0}.
Theorem ... Suppose f : A→ B.

. The following are equivalent:

a) f is injective.
b) f [X ∩ Y ] = f [X] ∩ f [Y ] for all subsets X and Y of A.

. If f is injective, then

f [Xc] ⊆ (f [X])c,

f [X r Y ] ⊆ f [X]r f [Y ]

for all subsets X and Y of A.

. The following are equivalent:

a) f is bijective.
b) f [Xc] = (f [X])c for all subsets X of A.

If f : A→ B, and C ⊆ B, then A has the subset

{x ∈ A : f(x) ∈ C},

which can be denoted by
f−1[C];

this is the pre-image of C under f . Thus we have a function

Y 7−→ f−1[Y ]
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with domain P(B) and co-domain P(A). Note well that this function exists,
whether f is invertible or not. The function Y 7→ f−1[Y ] behaves more nicely
than X 7→ f [X] with respect to the Boolean operations:

Theorem ... Suppose f : A→ B. Then

f−1[X ∪ Y ] = f−1[X] ∪ f−1[Y ], (.)

f−1[X ∩ Y ] = f−1[X] ∩ f−1[Y ], (.)

f−1[Xc] = (f−1[X])c, (.)

f−1[X r Y ] = f−1[X]r f−1[Y ] (.)

for all subsets X and Y of B.

Proof. Exercise. Note that, by adequacy of the signature {N,¬}, the other
equations follow from (.) and (.).

Operations on relations

It is possible to give a neat account of functions by first defining the composition
of relations. Suppose R ⊆ A×B and S ⊆ B ×C. Then the composition of R
and S is the set

{(x, z) ∈ A× C : (∃y ∈ B) (x R y & y S z)},

which can be denoted by
S ◦R.

Note well the order in which R and S are written, which seems unnatural, but
agrees with the notation for the composition of functions. At the expense of
introducing a new symbol, I propose to write

R/S

for S ◦R.
The relation R from A to B has a converse, namely, the relation

{(y, x) ∈ B ×A : x R y}
Tarski [, § , p. ] and Suppes [, § ., Definition , p. ] are among those who use

this notation.
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Figure .. Converse of a relation

from B to A; it can be denoted by

R̆.

(See Figure ..) This is sometimes denoted by R−1, but such notation can be
misleading.

Finally, the binary relation of equality on A is just the set

{(x, y) ∈ A×A : x = y}.

We can also call this the diagonal on A, and give it the symbol

∆A.

(The delta stands for diagonal; see Figure ..)
We can now make the following definitions: R is
) full, if ∆A ⊆ R/R̆;
) functional, if R̆/R ⊆ ∆B .

Theorem ... Let R ⊆ A × B. Then R is a function from A to B if and
only if R is full and functional (as a relation from A to B).

Proof. Exercise.

We have alternative characterizations for notions in § .:

Theorem ... Suppose f : A→ B.
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Figure .. Diagonal on a set

. f is surjective if and only if ∆B ⊆ f̆/f .
. f is injective if and only if f/f̆ ⊆ ∆A.
. f is bijective if and only if f̆/f = ∆B and f/f̆ = ∆A.

Exercises

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

.. First-order logic

First-order logic provides a formal way to talk about particular operations and
relations. It allows for a precise definition of the context, mentioned in § .,
in which a mathematical proposition is true or false. First-order logic is a large
subject; this section will be only a cursory treatment. However, we have already
mentioned the ingredients of first-order logic, in an informal way at least. A
signature for a first-order logic consists of constants, function-symbols, and

Constants are also called constant-symbols.
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predicates. A structure in a signature L is a non-empty set A along with a
function that takes:

) each constant of L to an element of A;
) each function-symbol of L to an operation on A;
) each predicate of L to a relation on A.

Thus the elements of L symbolize elements of A and operations and relations
on A. More elements and operations are symbolized by terms, which are strings
made of constants, function-symbols, and variables. More relations are sym-
bolized by formulas. The simplest formulas are the atomic formulas, which
consist of terms joined by the sign of equality or by a predicate. Atomic for-
mulas can be preceded by quantifiers (with variables) or combined by means of
Boolean connectives; formulas in general are obtained in this way. New con-
stants symbolizing particular elements of A can be used as parameters in terms
and formulas.

Example ... The set Z of integers can be understood as a structure in
the signature {0, 1,−,+, ·, <} (see § . (.)); a term in this signature (with
parameters from Z as desired) is an arithmetic term as defined in § .. Dio-
phantine equations and arithmetic inequalities are the atomic formulas in this
signature.

The terminology of first-order logic is a means to give a precise but general
account of some ideas that one encounters in high-school mathematics.

Structures

By formal definition, a structureis an ordered pair (A, I)—which can also be
referred to as A—where:

) A is a non-empty set, which is called the universe of the structure;
) I is a function, written also as

s 7−→ sA,

whose domain L is called the signature of the structure;
) sA is either an element of A or an n-ary operation or relation on A for

some positive integer n, for each s in L.

Predicates are also called relation-symbols.
From the Greek ἄτομος uncuttable, not compound, from τόμος a slice.
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Here A may be called a structure of L, or an L-structure. If L = {s0, s1, . . . },
then A can be written as

(A, s0
A, s1

A, . . . ),

or just as (A, s0, s1, . . . ) unless ambiguity would result (that is, unless another
structure of interest has the same universe and signature as A). Moreover, if
the intended signature is clear, then A may be written simply as A; that is, the
universe may stand for the structure. The function I is almost never referred
to, except in general accounts like this one.

Examples ... The following are structures:
) (N,+, 0), or more briefly N (see § .);
) the power-set structure on a non-empty set Ω, namely

(P(Ω),∅,Ω,∩,∪, c,⊆);

) the truth-structure

(B, 0, 1,N,∨,¬,�),
where � is the binary relation {(0, 0), (0, 1), (1, 1)} on B.

The last two examples are the same if the elements of B are von-Neumann
natural numbers and Ω is the von-Neumann natural number 1. Propositional
logic studies the truth-structure. The area of mathematics and logic called
model-theory studies all structures.

When I is as above in the structure (A, I), and s is an element of L, then:
) sA is called the interpretation in A of s;
) s is called a symbol for sA.

So s is one of the following, according to its interpretation:
) a constant;
) an n-ary function-symbol for some positive n in ω;
) an n-ary predicate (or relation-symbol) for some positive n in ω.
Since nullary operations on A can be considered as elements of A, a constant

can be considered as a nullary function-symbol.
Here are some observations about the definition of structure:
. I am following the old convention of denoting the universe of a structure by

a Roman letter, and the structure itself by the corresponding Fraktur or Gothic
letter. One might not bother to make a typographical distinction between a

This is not a standard term.
Used for example by Chang and Keisler []. Recent writers (as Marker [] and Roth-

maler []) use ‘calligraphic’ letters, not Fraktur:
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structure and its universe. Indeed, as suggested in the examples, the distinction
is not easy to make with standard structures like B or Z (which are commonly
denoted by letters in a so-called blackboard-bold font).

. Similarly, it is not always easy or convenient to distinguish in writing be-
tween a symbol and its interpretation.

. In a structure (A, I), the interpretation-function I could be considered
to carry, within itself, the universe A. In any case, A and I work together to
provide interpretations of the symbols in L as elements of, or operations or
relations on, a certain set, namely A itself. That’s all a structure is: some-
thing that provides a mathematical interpretation for certain symbols. What
makes model-theory interesting is that the same symbols can have different in-
terpretions. Here begins the distinction between syntax (formal symbolism)
and semantics (mathematical meaning).

Terms and formulas

The terms of a first-order signature L are conveniently written in Polish nota-
tion (see § .). First, we introduce a list

x0, x1, x2, . . .

of variables (that is, individual variables: variables standing for individual
elements of a universe). Then, by definition,

) all variables are terms of L;
) all constants of L are terms of L;
) if f is an n-ary function-symbol in L, and (t0, . . . , tn−1) is a list of n terms

of L, then
ft0 · · · tn−1

is a term of L; if f is binary, then ft0t1 may also be written as

(t0 f t1).

For a structure with universe: A B C . . . M N . . .

I write: A B C . . . M N . . .

others may write: A B C . . . M N . . .
Another option, used by Hodges [], is to use an ordinary letter like A for a structure, and
then dom(A) for its universe. (Here dom stands for domain.)

The distinction was alluded to in § .. In propositional logic, formal entailment (⊢) can be
understood as a syntactic notion, while logical entailment (�) is semantic.
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Finally, singulary function-symbols are sometimes written as superscripts
on their arguments, as in n+ in § . (.) and Ac in § . (.).

The atomic formulas are defined similarly:
. If t0 and t1 are terms of L, then the equation

t0 = t1

is an atomic formula of L;
. If R is an n-ary predicate of L, and (t0, . . . , tn−1) is a list of n terms of L,

then the string
Rt0 · · · tn−1

is a term of L; if R is binary, then Rt0t1 may also be written as

t0 R t1.

Finally, formulas in general can be defined:
. Atomic formulas of L are formulas of L.
. If ϕ is a formula of L, then so is ¬ϕ.
. If ϕ and ψ are formulas of L, then (ϕN ψ) is a formula of L.
. If ϕ is a formula of L, and x is an individual variable, then ∃x ϕ is a

formula of L.
These are the first-order formulas in the signature L; they constitute the
first-order logic in that signature. We can use other connectives in addition to,
or instead of, N and ⇒. One will generally want to use an adequate signature for
propositional logic, like {¬,N} (Theorem ..) or {¬,⇒} (by § ., Exercise ).
Once the criterion of adequacy is met, then using fewer symbols makes the
ensuing definitions and proofs easier to write down.

We can also use the quantifier ∀; but formulas using ∀ can be rewritten with
∃ alone by means of (.) and (.) in § ..

It is standard to write a formula ¬(t0 = t1) as t0 6= t1.
In the definition of formula, if the last condition is removed, then what is

defined is the quantifier-free formulas of L.

Interpretations of terms

A term t can be called n-ary if the set of its variables is a subset of {xk : k < n};
then t is interpreted in an L-structure A as an n-ary operation tA on A. The
possibility that n = 0 is allowed; in that case, t is nullary or constant, and its
interpretation in A is just an element of A. The precise definition is what one
should expect:
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. If k < n, then the variable xk is an n-ary term; as such, it is interpreted
in A as the n-ary operation ~x 7→ xk on A. (Here necessarily n > 0.)

. Every constant c is an n-ary term, interpreted in A as the constant n-ary
operation ~x 7→ cA on A. (If n = 0, then this operation can be understood
as the element cA of A.)

. If (t0, . . . , tk−1) is a list of n-ary terms, and f is a k-ary function-symbol,
then the term ft0 · · · fk−1 is n-ary and, as such, is interpreted in A as the
n-ary operation

~x 7−→ fA(t0
A(~x ), . . . , tk−1

A(~x ))

on A. (If n = 0, the interpretation is just the element fA(t0A, . . . , tk−1
A)

of A.)

Example ... In Z, the ternary terms (x0 ·(x1+x2)) and ((x0 ·x1)+(x0 ·x2))
have the same interpretation, namely the ternary operation

(x, y, z) 7→ x(y + z)

on Z. We could also write this operation more precisely as (x, y, z) 7→ x·Z(y+Zz).
(See § . (.).)

Interpretations of formulas

Interpretations of formulas take longer to define precisely, but the idea is that ¬,
N, and ∃ symbolize complementation, intersection, and projection respectively.
An atomic formula ϕ can be called n-ary if the set of its variables is a subset of
{xi : i < n}. Then ϕ is interpreted in a structure A as an n-ary relation ϕA on
A. This relation ϕA is the solution set in A of the formula ϕ. In particular:

(t0 = t1)
A = {~x ∈ An : t0

A(~x ) = t1
A(~x )}, (.)

(Rt0 · · · tk−1)
A = {~x ∈ An : (t0

A(~x ), . . . , tk−1
A(~x )) ∈ RA}. (.)

Example ... The interpretation of the equation

((x0 · x0) + (x1 · x1)) = 25

(usually written as x02 + x1
2 = 25) in R is a circle of radius 5 and center

(0, 0); see Fig. .. The interpretation in Z consists of the integer points on this
circle, namely (±5, 0), (±4, 3), (±4,−3), (±3, 4), (±3,−4), and (0,±5). The
interpretation of x02 + x1

2 < 25 in R is the interior of the disk bounded by the
circle.
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Figure .. Interpretations of x02 + x1
2 = 25 and x02 + x1

2 < 25.

In the sense described in § ., a nullary relation is a truth-value, 0 or 1. If
n = 0, then (.) and (.) can be written as:

(t0 = t1)
A =

{
1, if t0A = t1

A,

0, if t0A 6= t1
A;

(.)

(Rt0 · · · tk−1)
A =

{
1, if (t0A, . . . , tk−1

A) ∈ RA,

0, if (t0A, . . . , tk−1
A) /∈ RA.

(.)

Quantifiers complicate matters, such as defining when a formula is n-ary. As-
sume that we have defined this, and that ϕ and ψ are arbitrary n-ary formulas,
whose interpretations ϕA and ψA are n-ary relations on A. Then the interpre-
tations of ¬ϕ and (ϕN ψ) are given by

(¬ϕ)A = An r ϕA = (ϕA)c;

(ϕN ψ)A = ϕA ∩ ψA.

Now we have defined the interpretations of all quantifier-free formulas.
Suppose ϕ is an (n + 1)-ary formula. Then (∃xn ϕ)A is an n-ary relation on

A, namely the set of all (a0, . . . , an−1) in An−1 such that (a0, . . . , an−1, b) ∈ ϕA

for some b in A. This means

(∃xn ϕ)A = πn+1
n [ϕA], (.)

where πn+1
n is the function

(x0, . . . , xn−1, xn) 7−→ (x0, . . . , xn−1) (.)

from An+1 to An; such a function can be called a projection. (See Figure .
and § ..) Note then that the formula ∃xn ϕ is considered as n-ary, not (n+1)-
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tb t(~a , b)

?
t
~a

πn+1
n

An

A

An+1

Figure .. Projection

ary, even though it contains the variable xn. The point is that this variable is
not free in the formula; it is only bound.

Example (.. continued). The formula ∃x1 x02 + x1
2 = 25 is singulary. Its

interpretation in R is the interval [−5, 5]; in Z, the set {−5,−4,−3, 0, 3, 4, 5}.
The set fv(ϕ) of free variablesin a formula ϕ is defined recursively.
. fv(ϕ) is the set of variables appearing in ϕ, if ϕ is atomic.
. fv(¬ϕ) = fv(ϕ).
. fv(ϕN ψ) = fv(ϕ) ∪ fv(ψ).
. fv(∃x ϕ) = fv(ϕ)r {x}.

Thus quantifiers bind variables, making them not free.

Example ... Suppose R and S are binary predicates. Then the free vari-
ables of

∃x (x R y N x S z)

are y and z, but the free variables of

∃x x R y N x S z

are x, y, and z.

The second formula in the example is complicated by having bound occur-
rences of x, even though x is a free variable of the formula. In practice one
avoids this situation by using instead a formula like ∃u u R y N x S z. For lack
of a better term, let us refer to such a formula as good. There is a recursive
definition of good formulas:
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. Atomic formulas of L are good formulas of L.
. If ϕ is a good formula of L, then so is ¬ϕ.
. If ϕ and ψ are good formulas of L, and every variable that occurs in both

formulas is a free variable of both formulas, then (ϕNψ) is a good formula
of L.

. If ϕ is a good formula of L, and x is a free variable of ϕ, then ∃x ϕ is a
good formula of L.

Example ... If ϕ and ψ are formulas, then so are ∃x ϕN∃x ψ and ∃x ∃x ϕ;
but these are not good formulas.

Lemma ... Suppose x is a free variable of a good formula ϕ, and c is a
constant.

. In ϕ, the variable x never occurs right after ∃.
. The result of replacing each occurrence of x in ϕ with c is a good formula.

We never need work with any formulas other than good formulas. Also, re-
stricting our attention to good formulas makes some general definitions easier.
An arbitrary formula is n-ary if its free variables are among x0, . . . , xn−1. If ϕ
is such a formula, we may write it as

ϕ(x0, . . . , xn−1).

Suppose in particular ϕ is a good formula. If t0, . . . , tn−1 are terms, we denote
by

ϕ(t0, . . . , tn−1)

the formula that results from substituting tk for each occurrence of xk in ϕ,
provided xk is actually a free variable of ϕ. If ϕ is not necessarily good, then
ϕ(t0, . . . , tn−1) is the result of substituting tk for each free occurrence of xk; but
then one must define the free occurrences of variables. We avoid having to do
this by restricting our attention to good formulas.

Example ... If ϕ is ternary, and ψ is ∃x1 ϕ, then ψ is also ternary, but
ψ(c0, c1, c2) is ∃x1 ϕ(c0, x1, c2).

The notation for substitution can be modified in an obvious way. If ϕ has at
most one variable, x (which could be x1066, for all we know), then we can write
ϕ as ϕ(x); then ϕ(t) is the result of substituting t for x in ϕ, as long as x really
is a free variable of ϕ; otherwise ϕ(t) is just ϕ.
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A nullary formula is a sentence. In a given signature L, a sentence σ is either
true or false in a structure A; if true, we write

A � σ; (.)

otherwise, A 2 σ. The definition is recursive:
. If σ is atomic, then

A � σ ⇐⇒ σA = 1.

. If σ is ¬τ , then
A � σ ⇐⇒ A 2 τ.

. If σ is τ N ρ, then
A � σ ⇐⇒ A � τ & A � ρ.

If σ is ∃x ϕ, then A � σ if and only if

A′ � ϕ(cb)

for some element b of A, where cb is a new constant, and A′ is the same
as A, except that it interprets cb as b.

Another way to write the last condition is as follows. Given the structure A

of L, we let L(A) be L, together with a new constant cb for each element b of
A. Then we define AA as a structure of L(A) in the obvious way: it interprets
symbols of L as A does, and it interprets each new constant cb as b. If ϕ is a
quantifier-free formula of L(A), then we can denote by ϕA the interpretation of
ϕ in AA. If σ is a sentence of L(A), then we write A � σ if σ is true in AA.
Usually we denote the constant cb by b. If σ is ∃x ϕ, then we have simply that
A � σ if and only if

A � ϕ(b)

for some element b of A.
The following is an easy consequence of the definitions.

Lemma ... In some signature, if A is a structure, and ϕ is a quantifier-free
n-ary formula, then ϕA is the set of all ~b in An such that

A � ϕ(~b ).

Now we can use the lemma as a definition of ϕA for arbitrary formulas ϕ.
Then the following is also easy.

Lemma ... In some signature, if A is a structure, and ϕ is a quantifier-free
(n+ 1)-ary formula, then

(∃xn ϕ)A = πn+1
n [ϕA].
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Entailment

Suppose σ is a sentence of some signature L, and A is a structure of L. If σ is
true in A, then we may say that A is a model of σ. More generally, if Γ is a set
of sentences of L, and each sentence in Γ is true in A, then A is a model of Γ;
in this case, we may write

A � Γ. (.)

If σ is true in every model of Γ, then σ is a logical consequence of Γ, or Γ
logically entails σ, and we write

Γ � σ. (.)

In case Γ = {σ0, . . . , σn−1}, we may write also

σ0, . . . , σn−1 � σ.

If n = 0 here, that is, Γ is empty, then we write

� σ;

this means σ is true in every structure of L, or in other words σ is a validity.
Note well that the semantic turnstile � has completely different meanings

in (.) and (.). To avoid confusion, one might prefer to write (.) as

�A Γ.

Let us now permit ⇒ in formulas, and define interpretations so that

(ϕ⇒ ψ)A = (¬(ϕN ¬ψ))A.

Let us also permit ∀ in formulas, so that

(∀x ϕ)A = (¬∃x ¬ϕ)A.

A generalization of a formula ϕ is a sentence of the form ∀u0 · · · ∀un−1 ϕ. A
tautology is a sentence F (σ0, . . . , σn−1), where F is a tautology of propositional
logic.

Let L be a signature with infinitely many constants. We can now define a
proof-system for L, in the sense of § ., as follows. The only rule of inference
is Detachment. The axioms are defined recursively:

. Every tautology is an axiom.
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. For all constants c and d and all singulary formulas ϕ of L, the following
are axioms:

c = c, c = d⇒ ϕ(c) ⇒ ϕ(d).

. For all singulary formulas ϕ and ψ of L with free variable x, and all
sentences σ of L, the following are axioms:

∀x (ϕ(x) ⇒ ψ(x)) ⇒ ∀x ϕ(x) ⇒ ∀x ψ(x),
∀x (σ ⇒ ψ(x)) ⇒ σ ⇒ ∀x ψ(x).

. For all singulary formulas ϕ of L with free variable x, the following is an
axiom:

∃x ϕ(x) ⇒ ¬∀x ¬ϕ(x).

. If ϕ(x) is a formula of L in which a constant c of L does not appear, and
ϕ(c) is an axiom, then the following is an axiom:

∀x ϕ(x).

As in § ., if Γ is a set of sentences, and σ is a sentence, we write

Γ ⊢ σ (.)

if there is a formal proof of σ from Γ in the proof-system just defined. In this
case, we may say that σ is deducible from Γ.

The set of sentences deducible from a set Γ is recursively defined:
. It contains the axioms.
. It contains the sentences in Γ.
. If it contains σ and σ ⇒ τ , then it contains τ .

This allows the use of induction to prove statements about those sentences.
Note that, by assuming that L contains infinitely many constants, we ensures

that, if Γ does not formally entail σ in L, then neither does it do so in a larger
signature.

Theorem .. (Soundness). If Γ ⊢ σ, then Γ � σ.

Proof. We use induction. The claim is trivially true when σ ∈ Γ. The claim is
true when σ is an axiom, since in that case � σ (exercise). Finally, suppose the
claim is true when σ is ρ and when σ is ρ⇒ τ . If these sentences are deducible
from Γ, then by inductive hypothesis Γ � ρ and Γ � ρ⇒ τ ; therefore Γ � τ .
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The expression in (.) can be called a sequent. We usually do not write
down formal proofs; we show that they exist by considering sequents.

Theorem .. (Detachment). If Γ ⊢ ρ, and Γ ⊢ ρ⇒ σ, then Γ ⊢ σ.
Proof. If α0, . . . , αm is a formal proof of ρ from Γ, and β0, . . . , βn is a formal
proof of ρ⇒ σ from Γ, then

α0, . . . , αm, β0, . . . , βn, σ

is a formal proof of σ from Γ.

Theorem .. (Deduction). If Γ ∪ {σ} ⊢ τ , then

Γ ⊢ σ ⇒ τ.

Proof. We use induction on τ . There are three cases to consider.
. If τ is an axiom or an element of Γ, then

Γ ⊢ τ,
⊢ τ ⇒ σ ⇒ τ, [tautology]

Γ ⊢ σ ⇒ τ. [Detachment]

. If τ is σ, then σ ⇒ τ is a tautology, so again the claim follows.
. The last possibility is that ρ and ρ ⇒ θ are deducible from Γ ∪ {σ}, and

the claim holds for each of these two sentences. Then

Γ ⊢ σ ⇒ ρ, [inductive hyp.]

Γ ⊢ σ ⇒ ρ⇒ θ, [inductive hyp.]

⊢ (σ ⇒ ρ) ⇒ (σ ⇒ ρ⇒ θ) ⇒ σ ⇒ θ, [tautology]

Γ ⊢ σ ⇒ θ. [Detachment (twice)]

Theorem .. (Generalization). If Γ ⊢ ϕ(c), where x is free in ϕ(x), and c
does not occur in ϕ(x) or in any sentence of Γ, then

Γ ⊢ ∀x ϕ(x).

Proof. The claim is true when ϕ(c) is an axiom. The claim is vacuously true
when ϕ(c) is in Γ, since then c does occur in a sentence of Γ. The remaining
possibility is that Γ ⊢ σ and Γ ⊢ σ ⇒ ϕ(c). If c does not occur in σ, then we
may assume Γ ⊢ ∀x (σ ⇒ ϕ(x)). By Deduction from the appropriate axiom,
Γ ⊢ ∀x ϕ(x). The argument is nearly the same if c does occur in σ.
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Theorem .. (Tautology). If in propositional logic, F0, . . . ,Fm−1 � G, and
in first-order logic, Γ ⊢ Fk(σ0, . . . , σn−1) when k < n, then

Γ ⊢ G(σ0, . . . , σn−1).

Proof. Use the tautology

F0(σ0, . . . , σn−1) ⇒ . . .⇒ Fm−1(σ0, . . . , σn−1) ⇒ G(σ0, . . . , σn−1).

Theorem .. (Equality). ⊢ c = d⇒ d = c.

Proof. It is an axiom that c = d⇒ d = d⇒ d = c.

A sentence σ N ¬σ is a contradiction. A set Γ of sentences is consistent if
it does not formally entail a contradiction.

Lemma ... If every finite subset of a set of sentences is consistent, then
the whole set is consistent.

Proof. Suppose Γ is not consistent. Then there is a formal proof from Γ of some
contradiction. Such a formal proof can use only finitely many sentences from Γ.
Those sentences compose an inconsistent finite subset of Γ.

Lemma ... If Γ is consistent, then one of Γ ∪ {σ} and Γ ∪ {¬σ} is con-
sistent.

Lemma ... If Γ ∪ {σ0, . . . , σn−1} is inconsistent, then

Γ ⊢
∨

k<n

¬σk.

All of the foregoing will be used to prove the completeness of our proof-system
in § ..

Theories

The theory of a structure A in a signature L is the set of sentences of L that
are true in A. A set of sentences is a theory if it contains all of its logical
consequences. You should check that the theory of a structure is indeed a
theory in the sense just defined.

If some theory T is the set of logical consequences of a set Σ of sentences, then
Σ axiomatizes T , or Σ is a set of axioms for T . It is a consequence of Gödel’s
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Incompleteness Theorem that the theory of N in the signature {+,+, ·, 0, 1}
cannot be recursively axiomatized: there is no computer program that can gen-
erate a complete set of axioms for the theory. By Mojżesz Presburger’s earlier
work, the theory of N in the signature {+, 0, 1} is recursively axiomatizable
[, § ., pp. –]: the axioms are

) ∀x x+ 1 6= 0;
) ∀x ∀y (x+ 1 = y + 1 ⇒ x = y);
) ∀x x+ 0 = x;
) ∀x x+ (y + 1) = (x+ y) + 1;
) ϕ(0)N∀x (ϕ(x) ⇒ ϕ(x+1)) ⇒ ∀x ϕ(x), for all formulas ϕ(x) of {+, 0, 1}.

The last line is an axiom-scheme: it describes a set of axioms (in fact, an
infinite set).

In general, a theory T in a signature L is complete if

T � σ ⇐⇒ T 2 ¬σ
for all sentences σ of L. In particular then, the theory of a particular structure
is always complete. Two complementary problems of model-theory are:

. To show that a particular set of sentences axiomatizes a complete theory.
. To find a set of sentences that axiomatizes the (complete) theory of a

particular structure.
Presburger’s result shows that the former can sometimes be done; Gödel’s result
shows that the latter cannot always be done.

If T is a theory in a signature L, then two n-ary formulas ϕ(~x ) and ψ(~x ) of
L are T -equivalent if

T � ∀x0 · · · ∀xn−1 (ϕ(x0, . . . , xn−1) ⇔ ψ(x0, . . . , xn−1)).

One way to learn about a theory and its models is to try to eliminate quanti-
fiers. A theory T in a signature L admits elimination of quantifiers if for
every formula of L, there is a formula that is T -equivalent to it, but that con-
tains no quantifiers. Presburger proved elimination of quantifiers for the theory
axiomatized above, but in a larger signature.

Higher-order logics

First-order logic uses individual variables, but no other kinds of variables. In
particular, there are no variables for relations. Relations are symbolized by
Published in ; available in English in [].

In Warsaw, in , in his master’s thesis, at the suggestion of Alfred Tarski. Then Pres-
burger went into the insurance industry. He died under the Nazis. [, pp. –]
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predicates in first-order logic, and predicates stand for different relations in
different structures; but in a particular first-order logic, predicates are constant
in the sense that they cannot be preceded by quantifiers.

In second-order logic, variables standing for relations are allowed. The
third of the properties of N listed at the end of § . is second order in this
sense, since it refers to every subset of N.

Likewise, R is characterized (among the structures called ordered fields) by the
second-order property of completeness, namely that every set of real numbers
with an upper bound has a least upper bound. See § ..

Like propositional logic (see Theorem ..), first-order logic has a compact-
ness theorem, Corollary .. below, namely that if every finite subset of a set
of sentences has a model, then the whole set has a model. Second-order logic
does not have such a theorem. This is a reason why model-theorists work mostly
with first-order logic.

Exercises

. Prove Lemma ...

. Show that good formulas and their free variables can be defined simulta-
neously as follows:

a) An atomic formula of L is a good formula of L, and each of its vari-
ables is free.

b) If ϕ is a good formula of L, then so is ¬ϕ, and this has the same free
variables as ϕ.

c) If ϕ and ψ are good formulas of L, and every variable that occurs in
both formulas is a free variable of both formulas, then (ϕ N ψ) is a
good formula of L, and its free variables are the variables that are
free variables of ϕ or ψ.

d) If ϕ is a good formula of L, and x is a free variable of ϕ, then ∃x ϕ is
a good formula of L, and its free variables are those of ϕ, except x.

. Prove Lemma ...

. Letting P and Q be singulary predicates, determine, from the definition
of �, whether the following hold.

Proved by Kurt Gödel for countable signatures in his doctoral dissertation in Vienna in ;
proved generally by Mal’tsev in the Soviet Union, and independently by Leon Henkin []
in  in his doctoral dissertation at Princeton. [, p. ]
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a) (∃x Px⇒ ∃x Qx) � ∀x (Px⇒ Qx);
b) (∀x Px⇒ ∃x Qx) � ∃x (Px⇒ Qx);
c) ∃x (Px⇒ Qx) � (∀x Px⇒ ∃x Qx);
d) {∃x Px, ∃x Qx} � ∃x (PxNQx);
e) ∃x Px⇒ ∃y Qy � ∀x ∃y (Px⇒ Qy).

. Let L = {R}, where R is a binary predicate, and let A be the L-structure
(Z,6). Determine ϕA if ϕ is:

a) ∀x1 (Rx1x0 ⇒ Rx0x1);
b) ∀x2 (Rx2x0 ∨Rx1x2).

. Let L be {S, P}, where S and P are binary function-symbols. Then
(R,+, ·) is an L-structure. Show that the following sets and relations
are definable in this structure:

a) {0};
b) {1};
c) {a ∈ R : 0 < a};
d) {(a, b) ∈ R2 : a < b}.

. Show that the following sets are definable in (ω,+, ·,6, 0, 1):
a) the set of even numbers;
b) the set of prime numbers.

. Let R be the binary relation

{(x, x+ 1) : x ∈ Z}

on Z. Show that R is 0-definable in the structure (Z, <); that is, find a
binary formula ϕ in the signature {<} such that ϕ(Z,<) = R.

. Prove that the axioms of our proof-system are valid (the missing detail in
the proof of Theorem ..).

. Prove Lemmas .. and ...

.. Equipollence

In ordinary life, if two sets have the same size, one way to tell this is to count
the sets. This procedure has two potential inconveniences:
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. The procedure gives us more information than necessary: it tells us not
only that the sets have the same size, but also what that size is.

. In the usual sense of counting, the procedure does not work for infinite
sets, since we can never count to the end of them.

An alternative procedure is to arrange the sets in pairs, each pair containing an
element of each set. Strictly, some of those pairs might be singletons, if the two
sets have elements in common. So really, if the sets are A and B, we should
make ordered pairs (c, d), where c ∈ A and d ∈ B; each element of A should
be the left entry of exactly one such pair, and each element of B should be the
right entry of exactly one such pair. This just means there should be a bijection
from A to B, if the two sets are to have the same size.

We introduce a new terminology for the notion of having the same size,—
a terminology that avoids introducing the notion of size itself. Two sets are
equipotent or equipollent if there is a bijection from one to the other. If A
and B are equipollent, we can write

A ≈ B.

Evidently,

A ≈ A,

A ≈ B ⇐⇒ B ≈ A,

A ≈ B & B ≈ C =⇒ A ≈ C.

We have in particular
N ≈ {a0, a1, a2, . . . },

provided ai 6= aj when i 6= j, since then the function n 7→ an is indeed a bijection
from the one set to the other.

Examples ...
. N ≈ {1, 2, 3, . . . }.
. N ≈ {k, k + 1, k + 2, . . . }.
. N ≈ {0, 2, 4, 6, . . . }; the bijection is x 7→ 2x.
. N ≈ Z, because of the bijection f given by

f(x) =





0, if x = 0,

k, if x = 2k − 1,

−k, if x = 2k.

The Latin participles potent- and pollent- both mean able.
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That is, N ≈ Z, because the elements of Z can be listed as

0, 1,−1, 2,−2, 3, . . .

. N ≈ N× N, because the elements of the latter set can be listed as

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), . . .

This list is made up of blocks of the form of

(0, n), (1, n− 1), (2, n− 2), . . . , (n, 0);

these are just the diagonals of the matrix

(0, 0) (0, 1) (0, 2) (0, 3) . . .
(1, 0) (1, 1) (1, 2) . . . . . . . . . .
(2, 0) (2, 1) . . . . . . . . . . . . . . . . .
(3, 0) . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Suppose f is a bijection from N to Z, and g is a bijection from N to N×N.
We can write g(x) as (g0(x), g1(x)). Then the function

x 7→ (f(g0(x)), f(g1(x)))

is a bijection from N onto Z× Z. Thus N ≈ Z× Z.
. N ≈ {x ∈ Q : x > 0}, because of the list:

1,
1

2
, 2,

1

3
, 3,

1

4
,
2

3
,
3

2
, 4,

1

5
, 5,

1

6
,
2

5
,
3

4
,
4

3
,
5

2
, 6,

1

7
, . . . ,

This list is made up of blocks of the form of

1

n
,

2

n− 1
,

3

n− 2
, . . . ,

n

1
,

but with entries deleted if they are equal to entries that have already appeared.
. N ≈ Q.

Thus there are sets A and B such that

A ⊂ B & A ≈ B.
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But no such set B can be finite. Indeed, to be precise, let us say that a set C is
finite if, for some n in N,

C ≈ {0, . . . , n− 1},

that is, for some n in ω,
C ≈ n.

Theorem ... No element n of ω has a proper subset A such that A ≈ n.

Proof. We use induction. The claim is trivially true when n = 0, since this
has no proper subsets at all. Suppose the claim holds when n = m. Now let
n = m+1, and suppose A ⊆ n, and f is a bijection from n to A. There are two
cases to consider.

. If f(m) = m, then f r {(n, n)} is a bijection from m to A r {m}, and
the latter set is a subset of m. In this case, by inductive hypothesis,
Ar {m} = m, so A = n.

. If f(m) = k, where k < m, define the function g on m by

g(x) =

{
f(x), if f(x) 6= m,

k, if f(x) = m.

Then g is a bijection from m onto Ar {m}, so again Ar {m} = m, and
hence A = n.

This completes the induction.

A set is infinite if it is not finite. The contrapositive of the theorem then
gives us that, if a set is equipollent with a proper subset of itself, then the set
is infinite. In particular, N and all sets equipollent with it are infinite; to be
more precise, such sets are called countably infinite. So N, Z, and Q are all
countably infinite. A set is called countable if it is a subset of a countably
infinite set.

Theorem ... Suppose A and B are countable sets.

. A ∪B is countable.

. An is countable for all n in N.

In , Richard Dedekind [, p. ] suggested defining infinite sets as those that are
equipollent with proper subsets of themselves. Agreement of this definition with ours will
require the Axiom of Choice, ...
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Proof. . If A = {a0, a1, . . . } and B = {b0, b1, . . . }, then we can list A∪B as

a0, b0, a1, b1, a2, . . . ,

with any repeats deleted.
. A0 = {∅}, so it is countable. Also, An+1 ≈ An ×A, so if An is countable,

then so is An+1 by the method of Example .. (). By induction, An is
countable for all n in N.

Theorem ... If L is a countable first-order signature, then the set of for-
mulas of L is countable.

Proof. Since L is countable, the set of all symbols used in formulas of L is
countable. A bijection k 7→ sk from N to this set establishes an alphabetical
ordering of the set: the symbol si comes before sj in this ordering if and only if
i < j. Hence we can arrange all of the formulas of length n in alphabetical order;
in particular, we can list these formulas as ϕn

0 , ϕn
1 , ϕn

2 , . . . . Now we can embed
the set of all formulas of L in N× N; so the set of formulas is countable.

Instead of ¬(A ≈ B), we may write A 6≈ B. If there is an injection from A to
B, we write

A 4 B.

If there is an injection, but no bijection, we write

A ≺ B; (.)

in this case, B is strictly larger than A. For example, if A 6= ∅, then ∅ ≺ A.
By Theorem .. below, (.) can hold even when both A and B are infinite.

Meanwhile, the following gives some justification for the name power set.

Theorem ... If n ∈ N, and a set A has n elements, then P(A) ≈ Bn.

Proof. It is enough to show P(n) ≈ Bn if n ∈ ω. Let f be the function from
P(n) to Bn given by

f(B) = (e0, . . . , en−1),

where

ei =

{
1, if i ∈ B;

0, if i /∈ B.

Let g be the function from Bn to P(n) given by

g((e0, . . . , en−1)) = {i : ei = 1}.
Then g ◦ f = idP(n) and f ◦ g = idBn . So f is a bijection by Theorem ...
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The last theorem can be modified to make sense for infinite sets. In § ., a
couple of formal definitions of n-tuples are mentioned. By yet another definition,
an n-tuple of elements of a set A is just a function from {0, . . . , n − 1} (the
von-Neumann natural number n) into A. To indicate explicitly the set of such
functions, I propose to use the notation

nA.

Then nA ≈ An. The latter set could be defined as the former. I shall use the
notation An when the precise definition of its elements is not important: when
all that matters is that

~a = ~b ⇐⇒
∧

k<n

ak = bk

for all elements ~a and ~b of An. (Compare the use of N instead of ω for the set
of natural numbers, as described in § ., when the composition of an individual
natural number is not important.) We can generalize the new notation, writing

AB

for the set of functions from A to B.

Theorem ... For all sets A,

P(A) ≈ AB.

Proof. The function
f 7−→ {x ∈ A : f(x) = 1}

is a bijection from AB to P(A); for, it has the inverse C 7→ χC , where

χC(x) =

{
1, if x ∈ C,

0, if x /∈ C,

for all subsets C of A.

Here χC is the characteristic function of C on A. Here the letter chi may
cause confusion because of its resemblance to X; but χ is the initial of the Greek
χαρακτήρ.

Many writers will give this function the domain {1, 2, . . . , n} instead of {0, 1, . . . , n− 1}.
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The inequality
n < 2n (.)

holds for all natural numbers n (see § ., Exercise ); so the power set of a
finite set is always strictly larger than the original set. The same is true for all
sets:

Theorem .. (Cantor). A ≺ P(A) for all sets A.

Proof. We have an injection x 7→ {x} from A to P(A), so A 4 P(A). Suppose f is
an arbitrary injection from A into P(A). Let B be the subset {x ∈ A : x /∈ f(x)}
of A. Then B is not in the range of f . For, suppose x ∈ A. If x ∈ B, then
x /∈ f(x), so B 6= f(x). If x /∈ B, then x ∈ f(x), so again B 6= f(x). So there is
no bijection between A and P(A).

Note the resemblance between this proof and that of the Russell Paradox
given on p. . A set that is not countable is uncountable. We have now that
P(N) is uncountable.

Suppose A 4 B and B 4 A; do we then have A ≈ B? In fact we do, by
Theorem .., but the proof is not easy.

Exercises

Suppose A is an infinite set.

. Can you write down a bijection from A to A×A?

. Suppose f is a bijection from A to A2. Can you write down a bijection
from A to

a) A3?

b) A4?

c) An?

.. Equivalence-relations

Let R be a binary relation. The field of R is the set

{x : ∃y x R y} ∪ {y : ∃x x R y}.

Let this set be A. Then (A,R) is a structure in the sense of the last section. We
say that R is:
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) reflexive, if
(A,R) � ∀x x R x;

) symmetric, if
(A,R) � ∀x ∀y (x R y ⇒ y R x);

) transitive, if

(A,R) � ∀x ∀y ∀z (x R y N y R z ⇒ x R z).

Note that, in these definitions, we need restrict the variables to the field of the
relation only in the definition of reflexivity. The relation R is reflexive if b R b
for all b in the field of R. By contrast, R is symmetric if c R b whenever b R c,—
there is no need to restrict b and c to the field of R, since this is already done
by the condition b R c. A similar observation holds for transitivity.

An alternative formulation of the definitions can be given in terms of the
notions of § .. The relation R is:

) reflexive if and only if ∆A ⊆ R;
) symmetric if and only if R = R̆;
) transitive if and only if R/R ⊆ R.

A reflexive, symmetric, transitive relation is called an equivalence-relation.

Examples ...
. ∆A is an equivalence-relation whose field is A.
. Equipollence is an equivalence-relation whose field is the class of all sets.
. Truth-equivalence (§ .) is an equivalence-relation whose field is the set

of propositional formulas. (Likewise, if T is a first-order theory of L, then T -
equivalence (§ .) is an equivalence-relation whose field is the set of first-order
formulas of L.)

. If n is an integer, then congruence modulo n is an equivalence-relation
with field Z. This relation consists of pairs (a, b) such that

a ≡ b (mod n),

that is, n | a− b.
. On N2, we can define an equivalence-relation ∼ by

(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c.

(See § . for elaboration.)
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. Similarly, on Z× (Z r {0}), we can define an equivalence-relation ≈ by

(a, b) ≈ (c, d) ⇐⇒ ad = bc.

(Again, see § ..)
. If k < n, and A is a set, then there is an equivalence-relation ∼n

k on An

given by

~a ∼n
k
~b ⇐⇒

∧

j<n
j 6=k

aj = bj ,

that is, ~a ∼n
k
~b ⇐⇒ πn

k (~a ) = πn
k (
~b ), where πn

k is as in § ..

Theorem ... If f : A⇒ B, then f/f̆ is an equivalence-relation with field A.

Suppose ∼ is an equivalence-relation on A. If b ∈ A, we can define

b/∼ = {x ∈ A : b ∼ x};

this is the ∼-class of b, or the equivalence-class of b (with respect to ∼;
the notation here must not be confused with the notation for composition of
relations). If the equivalence-relation is clear, one might write [b] instead of
b/∼, as in the following:

Lemma ... If an equivalence-relation on A is given, then

[b] = [c] ⇐⇒ [b] ∩ [c] 6= ∅

for all b and c in A.

The quotient of A by the equivalence-relation ∼ is the set {[b] : b ∈ A},
which can be denoted by

A/∼;

this can be read as A modulo ∼. Then there is a quotient-map or projection
from A to A/∼, namely the function

x 7−→ [x].

This function might be denoted by π∼. Suppose also f : A → B. One may ask
whether there is a function g from A/∼ to B such that f = g ◦ π∼. That is,
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does g exist so that the following diagram commutes?

A
π
∼ //

f

��

A/∼

g

����
��

��
��

��
�

B

Yet another way to formulate the question is, does f have π∼ as a factor? Nec-
essary and sufficient conditions for a positive answer are given by the following.

Theorem ... Suppose E is an equivalence-relation on A, and f : A → B.
The following conditions are equivalent:

. E ⊆ f/f̆ ;
. x E y =⇒ f(x) = f(y) for all x and y in A;
. there is a function g from A/E to B such that g([x]) = f(x) for all x in

A.

Proof. Exercise; see Examples .. below.

The function g in the theorem can be written

[x] 7−→ f(x).

Such an expression does not automatically define a function. If it does, we say
the function is well-defined.

Examples ... The following parallel Examples ...
. If F is an n-ary propositional formula in a signature L, then there is a

function ~e 7→ F̂ (~e ) or F̂ from Bn to B. Hence there is a function F 7→ F̂

from the set Fmn(L) of n-ary propositional formulas of L to the set B
n

B. By
definition of truth-equivalence, F ∼ G if and only if F̂ = Ĝ. Hence there is a
well-defined injection F /∼ 7→ F̂ from Fmn(L)/∼ to B

n

B; if L is adequate, then
this function is also surjective (at least if n is large enough).

. If n > 0, then the distinct elements of the quotient of Z by congruence
modulo n are [0], [1], [2], . . . , [n− 1].

. The function [a, b] 7→ a − b is a well-defined bijection from N2/∼ to Z.
(In § ., the structure Z will be defined in terms of N so that there is such a
bijection.)

. The function [a, b] 7→ a/b is a well-defined bijection from Z× (Z r {0})/≈
to Q. (In § ., the structure Q will be defined in terms of Z so that there is
such a bijection.)
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. The equipollence-class of a set A can be called the cardinality of A and
denoted by

|A|.
Equipollent sets are sets having the same equipollence-class; such sets can also be
said to have the same cardinality. An alternative definition of cardinality is given
in § ., whereby the cardinality of A is a particular set in the equipollence-class
of A.

. The function [~x ] 7→ πn
k (~x ) is a well-defined bijection from An/∼n

k to An−1.

A partition of A is a subset P of P(A) such that:
) if B and C are in P , and B ∩ C 6= ∅, then B = C;
) every element of A is an element of some element of P .

Theorem ... If ∼ is an equivalence-relation on A, then A/∼ is a partition
of A. Conversely, if P is a partition of A, then the relation

{(x, y) ∈ A2 : (∃X ∈ P ) {x, y} ⊆ X}

is an equivalence-relation on A.

Exercises

. Prove Theorem ...

. Prove Lemma ...

. Prove Theorem ...

. Prove Theorem ...

. Let A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
a) Define an equivalence-relation E on A so that |A/E| = 5.

b) Can you define an equivalence-relation F on A so that |A/F | = 7?

. Define an equivalence-relation ∼ on Z so that there is a bijection from
Z/∼ to N.

. For every property in the set {reflexive, symmetric, transitive}, find a set
A and a relation R on A that has just the other two properties.

. Suppose R is a reflexive and symmetric relation on A, but R 6⊆ R/R. Can
you find an equivalence-relation S on A such that R ⊆ S, but S 6= R×R?
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.. Orderings

Let R be a binary relation with field A. The following possible properties com-
plement those given in § .. The relation R is:

) irreflexive, if
(A,R) � ∀x ¬(x R x);

) anti-symmetric, if

(A,R) � ∀x ∀y (x R y N y R x⇒ x = y).

Again we have alternative characterizations. The relation R is:
) irreflexive if and only if R ∩∆A = ∅;
) anti-symmetric if and only if R ∩ R̆ ⊆ ∆A.

A reflexive, anti-symmetric, transitive relation is called a partial ordering of
its domain. If R is a partial ordering, and A is its domain, then the structure
(A,R) is a partially ordered set or a partial order. More generally, we may
say that a pair (A,R) is a partial order when really it is (A,R ∩A×A) that is
the partial order (see the examples below).

A strict partial ordering is an irreflexive, anti-symmetric, transitive rela-
tion. If R is a strict partial ordering, and the set A includes the domain of R,
then the pair (A,R) is a strict partial order. Note then that a strict partial
order is technically not a partial order (see Exercise ). In any case, in the ter-
minology used here, an order is a kind of structure (see Figure .); an ordering
is the relation that is part of an order. However, this terminological distinction
is not of great importance.

Examples ...
. (P(A),⊆) is a partial order; so is (B,⊆), if B ⊆ P(A).
. (P(A),⊂) is a strict partial order.
. (See the first of Examples ...) We can understand logical entailment �

as a binary relation on Fmn(L)/∼. Then (Fmn(L)/∼,�) is a partial order. The
case n = 2 can be depicted as in Figure .. (Such a drawing of a partial order
is called a Hasse diagram.)

. (Z, | ) is a partial order.
. (A,∆A) is a partial order.
. (A,∅) is a strict partial order.
. The relation 4 on sets is not a partial ordering; but we shall see in § .

that it ‘induces’ a partial ordering of cardinalities.

Lemma ...
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Figure .. The remains of the temple at Priene: an example of the Ionic order
of architecture. Think of the columns as an order in our sense.

. If (A,R) is a partial ordering, then (A,Rr∆A) is a strict partial ordering.
. If (A,S) is a strict partial ordering, then (A,S∪∆A) is a partial ordering.

In the lemma, one might say that Rr∆A is associated with R, and S ∪∆A

with S.
A partial order (A,R) is a linear order or a total order if

(A,R) � ∀x ∀y (x R y ∨ y R x),

that is,
R ∪ R̆ = A2.
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1

P ∨Q

ooooooooooooooooo
P ⇒ Q

��������
Q ⇒ P

////////

P | Q

JJJJJJJJJJJJJJ

Q

��������

ooooooooooooooooo
P

////////

ooooooooooooooooo
P < Q

JJJJJJJJJJJJ

ooooooooooooooo
P ⇔ Q

////////

��������
¬P

JJJJJJJJJJJJJ

��������
¬Q

JJJJJJJJJJJJJ

////////

P N Q

////////

��������

ooooooooooooooo
Q ; P
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oooooooooooooooo
P ; Q

JJJJJJJJJJJJJ

////////

oooooooooooooooo
P fQ

JJJJJJJJJJJJ

////////

��������

0
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////////

��������
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Figure .. In this depiction of the set of (truth-equivalence-classes of) propo-
sitional formulas in the variables P and Q, F � G if and only if G
can be reached from F by travelling upwards along the drawn lines.
The new connective ; here has the obvious meaning.

If 6 is a linear ordering, then the associated strict linear ordering can be denoted
by <, and vice versa.

Example ... (Z,6) is a linear order; (Z, <) is a strict linear order.

Suppose (A,R) and (B,S) are partial orders, and f : A → B. Then f is
order-preserving if

a R b =⇒ f(a) S f(b)

for all x and y in A. An order-preserving function is an example of a more
general notion:

Suppose A and B are two structures in a signature L. A function f from A
to B is called a homomorphism from A to B if

A � ϕ(a0, . . . , an−1) =⇒ B � ϕ(f(a0), . . . , f(an−1)) (.)
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for all atomic formulas ϕ(x0, . . . , xn−1) of L and all ai in A, for all n in N.
If (.) holds for all atomic and negated atomic formulas ϕ(x0, . . . , xn−1) of L
and all ai in A, for all n in N, then f is an embedding of A to B. Finally, f is
an isomorphism if f is invertible and f−1 is a homomorphism from B to A.

A homomorphism is thus a function that preserves structure; it preserves the
symbols in a signature (hence it preserves the atomic formulas that use them).
An embedding also preserves their complements; in particular, it preserves in-
equality, so it is an injection. The existence of an isomorphism shows that two
structures are the same as structures. If an isomorphism exists between A and
B, then A and B are called isomorphic, and we write

A ∼= B.

Isomorphism is an equivalence-relation. Isomorphic structures have the same
theories (the proof is tedious, but not surprising).

Examples ...
. An order-preserving function is a homomorphism of partial orders. An

isomorphism of partial orders is an invertible order-preserving function whose
inverse is also order-preserving.

. The identity is a homomorphism from (N, |) to (N,6), but not an embed-
ding.

. Any function from a non-empty set to another is a homomorphism of sets.
Equipollence is isomorphism of sets.

. By Theorem .., if f : A → B, then X 7→ f−1[X] is a homomorphism
from (P(B),∩,∪, c) to (P(A),∩,∪, c).

. More examples of homomorphisms and isomorphisms are in §§ ., .
and ..

The following is a representation theorem: it shows that every partial
order can be represented by (is isomorphic to) a structure of the form given in
the first of the Examples ... Note how the proof of the theorem uses every
property in the definition of partial orders.

Theorem ... For every partial order (A,R), there is a subset B of P(Ω)
such that (A,R) ∼= (B,⊆).

Proof. Let f be the function from A to P(A) given by

f(a) = {y ∈ A : y R a}.
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4 6

2
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3 5

1

>>>>>>>
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{1, 4} {1, 2, 3, 6}

{1, 2}

ssssssssss
{1, 3} {1, 5}

{1}

KKKKKKKKKK

ssssssssss

Figure .. Two isomorphic partial orders

Then f is injective: Indeed, suppose c and d are elements of A. If c R d and
d R c, then c = d since R is anti-symmetric. Suppose c 6= d. Then we may
assume ¬(c R d). Then c /∈ f(d). But c ∈ f(c) since R is reflexive. Therefore
f(c) 6= f(d). Let B = f [A]; then f gives a bijection between A and B.

Also, f is order-preserving: Suppose c R d. If e ∈ f(c), then e R c, so e R d
since R is transitive; hence e ∈ f(d). Thus f(c) ⊆ f(d). This shows that f is
order-preserving.

But X 7→ f−1[X] is also order-preserving (as a function on B, this set being
equipped with the relation ⊆): If f(c) ⊆ f(d), then c ∈ f(d) since c ∈ f(c); so
c R d. Therefore f is an isomorphism from (A,R) to (B,⊆).

Examples ...
. The partial order ({1, 2, 3, 4, 5, 6}, |) is isomorphic to (B,⊆), where B is

the set
{{1}, {1, 2}, {1, 3}, {1, 2, 4}, {5}, {1, 2, 3, 6}}.

See Figure ..
. A set of propositional formulas in n variables, partially ordered by logical

entailment �, is isomorphic to a set of Boolean combinations of n suitable sets,
partially ordered by inclusion. Compare Figure . to Figure ..

Exercises

. Show that no partial ordering is a strict partial ordering.

. Are there partial orderings that are also equivalence-relations?

. Are there relations that are both symmetric and anti-symmetric?
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Figure .. A partial order of sets. (The sets A and B here should be indepen-
dent in the sense that all Boolean combinations here are distinct.)

. Write down the ordered pairs that belong to |, considered as a relation on
{1, 2, 3, 4, 5, 6}. Can you add pairs to this relation so that it becomes a
linear ordering?

. More generally, if R is a partial order on a finite set A, is there a linear
ordering S on A such that R ⊆ S?

. Find sets A and B such that all of the Boolean combinations depicted in
Figure . are distinct.

.. Infinitary Boolean operations

The union of two sets is the set comprising everything that is in one or the other
of the sets. There is no reason to restrict unions to two sets. Instead of writing
A ∪B, we might write ⋃

{A,B}.
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This is the union of the single set {A,B}, whose elements happen to be the sets
A and B. Then

⋃{A,B,C} is A ∪ B ∪ C, and so forth. If S is a class of sets,
then the union of S is the class

{x : ∃y (y ∈ S N x ∈ y)};

this is denoted by ⋃
S.

Unions in this new sense are infinitary, in the sense that the set S may be
infinite.

We shall need the following for Theorem ...

Axiom .. (Union). The union of a set is a set.

As there are infinitary unions, so there are infinitary intersections: If S is
a class of sets, then

⋂
S = {x : ∀y (y ∈ S ⇒ x ∈ y)}. (.)

So A ∩B is
⋂{A,B}, and so forth.

Theorem ... The intersection of a non-empty set of sets is a set.

Proof. If S contains A, then

⋂
S = {x ∈ A : ∀y (y ∈ S ⇒ x ∈ y)},

which is a set by the Axiom of Separation, ...

By strict application of (.),
⋂
∅ is the class of everything that belongs to

some set; but this class is not a set.
The following will be useful in the next chapter, starting in § ..

Theorem ... Let S be a set of sets, one of which is A. Then

⋂
S ⊆ A ⊆

⋃
S.

Proof. Exercise.
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Sometimes, in an infinitary union
⋃S (or an intersection

⋂S), the set S is
given as the range of a function. Say f : A→ P(B). Then we can write

⋂
f [A] =

⋂

x∈A

f(x)

and
⋃
f [A] =

⋃
x∈A f(x).

Examples ...

. R =
⋃

n∈N
(−1− n, n+ 1);

.
⋂

n∈N
[n,∞) = ∅;

.
⋂

n∈N
[−1/(n+ 1), 1/(n+ 1)] = {0}.

Completeness

It is now possible to prove the completeness of our proof-system for first-order
logic in a countable signature.

Theorem .. (Completeness). Our proof-system for first-order logic in a
countable signature is complete.

Proof. Suppose Γ is a set of sentences that does not formally entail σ. Then
Γ must be consistent (why?). We shall show that Γ has a model. It will then
follow that Γ does not logically entail σ (why?).

Let C be a set {ck : k ∈ N} of new constants. We consider two cases.
Suppose first that Γ ∪ {ci 6= cj : i < j} is inconsistent. Then there is some

greatest n such that Γ ∪ {ci 6= cj : i < j < n} is consistent (why?). Hence

Γ ∪ {ci 6= cj : i < j < n} ⊢ c0 = cn ∨ · · · ∨ cn−1 = cn.

We now extend Γ to a maximal consistent set Σ of sentences of L∪{ck : k < n}.
We do this as follows. Since we are working in a countable signature L, we can,
by Theorem .., list the sentences of L as σ0, σ1, . . . . Now we define a list
of sets of sentences recursively as follows. We let Γ0 = Γ. Supposing Γn has
been defined, we let Γn+1 be Γn ∪ {σn}, if this is consistent; otherwise, Γn+1 is
Γn ∪ {¬σn}. By Lemma .. and induction, each set Γn is consistent.

Now define
Σ =

⋃

n∈N

Γn.
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By Lemma .., this set is consistent. Indeed, every finite subset of Σ can be
written as {τ0, . . . , τn−1} for some n in N. Each sentence τk belongs to some
set Γf(k). Let m be the greatest element of {f(0), . . . , f(n − 1)} (how?). Then
{τ0, . . . , τn−1} ⊆ Γm, so it is consistent.

Suppose Σ ⊢ ϕ(ck) whenever k < n. Then

Σ ⊢ ck = cn ⇒ ϕ(cn)

whenever k < n, and therefore

Σ ⊢ c0 = cn ∨ · · · ∨ cn−1 = cn ⇒ ϕ(cn),

Σ ⊢ ϕ(cn),

Σ ⊢ ∀x ϕ(x)

by Generalization. Contrapositively, if Σ ⊢ ∃x ϕ(x), then Σ ⊢ ϕ(ck) for some
k that is less than n. This enables us to make {ck : k < n} into a model of Σ
(how?).

In the other case, in producing Σ, whenever we add ∃x ϕ(x), we must also
add ϕ(cn) for some n such that cn has not already been used.

The proof can be adapted to the case where L is uncountable by means of
Theorem ...

Corollary .. (Compactness Theorem). If every finite subset of a set Γ of
sentences has a model, then Γ has a model.

Proof. If Γ has no model, then Γ � ⊥, so Γ ⊢ ⊥, hence Γ0 ⊢ ⊥ for some finite
subset Γ0 of Γ. Then Γ0 � ⊥, so Γ0 has no model.

Exercises

. Find
⋃
∅ and

⋃{∅}.

. Can you define
⋂
∅?

. Find a set S of sets such that
⋃S =

⋂S.

. Prove Theorem ...

. Prove the infinitary analogues of some propositions in § .: Suppose
f : A→ B, and S ⊆ P(A), and T ⊆ P(B). Then:
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a) f [
⋃S] = ⋃{f [X] : X ∈ S};

b) f [
⋂S] ⊆ ⋂{f(X) : X ∈ S};

c) the last inclusion is an equality if f is injective;

d) f−1[
⋃ T ] =

⋃{f−1[X] : X ∈ T };
e) f−1[

⋂ T ] =
⋂{f−1[X] : X ∈ T }.

. Supply the missing details of the proof of the Completeness Theorem.



. Numbers

.. The Peano axioms

In a book called The Principles of Arithmetic, Presented by a New Method [],
originally written in Latin and published in , Giuseppe Peano describes
the positive integers by means of nine strings of symbols—strings that he calls
axioms. In our terminology, three of Peano’s axioms say that equality of pos-
itive integers is an equivalence-relation; another says that everything equal to
a positive integer is a positive integer. The remaining five axioms have more
mathematical content, and versions of them are sometimes listed by themselves

as the axioms for the positive integers; these axioms may or may not be called
the Peano axioms. Two of these axioms say that 1 is a positive integer and that
every positive integer has a successor that is a positive integer.

The remaining three of Peano’s axioms correspond to the three statements
at the end of § ., except that the latter statements concern the non-negative
integers, rather than just the positive integers. The difference is of little math-
ematical importance. In model-theoretic terms, Peano’s axioms amount to the
assertion that there is a model of three particular sentences. Two of these sen-
tences are first order; the third is second order. I propose to make this assertion
as follows: it is the Axiom of Infinity, since, as we noted in § ., N must be
infinite.

Axiom .. (Infinity). In the signature {0,+}, there is a structure N such
that:

) N � ∀x x+ 6= 0;

) N � ∀x ∀y (x+ = y+ ⇒ x = y);

) (N, A) � P0 N ∀x (Px ⇒ P (x+)) ⇒ ∀x Px, whenever A ⊆ N, and P is a
singulary predicate interpreted as A in N.

For example, in [, pp.  f.] or [, § ].
Before Peano, Dedekind recognized that the natural numbers have this property, and that

all structures with this property are isomorphic [, II: §§ , ].





 . Numbers

Throughout this book, N is simply such a structure as is named in this axiom.
Let us refer to the sentence ∀x x+ 6= 0 as Axiom Z, since it says that Z ero is
not a successor. Then ∀x ∀y (x+ = y+ ⇒ x = y) is Axiom U, since it says
that successors are Unique when they exist. Finally, there is Axiom I, or the
Axiom of Induction, a second-order sentence that can be written formally as

∀P (P0 N ∀x (Px⇒ P (x+)) ⇒ ∀x Px),
where P is a singulary predicate-variable. Collectively, Axiom Z, Axiom U,
and Axiom I can be called the Peano Axioms.

Axiom Z is that the immediate predecessor of 0 does not exist as an element of
N. The Axiom of Induction is that a set contains all natural numbers, provided
that it contains 0 and contains the successor of each natural number that it
contains. Later we shall define the binary operation (x, y) 7→ x+ y on N so that
x+ = x+ 1.

Lemma ... Every non-zero natural number is a successor. Symbolically,

N � ∀x (x = 0 ∨ ∃y y+ = x).

Proof. Let A be the set of natural numbers comprising 0 and the successors.
That is, A = {0} ∪ {x ∈ N : ∃y y+ = x}. Then 0 ∈ A by definition. Also, if
n ∈ A, then n+ is a successor, so n+ ∈ A. By induction, A = N.

In the last proof, the full inductive hypothesis n ∈ A was not needed; only
n ∈ N was needed.

Lemma ... Every natural number is distinct from its successor:

N � ∀x x+ 6= x.

Proof. Let A = {x ∈ N : x+ 6= x}. Now, 0+ is a successor and is therefore
distinct from 0 by Axiom Z. Hence 0 ∈ A. Suppose n ∈ A. Then n+ 6=
n. Therefore n++ 6= n+ by the contrapositive of Axiom U; so n+ ∈ A. By
induction, A = N.

.. Recursion

To able to say much more about the natural numbers, we should introduce the
usual arithmetic operations. We need not do this by axioms; we can define the
operations. There are at least two ways to do this. The approach that I propose
to take starts with the following theorem. Its proof is difficult, but once we have
the theorem, then we can freely define many useful operations and functions.
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Theorem .. (Recursion). Suppose A is a set with an element b, and f : A→
A. Then there is a unique function h from N to A such that h(0) = b and

h(n+) = f(h(n)) (.)

for all n in N.

Proof. We seek h as a particular subset of N × A. Let B be the set whose
elements are the subsets C of N×A such that, if (x, y) ∈ C, then either

) (x, y) = (0, b) or else
) C has an element (u, v) such that (x, y) = (u+, f(v)).

Let R =
⋃
B; so R is a relation from N to A. Since (0, b) ∈ B, we have 0 R b.

If n R y, then (n, y) ∈ C for some C in B, but then C ∪ {(n+, f(y))} ∈ B by
definition of B, so (n+) R f(y). Therefore R is the desired function h, provided
it is a function from N to A. Proving this has two stages.

. For all n in N, there is y in A such that n R y. Indeed, let D be the set of
such n. Then we have just seen that 0 ∈ D, and if n ∈ D, then scrn ∈ D. By
induction, D = N.

. For all n in N, if n R y and n R z, then y = z. Indeed, let E be the set
of such n. Suppose 0 R y. Then (0, y) ∈ C for some C in B. Since 0 is not a
successor, we must have y = b, by definition of B. Therefore 0 ∈ E. Suppose
n ∈ E, and (n+) R y. Then (n+, y) ∈ C for some C in B. Again since 0 is
not a successor, we must have (n+, y) = (m+, f(v)) for some (m, v) in C. Since
succession is injective, we must have m = n. Since n ∈ E, we know v is unique
such that n R v. Since y = f(v), therefore y is unique such that (n+) R y. Thus
n+ ∈ E. By induction, E = N.

So R is the desired function h. Finally, h is unique by induction.

In the statement of Theorem .., (A, f, b) is a structure in the signature
{+, 0}. Also, Equation (.) is that the following diagram commutes:

N
+

−−−−→ N

h

y
yh

A −−−−→
f

A

That is, from the N on the left to the B on the right, there are two different
routes, but each one yields the same result. In fact, the theorem is simply that
there is a unique homomorphism from (N,+, 0) to (A, f, b).
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A recursive definition, or a definition by recursion, is a definition of a
function on N that is justified by Theorem ... Informally, we can define such
a function h by specifying h(0) and by specifying how h(n+) is obtained from
h(n).

Sections . and . will provide several important examples of recursive def-
initions. Such definitions are sometimes called inductive definitions, or defini-
tions by induction. However, this terminology is misleading when Axiom I is
called the Axiom of Induction. Logically, the Recursion Theorem is equivalent
to the three Peano Axioms together; the Recursion Theorem is strictly stronger
than the Induction Axiom, in the sense that there are models of Axiom I that do
not satisfy Theorem ... The remainder of this section is devoted to proving
this.

Let us say that a structure admits (definition by) recursion if it satisfies
the Recursion Theorem. That is, a structure A in the signature {+, 0} admits
recursion if and only if, for any other structure B in this signature, there is a
unique homomorphism from A to B.

Similarly, structures that satisfy the Induction Axiom can be said to admit
(proof by) induction.

Theorem ... All structures that admit recursion are isomorphic.

Proof. Suppose A and B admit recursion. Then there are unique homomor-
phisms f from A to B and g from B to A. Hence the composition g ◦ f is a
homomorphism from A to itself; so it is the unique such homomorphism. But
idA is also such a homomorphism. Therefore g ◦ f = idA. Similarly, f ◦ g = idB .
Therefore g = f−1, by Theorem ...

Corollary ... All structures that admit recursion satisfy the Peano axioms;
in particular, they admit induction.

Proof. By the theorem, every structure that admits recursion is isomorphic to
(N,+, 0). This satisfies the Peano axioms; hence so does every structure isomor-
phic to it.

However, there are structures that admit induction, but not recursion:

Dedekind calls them definitions by induction in [, Theorem , p. ], which corresponds
to the Recursion Theorem above.

Apparently Peano himself did not recognize the distinction between proof by induction and
definition by recursion; see the discussion of Landau [, p. x]. Burris [, p. ] does not
acknowledge the distinction. Stoll [, p. ] uses the term ‘definition by weak recursion’,
although he observes that the validity of such a definition does not obviously follow from
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Example ... On B, define a singulary operation s by s(0) = 1 and s(1) = 0.
Then (B, s, 0) admits induction, but there is no function g : B → N such that
g(0) = 0 and g(s(n)) = (g(n))+ for all n in B.

Exercises

. Prove the Recursion Theorem by showing that, if C is the set of all subsets
D of A such that

) (0, b) ∈ D, and
) if (u, v) ∈ D, then (u+, f(v)) ∈ D,

then
⋂ C is the desired function h.

. Prove directly (without Theorem ..) that Axiom Z is a consequence of
the Recursion Theorem. (For example, if in A the successor-operation is
surjective, show that there is no homomorphism from A into N.)

.. Arithmetic operations

By recursion, we can define addition, multiplication and exponentiation. First,
we define the binary operation + of addition on N by defining, for each n in
N, the singulary operation y 7→ n+ y. This operation is given by the rules:

) n+ 0 = n;
) n+m+ = (n+m)+.

the Induction Axiom. However, Stoll does not prove (as we have done in Example ..)
that the Induction Axiom is consistent with the negation of the Recursion Theorem.

The structure (B, s, 0) in Example .. also satisfies Axiom U, but not Axiom Z. If we define
t : B → B so that t(n) = 1 for each n in B, then (B, t, 0) satisfies the Induction Axiom and
Axiom Z, but not Axiom U. Later we shall have natural examples of structures satisfying
Axiom Z and Axiom U, but not admitting induction.

We can also define addition and multiplication using only the Induction Axiom, not the
Recursion Theorem. The method is used by Landau []. As a result, the operations can
be defined on structures that do not satisfy all of the Peano Axioms. For example, let n
be a positive integer, and on Z let ≡ be congruence modulo n. if x ≡ y, then x+1 ≡ y+1
(though by the standards of this chapter, we cannot quite prove this yet). Hence we can
define a successor-operation s on Z/≡, namely [x] 7→ [x + 1]. The resulting structure
(Z/≡, s, [0]) satisfies the Induction Axiom; therefore it can be equipped with an addition
and a multiplication that satisfy the theorems of this section. Thus we get arithmetic
modulo n. We can define exponentiation on Z/≡ by x1 = x and xk+1 = xk · x if and
only if n is 1, 2, 6, 42, or 1806. If we try the definition in case n = 3, we get 21 = 2,
22 = 2 · 2 = 1, so 2s(2) = 2, 2s(s(2)) = 1—but also s(s(2)) = 1, so 2s(s(2)) = 21 = 2.
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Lemma ... N satisfies
) ∀x 0 + x = x,
) ∀x ∀y y+ + x = (y + x)+.

Proof. By definition of addition, 0 + 0 = 0. Suppose 0 + n = n. Then

0 + n+ = (0 + n)+ [by definition of addition]

= n+. [by inductive hypothesis]

This completes an induction showing � ∀x 0 + x = x.
For the second claim, as the base step of an induction, we have

m+ + 0 = m+ [by the first claim]

= (m+ 0)+; [again by the first claim]

so ∀y y+ + 0 = (y + 0)+.
Now, as an inductive hypothesis, suppose ∀y y+ + n = (y + n)+. Then, for

all m in N, we have

m+ + n+ = (m+ + n)+ [by definition of addition]

= (m+ n)++ [by inductive hypothesis]

= (m+ n+)+ [again by definition of addition].

This completes an induction showing ∀x ∀y y+ + x = (y + x)+.

The second part of the proof showed N = {x : ∀y y+ + x = (y + x)+}: We
have proved the identity

y+ + x = (y + x)+ (.)

in N by induction on x. Induction on y here does not work directly. Indeed,
suppose A = {y ∈ N : ∀x y+ + x = (y + x)+}. To prove that 0 ∈ A, we have to
show that 0+ + n = (0+ n)+. From the first part of the theorem, we know that
(0 + n)+ = n+; but we cannot yet say anything about 0+ + n. We could prove
∀x 0+ + x = x+ by induction; but it would be more efficient just to start over
and prove Identity (.) by induction on x.

To prove some identities below, one has to choose the right variable to work
with.

Theorem ... On N, the following hold.
. ∀x x+ = x+ 1.
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. Addition is commutative:

∀x ∀y x+ y = y + x.

. Addition is associative:

∀x ∀y ∀z (x+ y) + z = x+ (y + z).

. Addition admits cancellation:

∀x ∀y ∀z (x+ z = y + z ⇒ x = y).

We may henceforth write n+ 1 instead of n+.
The binomial coefficients

(
n
m

)
can be given recursively as follows. First we

define m 7→
(
0
m

)
by

(
0

m

)
=

{
1, if m = 0,

0, if m 6= 0.

Then, in terms of of m 7→
(
n
m

)
, we define m 7→

(
n+1
m

)
recursively by

(
n+ 1

m

)
=

{
1, if m = 0,(
n
k

)
+
(

n
k+1

)
, if m = k + 1.

(See also Exercises  and  in § ..)
The binary operation · of multiplication on N is given by:
) n · 0 = 0
) n · (m+ 1) = n ·m+ n.

Multiplication is also indicated by juxtaposition, so that n ·m is nm.

Lemma ... N satisfies
) ∀x 0x = 0,
) ∀x ∀y (y + 1)x = yx+ x.

Theorem ... On N, the following hold.
. ∀x 1x = x.
. Multiplication is commutative (∀x ∀y xy = yx).
. Multiplication distributes over addition:

∀x ∀y ∀z (x+ y)z = xz + yz.

. Multiplication is associative (∀x ∀y ∀z (xy)z = x(yz)).
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Finally, exponentiation: the binary operation (x, y) 7→ xy on N is given by:
) n0 = 1;
) nm+1 = nm · n.

Theorem ... The following are identities in N:
) xy+z = xyxz;
) (xy)z = xyz;
) (xy)z = xzyz.

Proof. Exercise.

Exercises

. Prove Theorem ... In the latter two parts, does induction work on
every variable?

. Prove that
(
x
1

)
= x for all x in N.

. Prove Lemma ... In the second part, does induction work on either
variable?

. Prove Theorem ...

. Prove Theorem ...

.. Rational numbers

The positive rational numbers

The integers can be constructed from the natural numbers, and the rational
numbers can be constructed from the integers. However, the positive rational
numbers can also be constructed directly from the positive natural numbers, and
indeed we are taught some aspects of this construction from an early age. Let
us denote the set of positive natural numbers, {1, 2, 3, . . . }, by

N+.

If a and b are natural numbers, then there is a fraction denoted by

a

b
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or a/b. Then there are definitions for adding and multiplying fractions:

a

b
+
c

d
=
ad+ cb

bd
,

a

b
· c
d
=
ac

bd
. (.)

We are taught to reduce fractions also: By (.) we compute 1/3 + 1/6 = 9/18,
which reduces to 1/2. In particular, 9/18 and 1/2 are equal fractions. Equality
of fractions may be given by

a

b
=
c

d
⇐⇒ ad = cb. (.)

This equation is justified by:

Theorem ... The relation ∼ on N× N is an equivalence-relation.

Proof. Reflexivity and symmetry of ∼ follow immediately from the correspond-
ing properties of equality; but transitivity needs more. Suppose (a, b) ∼ (c, d)
and (c, d) ∼ (e, f). Then ad = cb and cf = ed, so

(ad)f = (cb)f = c(bf) = c(fb) = (cf)b = (ed)b

by commutativity and associativity of multiplication. By these properties and
also cancellation, we can go on to conclude

af = eb,

hence (a, b) ∼ (e, f).

The fraction a/b is the equivalence-class (a, b)/∼, where

(a, b) ∼ (x, y) ⇐⇒ ay = bx. (.)

Let us denote (N+ × N+)/∼ by
Q+.

This is the set of positive rational numbers.

Structure

We are free to define operations ⊕ and ⊗ on N× N by

(a, b)⊕ (c, d) = (ad+ cb, bd), (a, b)⊗ (c, d) = (ac, bd).

What makes these useful is the following:
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Theorem ... If a/b = a′/b′ and c/d = c′/d′, then

(a, b)⊕ (c, d) ∼ (a′, b′)⊕ (c′, d′),

(a, b)⊗ (c, d) ∼ (a′, b′)⊗ (c′, d′).

Corollary ... On Q+, the equations (.) define two binary operations.

Theorem ... On Q+,
) addition and multiplication are commutative and associative,
) multiplication distributes over addition,
) 1 is a multiplicative identity:

∀x 1 · x = x.

The whole point of defining Q+ is the following:

Theorem ... There is a well-defined operation x 7→ x−1 on Q+ given by

(a
b

)−1

=
b

a
.

This operation is multiplicative inversion:

∀x x · x−1 = 1.

Therefore, if r and s are in Q+, then the equation r = s · x has the unique
solution s−1r, which is written also as a fraction,

r

s
.

If a, b, c, d ∈ N, then

a/b

c/d
=
ad

bc
,

and in particular

a/1

c/1
=
a

c
. (.)
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Figure .. Fractions as straight lines

Numbers and fractions

By our construction, a positive natural number is not literally a positive rational
number; a positive rational number is a class of ordered pairs of positive natural
numbers. One way to understand this is shown in Figure ., where ordered
pairs of natural numbers are depicted as points in a grid; then a fraction is the
class of ordered pairs lying on a particular straight line through the point O.

A fraction may not literally be a positive natural number; but there are frac-
tions that behave like natural numbers:

Theorem ... The function x 7→ x/1 is an embedding of (N+, 1,+, ·) in
(Q+, 1/1,+, ·); that is, it is injective, it takes 1 to 1/1, and

x+ y

1
=
x

1
+
y

1
,

x · y
1

=
x

1
· y
1
.

Proof. Immediate from the definitions.

We may therefore forget about the distinction between natural numbers and
positive rational numbers: we may identify a natural number n with its image
n/1 in Q+. By (.), there will be no ambiguity in writing fractions: a fraction
of natural numbers as such will be the same as their fraction as positive rational
numbers.

Using the idea in Figure ., we can arrange the positive rational numbers
along a semicircle, according to their ordering, as in Figure . (a). It is more
usual to arrange the positive rational numbers along a straight line, as in Fig-
ure . (b); the point of using a semicircle is that here, if k < m, then m/k
lies directly above k/m. Indeed, in Figure ., since BDCO is a semicircle, the
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Figure .. Positive rationals along a semicircle and a straight line
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Figure .. Fractions are below their reciprocals

angles AOB, OCB, and ODB are equal; if also AOB and COD are equal, then
COD and ODB are equal, so the straight lines BD and OC are parallel.

The integers

In analogy with (.), let us define ≈ on N× N by

(a, b) ≈ (c, d) ⇐⇒ a+ d = b+ c. (.)

Then we have a direct analogue of Theorem ..:

Theorem ... The relation ≈ on N× N is an equivalence-relation.

Now we can denote (n,m)/≈ by

n−m.
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Such an equivalence-class is just an integer; the set of all integers is

Z.

As we have multiplication on Q+, so we have:

Theorem ... On Z, there are a well-defined operation of addition given by

(a− b) + (c− d) = (a+ c)− (b+ d).

In partial analogy with Theorem .., we have

Theorem ... On Z, addition is commutative and associative, and 0 is an
additive identity:

∀x 0 + x = x.

In analogy with Theorem .., we have

Theorem ... There is a well-defined operation x 7→ −x on Z given by

−(k − n) = n− k.

This operation is additive inversion:

∀x x− x = 0.

If a and b are in Z, then the equation a = b+x has the unique solution −b+a,
which is also denoted by

a− b.

If k, ℓ,m, n ∈ N, then

(k − ℓ)− (m− n) = (n+ k) + (m+ ℓ).

In analogy with Theorem .., we have

Theorem ... The function x 7→ x− 0 embeds (N, 0,+) in (Z, 0,+).

We may identify a natural number n with its image n−0 in Z. The elements of
Z are usually depicted on a straight line extending infinitely in both directions.
Alternatively, we can arrange them in a circle, as in Figure ., where, if 0 < n,
then −n is directly to its right. The left half of the circle is the semicircle in
Figure . (a).

Finally, we can extend multiplication on N to Z as in school, by

−m · −n = m · n, −m · n = m · −n = −(m · n), (.)

where m and n are in N.
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Figure .. Integers on a circle

Theorem ... Multiplication on Z is commutative and associative, and it
distributes over addition; also 1 is a multiplicative identity.

Proof. Commutativity on Z with identity 1 follows immediately from commuta-
tivity on N with identity 1, along with the definitions (.). Associativity follows
from considering the several cases, such as

(x · −y) · −z = −(x · y) · −z = (x · y) · z = x · (y · z) = x · (−y · −z).

For distributivity, we have for example, if −y + z = w > 0, then z = w + y, so
x · z = x · w + x · y, and therefore

x · (−y + z) = −(x · y) + x · z = x · −y + x · z.

The rational numbers

As we obtained Z from N, so we can obtain Z from N+. The difference is that
the embedding of N+ in Z is x 7→ (x+ 1)− 1, and 0 in Z is 1− 1.

We can now obtain (Q, 0,−,+, ·) from (Q+,+, ·) just as we obtain (Z, 0,−,+, ·)
from (N+,+, ·).

Theorem ... Addition and multiplication are commutative and associative
on Q, and multiplication distributes over addition. Addition has the identity
0, and multiplication has the identity 1. The operation x 7→ −x is additive
inversion, and there is an operation x 7→ x−1 of multiplicative inversion on
Qr {0}.

Because of this theorem, Q is called a field.
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Exercises

. Prove Theorem .. and Corollary ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

.. More recursion

Informally, we define n!, that is, n-factorial, by

n! = 1 · 2 · 3 · · · (n− 1) · n.

More precisely, we have the recursive definition

0! = 1, (n+ 1)! = n! · (n+ 1). (.)

However, for this to be a valid definition by the Recursion Theorem as it is, we
would have to express n! · (n + 1) as a function of n!. Alternatively, (.) is a
valid recursive definition by the following.

Theorem .. (Recursion with Parameter). Suppose B is a set with an ele-
ment c, and F : N × B → B. Then there is a unique function G from N to B
such that G(0) = c and

G(n+ 1) = F (n,G(n)) (.)

for all n in N.
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Proof. Let f be the function

(x, b) 7−→ (x+ 1, F (x, b))

from N×B to N×B. By recursion, there is a unique function g from N to N×B
such that g(0) = (0, c) and

g(n+ 1) = f(g(n))

for all n in N. Now let G be π ◦ g, where π is the function

(x, b) 7−→ b

from N×B to B. Then for each n in N we have g(n) = (m,G(n)) for some m in
N. We can prove by induction that m = n. Indeed, this is the case when n = 0,
since g(0) = (0, c). Suppose g(n) = (n,G(n)) for some n in N. Then

g(n+ 1) = f(n,G(n)) = (n+ 1, F (n,G(n))). (.)

In particular, the first entry in the value of g(n + 1) is n + 1. This completes
our induction.

We now know that g(n) = (n,G(n)) for all n in N. Hence in particular
g(n+1) = (n+1, G(n+1)). But we also have (.). Therefore we have (.),
as desired. Finally, each of g and G determines the other. Since g is unique, so
is G.

Example ... We can define a function f on N by requiring f(0) = 0 and
f(x+ 1) = x. This is a valid recursive definition, by Theorem ... Note that
f picks out the immediate predecessor of a natural number, when this exists.

For any function f from N+ to M , where M is a set equipped with addition
and multiplication, we can now define the sum

∑n
k=1 f(k) and the product∏n

k=1 f(k) recursively as follows:

0∑

k=1

f(k) = 0,

n+1∑

k=1

f(k) =

n∑

k=1

f(k) + f(n+ 1),

0∏

k=1

f(k) = 1,
n+1∏

k=1

f(k) =
n∏

k=1

f(k) · f(n+ 1).

See Exercise  below.
Since f is unique, we now have a proof that Axiom U follows from the Recursion Theorem.
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Exercises

. Show clearly that the definitions of
∑n

k=1 f(k) and
∏n

k=1 f(k) are justified
by Theorem ...

. Prove the following for all n in N:

a)
∑n

k=1 k = n(n+ 1)/2;

b)
∑n

k=1 k
2 = n(n+ 1)(2n+ 1)/6;

c)
∑n

k=1 b
k−1 = (bn − 1)/(b− 1);

d)
∑n

k=1(2k − 1) = n2;

e)
∏n

k=1(k/(k + 1)) = 1/(n+ 1).

.. Ordering of the natural numbers

We can define the binary relation 6 on N as the set

{(x, y) ∈ N× N : ∃z x+ z = y}.

The associated strict relation < is then {(x, y) ∈ N× N : x 6 y N x 6= y}. Now
we have to show that 6 is the linear ordering that we expect:

Lemma ... N � ∀x ∀y (x+ 1 6 y + 1 ⇒ x 6 y).

Proof. Suppose a + 1 6 b + 1. Then a + 1 + c = b + 1 for some c in N, by
definition of 6. This means a+ c+ 1 = b+ 1, by Lemma .., so a+ c = b, by
Axiom U, and therefore a 6 b, again by the definition of 6.

Lemma ... N satisfies:
) ∀x (x 6 0 ⇒ x = 0);
) ∀x ∀y (x+ y 6 x⇒ y = 0).

Proof. Suppose a 6 0. Then a+b = 0 for some b in N. Either a = 0, or a = c+1
for some c in N, by Lemma ... In the latter case, c + b + 1 = 0, which is
absurd by Axiom Z. Hence a = 0, and the first claim is proved.

Now suppose a+ b 6 a. Then a+ b+ c = a = a+ 0 for some c, so b+ c = 0
by cancellation (Theorem ..), which means b 6 0. Hence b = 0 by the first
claim. The second claim is now proved.

Lemma ... N satisfies:
) ∀x ∀y (x < y ⇒ x+ 1 6 y);
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) ∀x ∀y (x < y + 1 ⇒ x 6 y).

Proof. To prove the first claim, by Lemma .., it is enough to show

∀x (x < 0 ⇒ x+ 1 6 0),

∀x ∀y (x < y + 1 ⇒ x+ 1 6 y + 1).

The first sentence is trivially true in N by Lemma .., since the hypothesis
x < 0 always fails: If n < 0, then n 6 0, so n = 0, which means ¬(n < 0).

For the second sentence, suppose n < m + 1. Then n + ℓ = m + 1 for some
ℓ; but ℓ 6= 0, so ℓ = k + 1 for some k. Hence n + k + 1 = m + 1, that is,
n+ 1 + k = m+ 1, so n+ 1 6 m+ 1.

The proof of the second claim is an exercise.

Theorem ... On N, the relation 6 is a linear ordering.

Proof. There are four properties to check:
Reflexivity: Since n+ 0 = n, we have n 6 n by definition.
Anti-symmetry: We show

n 6 xN x 6 n⇒ n = x

by considering that, by Lemma .., x is either 0 or a successor. If n 6 0
and 0 6 n, then n 6 0, so n = 0 by Lemma ... Suppose n 6 m+1 and
m+1 6 n. From the latter inequality, n = m+1+ ℓ = m+ ℓ+1 for some
ℓ. Hence m + ℓ + 1 6 m + 1 by the former inequality, so m + ℓ 6 m by
Lemma ... Hence ℓ = 0 by Lemma .., so n = m+ 1 + 0 = m+ 1.

Transitivity: We show
ℓ 6 mNm 6 z ⇒ ℓ 6 z

by induction on z. If ℓ 6 m and m 6 0, then m = 0 by Lemma .., so
ℓ 6 0. As an inductive hypothesis, suppose the claim holds when z = n.
Suppose also ℓ 6 m and m 6 n + 1. There are two possibilities. If
m = n+1, then ℓ 6 n+1 immediately. Suppose m < n+1. Then m 6 n
by Lemma .., so ℓ 6 n by inductive hypothesis. By definition then,
ℓ+ k = n for some k, so ℓ+ k + 1 = n+ 1, and therefore ℓ 6 n+ 1. This
completes the induction.

Linearity: We show
x 6 m ∨m 6 x

by induction on x. Since 0 + m = m, we have 0 6 m. As an inductive
hypothesis, suppose the claim holds when x = n. Suppose ¬(n + 1 6 m)
for some m. Then ¬(n < m) by Lemma ... By inductive hypothesis,
m 6 n. Also n 6 n+ 1. By transitivity, m 6 n+ 1.
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Various standard properties can now be proved:

Theorem ... The following are true in N.

. ∀x ∀y ∀z (x < y ⇔ x+ z < y + z).

. ∀x ∀y ∀z (x < y ⇔ x · (z + 1) < y · (z + 1)).

. ∀x ∀y ∃z (x 6 y ⇔ x+ z = y).

Exercises

. Complete the proof of Lemma ...

. Prove Theorem ...

. Prove N � ∀x x < 2x. (See § . (.).)

. Prove the following in N:

a) ∀x ∀y 1 + xy 6 (1 + x)y,
b) ∀x (3 < x⇒ x2 < 2x).

. Find the flaw in the following argument, where max is the function from
N×N to N such that max(x, y) = y if x 6 y, and otherwise max(x, y) = x.

If max(x, y) = 0, then x = y. Suppose that x = y whenever
max(x, y) = n. Suppose max(z, w) = n + 1. Then max(z −
1, w−1) = n, so z−1 = w−1 by inductive hypothesis; therefore
z = w. Therefore all natural numbers are equal.

. Prove that, if y 6 x, then

(
x

y

)
=

x!

y! (x− y)!
.

. Prove the Binomial Theorem:

(x+ y)n =
n∑

i=0

(
n

i

)
xn−iyi.

. Prove that every proper divisor of a positive integer is less than that inte-
ger. (A proper divisor is a divisor other than the number itself.)
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.. Real numbers

From § ., we have Q and its subset Q+. We can define the relation < on Q by

x < y ⇔ y − x ∈ Q+.

Theorem ... The relation < is a strict linear ordering of Q such that

x < y ⇔ x+ z < y + z,

x < y N 0 < z ⇒ z · x < z · y.

Because of this and Theorem .., Q is called an ordered field.
A linear order is dense if between any two distinct elements lies a third, that

is,
∀x ∀y ∃z (x < y ⇒ x < z N z < y).

An endpoint of a linear order is a maximum or a minimum, that is, an
element a such that no element is greater or no element is less:

∀x x 6 a ∨ ∀y a 6 y.

Theorem ... (Q, <) and (Q+, <) are dense linear orders without endpoints.

Suppose (A,<) is a dense linear order without endpoints. A cut of (A,<) is a
nonempty proper subset B of A whose every element is less than every element
of its complement:

∀x ∀y (x ∈ B N y ∈ ArB ⇒ x < y).

If C ⊆ A and d ∈ A, then d is an upper bound of C if no element of C is
greater than d:

∀x (x ∈ C ⇒ x 6 d).

A lower boundis defined similarly. Then d is a supremum of C if it is a least
upper bound of C, that is, d is an upper bound of C and also a lower bound of
the set of upper bounds of C. Likewise, an infimum is a greatest lower bound.

Theorem ... Suprema and infima are unique when they exist. If the set of
lower bounds of a subset C of a linear order has a supremum, then this is the
infimum of of C.

A linear order is complete if every nonempty subset with an upper bound
has a supremum; it follows then that every nonempty subset with a lower bound
has an infimum.
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Theorem ... As a linear order, Q is not complete.

Proof. The set of positive rationals x such that x2 < 2 has no supremum in Q
(why not?).

Suppose A is a dense linear order without endpoints. Let Ā be the set of cuts
of A. If b ∈ A, let

pred(b) = {x ∈ A : x < b},
the set of predecessors of b in A; then pred(b) ∈ Ā.

Theorem ... Suppose A is a dense linear order without endpoints. Then
Ā, with respect to inclusion, is a dense linear order without endpoints and is
complete with respect to this ordering; also the function x 7→ pred(x) from A to
Ā is an embedding of orders.

Proof. We already know inclusion is a partial ordering of Ā. If B and C are
distinct cuts of A, then we may assume C r B has an element d; but then d is
an upper bound of B, and B ⊂ C. Thus inclusion linearly orders Ā.

If D is a set of cuts of A, then
⋃D is also a cut and is the supremum of D.

In A, if x < y, then pred(x) ⊆ pred(y) and moreover pred(x) ⊂ pred(y) since
x ∈ pred(y)r pred(x).

If A is a dense linear order without endpoints, then Ā is called the comple-
tion of A. We can now denote the completion of Q by

R;

this is the set of real numbers. The challenge is to define addition and multi-
plication on R and show they have the usual properties. We can define addition
on R by

X + Y =
⋃

{pred(x+ y) : pred(x) ⊆ X N pred(y) ⊆ Y }.

It is easier to define multiplication first on the completion of Q+, which we can
denote by

R+.

Strictly, to justify this terminology, one should show that Ā is somehow minimal among the
complete dense linear orders without endpoints in which A embeds, and moreover all such
minimal orders are somehow isomorphic.
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Here we define multiplication by

X · Y =
⋃

{pred(xy) : pred(x) ⊆ X N pred(y) ⊆ Y }.

One then extends multiplication to R, just as it is extended from Q+ to Q.
Ultimately one obtains:

Theorem ... (R,+, ·, <) is an ordered field, the function x 7→ pred(x) from
Q to R is an embedding of ordered fields.

Now we can refer to R as the complete ordered field. We consider Q as
an ordered subfield of R.

Theorem ... P(N) 4 R; in particular, R is uncountable.

Proof. There is an embedding h of N
+

B in R given by

h(ek : k ∈ N+) = sup

{
n∑

k=1

ek
3k

: k ∈ N

}
.

Exercises

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

. Prove Theorem ...

.. Well-ordered sets

Suppose (Ω,6) is a linear order, and A ⊆ Ω. A least element of A is an infimum
of A that also belongs to A. By Theorem .., least elements are unique when
they exist. The least element—if it exists—of A can be denoted by

min(A).

The linear order (Ω,6):
) is well-ordered if every non-empty subset of Ω has a least element;

Again the use of the definite article the should be justified by a uniqueness proof.
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) admits (proof by) strong induction if A = Ω whenever A is a subset
of Ω such that

pred(b) ⊆ A =⇒ b ∈ A

for all b in Ω;
) admits (definition by) strong recursion if, for every set B and func-

tion h from P(B) to B, there is a unique function G from Ω to B such
that

G(c) = h(G[pred(c)])

for all c in Ω.
We shall see presently that these three conditions are equivalent. Meanwhile,

we can observe that (N,6) satisfies one of the conditions.

Lemma ... pred(n+ 1) = pred(n) ∪ {n} for all n in N.

Proof. Since n < n + 1, we have pred(n) ∪ {n} ⊆ pred(n + 1). For the re-
verse inclusion, suppose a ∈ pred(n + 1), so that a < n + 1. Then a 6 n by
Lemma .., so a = n or a < n; in either case, a ∈ pred(n) ∪ {n}. Thus,
pred(n+ 1) ⊆ pred(n) ∪ {n}.

Theorem ... (N,6) admits strong induction.

Proof. Suppose A is a subset of N that contains n whenever it includes pred(n).
By induction, we shall show that pred(n) ⊆ A for all n in N; from this, it will
follow that A = N.

Since pred(0) = ∅, and ∅ ⊆ A, this means 0 ∈ A by assumption. As an
inductive hypothesis, suppose pred(n) ⊆ A. Then n ∈ A by assumption, so
pred(n) ∪ {n} ⊆ A, that is, pred(n + 1) ⊆ A by Lemma ... This completes
the induction. Hence, for all n, we have n ∈ pred(n + 1) ⊆ A, so n ∈ A. Thus
A = N.

Example .. will show one use of strong induction.
The linearly ordered set (Ω,6) is well-ordered if and only if every subset with

no least element is empty. This formulation will be used in proving the following
theorem. Also, a subset A of Ω has no least element if and only if

∀x (pred(x) ∩A = ∅ ⇒ x /∈ A),

that is, ∀x (pred(x) ⊆ ΩrA⇒ x ∈ ΩrA).

Theorem ... The following are equivalent conditions on a linear order.
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. It is well-ordered.
. It admits strong induction.
. It admits strong recursion.

Proof. Let (Ω,6) be a linear order. We shall show that, if it admits strong
induction or strong recursion, then it is well-ordered, and if it is well-ordered,
then it admits strong induction and strong recursion. Then the claim will follow
from the equivalences

P ∨Q ⇒ R ∼ (P ⇒ R) N (Q ⇒ R), R ⇒ P N Q ∼ (R ⇒ P ) N (R ⇒ Q).

Suppose (Ω,6) admits strong induction, but A is a subset of Ω with no least
element. We shall show that A is empty. If a ∈ Ω, and pred(a) ⊆ Ω r A, then
a ∈ ΩrA, since a is not a least element of A. By strong induction, Ω = ΩrA,
so A = ∅. Thus (Ω,6) is well-ordered.

Suppose (Ω,6) admits strong recursion, but A is a subset of Ω with no least
element. Let

C = {x ∈ Ω: ∃y (y ∈ AN y 6 x)}.
Then C has no least element (exercise). For each e in B, let Ge be the function
from Ω to B given by

Ge(x) =

{
0, if x /∈ C;

e, if x ∈ C.

So G1 is the characteristic function of C on Ω in the sense of § ., but G0 is
the constant function x 7→ 0 on Ω. Let h be the function from P(B) to B given
by

h(X) = 1 ⇐⇒ 1 ∈ X,

that is,

h(X) =

{
0, if X ∈

{
∅, {0}

}
;

1, if X ∈
{
{1}, {0, 1}

}
.

Then G(a) = h(G[pred(a)]) for all a in Ω, whether G is G0 or G1 (exercise).
By strong recursion, there is a unique such function G, so G0 = G1. Therefore
C = ∅. Thus (Ω,6) is well-ordered.

Now, conversely, suppose (Ω,6) is well-ordered. First, let A be a subset of
Ω such that, if pred(a) ⊆ A, then a ∈ A, for all a in A. Consequently, if
pred(a)∩ (ΩrA) = ∅, then a /∈ ΩrA. Then ΩrA has no least element, so it
is empty, and A = Ω. Thus (Ω,6) admits strong induction.
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Finally, using that (Ω,6) admits strong induction, we shall follow the proof
of the Recursion Theorem, .., to prove that (Ω,6) admits strong recursion.
Suppose B is a set, and h : P(B) → B. Let S be the set of relations R from Ω
to B such that, if (a, b) ∈ R, then there is a function f from pred(a) to B such
that

b = h(f [pred(a)]).

Let T =
⋃S. We show first that T is a function G from Ω to B, that is, for all

x in Ω,
∃! y x T y.

Suppose, as a strong inductive hypothesis, that this is true when x ∈ pred(a).
Then there is a function f from pred(a) to B such that

f(x) = y ⇐⇒ x T y.

Then (a, h(f [pred(a)])) ∈ T by definition of T ; moreover, if (a, b) ∈ T , then
b = h(f [pred(a)]). By strong induction, T is a function G from Ω to B. If now
a ∈ Ω, and f = G ↾ pred(a), then we must have G(a) = h(f [pred(a)]), again by
definition of T ; so G(a) = h(G[pred(a)]).

Suppose also G′ : Ω → B and G′(a) = h(G′[pred(a)]) for all a in Ω. Let

D = {x ∈ Ω: G(x) = G′(x)}.
If pred(a) ⊆ D, then G′(a) = h(G′[pred(a)]) = h(G[pred(a)]) = G(a), so a ∈ D.
By strong induction, D = Ω, so G′ = G. Thus G is the only function on Ω in
S, and (Ω,6) admits strong recursion.

Corollary ... (N,6) is well-ordered and admits strong recursion.

Proof. Theorem ...

Interrelations

What is the force of the word strong in strong induction and strong recursion?
Structures that admit induction or recursion have a signature that includes

{+, 0}. Structures that admit strong induction or strong recursion have a sig-
nature that includes {6}. The next theorem establishes one possible connexion
between these two kinds of structures:

Theorem ... Suppose (Ω,+, 0) admits induction and has a partial ordering
6 such that a < a+ for all a in Ω. Then 6 is a linear ordering, and N and
Ω are isomorphic as structures in the signature {+, 0,6}: in particular, (Ω,6)
admits strong induction.
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Proof. Since (N,+, 0) admits recursion, there is a homomorphism h from (N,+, 0)
to (Ω,+, 0). In particular,

h(m)+ = h(m+ 1)

for all m in N. We shall first show that the function h is also a homomorphism
from (N, <) to (Ω, <); that is,

∀x (x < n⇒ h(x) < h(n)) (.)

for all n in N. This is trivially true when n = 0. Suppose it is true when n = m,
and now a < m+ 1. Then a 6 m. Either a = m or a < m.

. If a = m, then h(a) = h(m) < h(m)+ = h(m+ 1).
. If a < m, then by inductive hypothesis, h(a) < h(m) < h(m)+ = h(m+1).

In either case, h(a) < h(m + 1). Thus (.) is true when n = m + 1. By
induction, it is true for all n in N.

Also, h is surjective, by induction in (Ω,+, 0). Indeed, 0 ∈ h[N], and if a ∈
h[N], then a = h(n) for some n in N, so a+ = h(n)+ = h(n+ 1), and a+ ∈ h[N].

Since h is a bijection, it is an isomorphism from N to Ω in the signature {+, 0}.
To complete the proof, it is enough to show that h−1 is order-preserving. If
h(m) 6 h(n), then ¬(h(n) < h(m)), so ¬(n < m) by (.); hence, m 6 n.

Thus, roughly,

induction & ordering =⇒ strong induction. (.)

It is sometimes suggested that strong induction can be proved from induction
alone. It cannot; there has to be an ordering, as in the theorem, and induction
alone does not guarantee that there is such an ordering. Example .. gives a
structure that admits induction, but has no ordering such that ∀x x < x+ 1.

Strong induction on N is called strong because it involves a stronger hypothesis
than ordinary induction. To prove N � ∀x ϕ(x) by induction, one proves two
things, as described in § .:

. N � ϕ(0).
. N � ∀x (ϕ(x) ⇒ ϕ(x+ 1)).

The inductive hypothesis is here is ϕ(x). To make the proof by strong induction,
one proves one thing:

. N � ∀x (∀y (y < x⇒ ϕ(y)) ⇒ ϕ(x)).

For example, Epp [, § ., p. ] says that the two methods of proof are equivalent; but
the proofs use hidden assumptions.
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Here the strong inductive hypothesis is ∀y (y < x ⇒ ϕ(y)). If x is 0, then
this hypothesis is trivially true; if x is not 0, then x is a successor. Hence we can
analyse a proof by strong induction into two steps, as with ordinary induction:

. N � ϕ(0).
. N � ∀x (∀y (y 6 x⇒ ϕ(y)) ⇒ ϕ(x+ 1)).

In this formulation, the strong inductive hypothesis is ∀y (y 6 x ⇒ ϕ(y)), that
is,

ϕ(0) N ϕ(1) N . . .N ϕ(x);

this is a stronger assumption than ϕ(x) alone. Sometimes this stronger assump-
tion is just what one needs:

Example ... To prove that every natural number other than 1 has a prime
divisor, it seems not enough to use induction. If n has prime divisors, what
does that say about n+ 1? But every positive integer divides 0, so 0 has prime
divisors. Suppose n > 0, and all of the numbers in the set {2, 3, 4, . . . , n} have
prime divisors. If n+1 is prime, then it is its own prime divisor. If n is composite,
then it has a divisor in the set just named, by Exercise  in § .. By strong
inductive hypothesis, this divisor has a prime divisor, which is then a divisor of
n+ 1.

From the theorem, there follows a connexion between recursion and strong
recursion:

Corollary ... Every structure (Ω,+, 0) that admits recursion has a partial
ordering 6 such that a < a+ 1 for all a in Ω. If 6 is any such ordering on Ω,
then 6 is linear, and (Ω,6) admits strong recursion.

Proof. Every structure that admits recursion satisfies the Peano axioms, by
Corollary ..; in particular, it has a linear ordering as defined in § ., so it
admits strong recursion by Corollary ... If 6 is just a partial ordering of the
structure such that ∀x x < x + 1, then the theorem applies, showing that the
structure is isomorphic to N and so admits strong recursion.

In short then,
recursion =⇒ strong recursion. (.)

That is, logically, recursion is at least as strong as strong recursion. The con-
verses of (.) and (.) fail. To show this, some more definitions will be
useful. Let (Ω,6) be a well-ordered set. We can use 0 as a name for min(Ω).
An element a of Ω is a limit if

) a 6= 0, and
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) ∀x ∃y (x < a⇒ x < y < a).
In short, a is a limit if it is not zero and has no immediate predecessor.

Examples ...
. (N,6) has no limits.
. Extend 6 so that it well-orders N∪ {∞} by defining n <∞ for all n in N.

Then ∞ is a limit.

A greatest element of a subset A of Ω is a supremum of A that belongs to
A. Suppose Ω itself has no greatest element. Then every element a of Ω has a
successor, a+, given by

x+ = min({y ∈ Ω: x < y}).

In this case, the limits of Ω are just those elements not in {0} ∪ {x+ : x ∈ Ω},
that is, the non-zero elements of Ω that are not successors.

Theorem ... Every well-ordered set with no greatest element and no limits
admits induction and recursion.

Proof. We shall show that such structures satisfy the Peano axioms. In such
structures, we always have 0 6 x < x+. In particular, 0 6= x+. Thus Axiom Z
is satisfied. Also, if a < b, then a+ 6 b < b+; so Axiom U is satisfied. Finally,
suppose A is a proper subset of such a structure Ω, and 0 ∈ A. Then ΩrA has
a least element b, which is not 0, so it must be a successor c+. Then c ∈ A, but
c+ /∈ A. Contrapositively, if 0 ∈ A, and ∀x (x ∈ A ⇒ x+ ∈ A), then A = Ω.
That is, Axiom I is satisfied.

If a well-ordered set does have a greatest element, then this can have no
successor, so induction and recursion are meaningless. If the well-ordered set
Ω has no greatest element, but does have limits, let ℓ be its least limit. Then
pred(ℓ) satisfies the hypotheses of Theorem .., so it admits induction and
recursion; but the whole structure Ω does not (exercise).

Exercises

. Supply the missing details in the proof of Theorem ...

Rotman [] gives an intuitive argument, based tacitly on induction and the ordering, for
why N is well-ordered; then he claims to prove induction, seemingly from well-ordering
alone. The hidden assumption is that every non-zero element of N is a successor.
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. Show that there are well-ordered sets with no greatest element that do not
admit induction or recursion.

. Find a formula ψ(x, y) containing no quantifiers such that the sentence
∀x ∃y ψ(x, y) is logically equivalent to ∀x (∀y (y < x⇒ ϕ(y)) ⇒ ϕ(x)).

.. Ordinal numbers

A class that includes each of its elements is called transitive. So C is transitive
if and only if

A ∈ B NB ∈ C =⇒ A ∈ C.

By the definition given in § ., an ordinal, or ordinal number, is a set that
is transitive and is strictly well-ordered by membership. The class of ordinals is
denoted by

ON.

The Greek letters α, β, γ, . . . will henceforth denote ordinals.

Lemma ... ON is transitive, that is, every element of an ordinal is an
ordinal. Also every ordinal properly includes its elements.

Proof. Suppose α ∈ ON and b ∈ α. Then b ⊆ α by transitivity of α, so b is
well-ordered by membership. Suppose c ∈ b and d ∈ c. Then c ∈ α, so c ⊆ α,
and hence d ∈ α. Since d ∈ c and c ∈ b, and all are elements of α, where
membership is a transitive relation, we have d ∈ b. Thus b is transitive, so it is
an ordinal. Therefore α ⊆ ON. So ON is transitive.

Finally, b ⊂ α simply because membership is a strict ordering of α.

Lemma ... Every ordinal contains every ordinal that it properly includes.

Proof. Suppose β ⊂ α. Then α r β contains some γ. Then β ⊆ γ; indeed, if
δ ∈ β, then, since γ /∈ β, we have γ /∈ δ (by transitivity of β) and γ 6= δ, so δ ∈ γ
(since α is strictly linearly ordered by membership). Suppose β ⊂ γ. Then γrβ
contains some δ, so by what we have just shown, β ⊆ δ. But δ ⊂ γ by the last
lemma, so γ was not the least element of αrβ (since δ must be less). Therefore
the least element of αr β must be β; in particular, β ∈ α.

Theorem .. (Burali-Forti Paradox []). ON is transitive and well-ordered
by membership; so it is not a set.
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Proof. Because membership is a strict ordering of an ordinal, membership is
irreflexive on ON. Because each ordinal is transitive, membership is a transitive
relation on ON. Let α and β be two distinct ordinals such that β /∈ α. By
strong induction in α, we have α ∈ β. Indeed, say γ ∈ α and γ ⊆ β. Then
γ 6= β, so γ ∈ β by the last lemma. Therefore ON is strictly linearly ordered by
membership. In particular, if α ∈ ON, then α 6= ON; so ON is not an ordinal.

If a is a set of ordinals with an element β, then the least element of a is the
least element of a ∩ β, if this set is nonempty; otherwise it is β. Thus ON is
well-ordered by membership. Since however ON is not an ordinal, it must not
be a set.

Since, on ON and hence on every ordinal, the relations of membership and
proper inclusion are the same, these can be denoted by <.

Theorem ... ON contains 0 and is closed under x 7→ x ∪ {x}.

For α ∪ {α}, we may write
α′;

this is the successor of α. The operation x 7→ x′ on ON is succession. By the
definition in § ., ω is the class of ordinals that neither are limits nor contain
limits.

An alternative form of the Axiom of Infinity, .., is the following.

Axiom .. (Infinity [second form]). A— of InfinityAxiom of I— ω is set.

This formulation implies the earlier one, by the following.

Theorem ... ω contains 0 and is closed under succession, and the following
hold.

. 0 is not a successor.
One could say, ‘ω is the class of ordinals that neither are nor contain limits’; but this

would violate the principles laid down in [, Cases] and reaffirmed in []. In the original
sentence, the second instance of limits is the direct object of contain, so it is notionally in
the ‘objective case’; but the first instance of limits is is not an object of are (which does not
take objects), but is in the ‘subjective case’, like the subject, that, of the relative clause.
On similar grounds, the common expression ‘x is less than or equal to y’ is objectionable,
unless than, like to, is construed as a preposition. However, allowing than to be used as a
preposition can cause ambiguity: does ‘She likes tea better than me’ mean ‘She likes tea
better than she likes me’, or ‘She likes tea better than I do’? There it is recommended
in [, Than ] and (less strongly) in [] that than not be used as a preposition. Then
‘x 6 y’ should be read as ‘x is less than y or [x is] equal to y.’
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. Succession on ω is injective.

. (ω, 0, ′) admits induction.

Proof. . Successors are nonempty.
. If α and β are distinct ordinals, then we may assume α ∈ β, so that β /∈ α′;

but β ∈ β′, so α′ 6= β′.
. Suppose A is a proper subset of ω. Then ω r A has a least element α.

Either α = 0 or else α = β′ for some β in A. Hence A either does not contain 0
or else is not closed under succession.

The first form of the Axiom implies the second form, once we have the fol-
lowing.

Axiom .. (Replacement). The image of a set under a function is a set.

In proving the Recursion Theorem .., we never need that A and f are sets;
they need only be classes. By the Theorem then, there is a homomorphism from
(N, 0,+) into (ON, 0, ′); the image of N under this homomorphism is ω, so ω is
a set.

Theorem ... ω ∈ ON.

We now have ordinals beyond ω, namely ω
′, ω′′, and so on. These are usually

written as ω+1, ω+2, and so on. By recursion, there is a function n 7→ ω+n
from ω into ON; the image of ω under this function is denoted by one of

ω+ω, ω · 2.

Continuing these ideas, we can develop an arithmetic of ordinals, according to
which we can list the ordinals as

0, 1, 2, 3, . . . ;ω,ω+ 1,ω+ 2, . . . ;ω · 2, . . . ;ω2, . . . ;ωω; . . .

Thus we have a way to extend the ordinary list first, second, third, . . . of ordinal
numbers.

Theorem ... For every set of ordinals, there is an ordinal that is greater
than every ordinal in the set. Indeed, the union of a set of ordinals is the
supremum of the set.
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Exercises

. Prove Theorem ...

. Prove Theorem ...

.. Cardinal numbers

By the definition in § ., if A is a finite set, then A ≈ n for some n in ω. By
Theorem .., this n is unique; so we can call it the cardinality of A, and we
may write

|A| = n. (.)

We aim to define a cardinality |A| for all sets A.

Lemma ... If A is finite, and there is a surjective function from A onto B,
then B is finite.

Proof. Use induction on the cardinality of A. The claim is trivially true if
|A| = 0. Suppose it is true when |A| = n, but now |A| = n + 1, and f is a
surjection from A onto B. We may assume that A is just pred(). Let c = f(n).
There are two possibilities:

. If also c = f(m) for some m in pred(n), then f ↾ pred(n) is still surjective
on B, so B is finite by inductive hypothesis.

. Suppose f [pred(n)] ⊆ Br{c}. Then f ↾ pred(n) is a surjection on Br{c},
so this set is finite, again by inductive hypothesis. In this case, there is a bijection
h from pred(k) onto B r {c} for some k in N. Then h ∪ {(k, c)} is a bijection
from pred((k + 1)) onto B, so B is finite.
The induction is complete.

Theorem ... Suppose A 4 B. If B is finite, then A is finite.

Proof. It is enough to show that if A ⊆ B, and B is finite, then A is finite. If A
is empty, then |A| = 0. Suppose A contains c. Define f from B to A by:

f(x) =

{
x, if x ∈ A;

c, if x /∈ A.

Then f is surjective, so the claim follows by Lemma ...
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Contrapositively, if A 4 B, and A is infinite, then so is B. Hence we can show
that a set A is infinite if we can find an injective function G from ω to A. Does
the converse hold? That G is injective means precisely that

G(n+ 1) ∈ Ar {G(0), . . . , G(n)}

for all n in ω. Now, if A is infinite, then in each case the set

Ar {G(0), . . . , G(n)}

is not empty by Lemma .., so there is some hope that the function G exists.
Does strong recursion (that is, Corollary ..) give us such a function G? It
does, if there is a function h : P(A) → A such that h(X) /∈ X when X 6= A.
However, we have no reason, so far, to assert that such a function exists. That
functions like h exist is a consequence of:

Axiom .. (Choice). For every set A, there is a function f : P(A) → A such
that f(C) ∈ C whenever C 6= 0.

It was proved by Gödel that this axiom is consistent with our other axioms;
it was proved by Paul Cohen [] that the Axiom of Choice is not entailed by
our other axioms.

A function f as in the Axiom of Choice is called a choice-function.

Theorem ... If A is infinite, then ω 4 A.

Proof. Let f be a choice-function for A, and define h on P(A)r {A} by

h(X) = f(ArX).

Then strong recursion gives us the desired embedding of ω in A, as suggested
above.

Now we can prove the converse of Theorem ...

Corollary ... Every infinite set is equipollent to a proper subset of itself.

Proof. If A is infinite, we may assume ω ⊆ A, and then we can define f on A
by

f(x) =

{
x+ 1, if x ∈ ω,

x, if x ∈ Arω.

This shows A ≈ Ar {0}, a proper subset.
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Similarly, we have:

Corollary ... If A is infinite, then A ∪ {A} ≈ A.

Proof. The claim is trivially true if A ∈ A; so suppose A /∈ A, and f is an
injection from ω to A. Define a function g from A ∪ {A} to A by:

g(x) =





f(0), if x = A;

x, if x ∈ Ar f [ω];

f(f−1(x) + 1), if x ∈ f [ω].

Then g is a bijection.

The converse of this theorem is true, a proper subset of A ∪ {A}. Suppose if
possible that A = A ∪ {A}. Then A ∈ A, which is very strange, and which is
ruled out by:

Axiom .. (Foundation). Every non-empty set A has a subset that has no
elements in common with A:

∃X (X ∈ ANX ∩A = ∅)

for all non-empty sets A.

Here, if we replace A with {A}, then this set has the single element A, so
A ∩ {A} = ∅, which means A /∈ A.

Theorem ... Every set is equipollent with some ordinal.

Proof. Supposing f is a choice-function for A, define h as in the proof of Theo-
rem ... Let C be the class of ordinals α for which there is a function g from
α to A given by

g(β) = h(g[β]).

Such a function g is unique (by Strong Recursion) and can be denoted by gβ .
Moreover, if β and γ are both in C and β 6 γ, then gβ ⊆ gγ . Therefore, if C
has no upper bound in ON, then

⋃
β∈C

gβ is an embedding of ON in A, which
is absurd, since ON is a proper class. Hence C has a least upper bound, say γ;
then

⋃
β<γ gβ is a bijection from γ to A.

This theorem lets us adapt the proof of the Completeness Theorem, ..,
to the case where L is uncountable: we just to index the sentences of L by the
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ordinals less than some ordinal, and then we can obtain the sets Γα by transfinite
recursion.

Our main purpose now is to define |A|, the cardinality of A, as the least
ordinal that is equipollent with A. Then the cardinalities are well-ordered; in
particular, we have:

Corollary .. (Schröder–Bernstein Theorem). For all sets A and B,

A 4 B & B 4 A =⇒ A ≈ B.

The cardinals or cardinal numbers are the ordinals that are cardinalities
of some set. The cardinals compose the class

CN.

Most infinite ordinals are not cardinals; but by strong recursion, there is an
order-preserving bijection

α 7−→ ℵα

from the class of ordinals to the class of infinite cardinals. Here ℵ is the Hebrew
letter aleph. By definition, ℵβ is the least infinite cardinal that is greater than
each of the cardinals ℵα such that α < β. If β is a limit ordinal, then by
Theorem .., ℵβ is just

⋃
α<β ℵα; but if β = γ + 1, then ℵβ is the least

cardinal κ such that
ℵγ < κ 6 |P(ℵγ)|.

Theorem ... R ≈ P(N).

Proof. By Theorem .. and the Schröder–Bernstein Theorem, it is enough to
show that [0, 1) 4 N

+

B, where [0, 1) = {x ∈ R : 0 6 x < 1}. Given an element a
of [0, 1), we can, by strong recursion, define a function k 7→ ak from N+ to B so
that, for each n in N+,

n∑

k=1

ak
2k
6 a <

n∑

k=1

ak
2k

+
1

2n
.

The function a 7→ (ak : k ∈ N+) is injective. Indeed, suppose a and b are distinct
elements of [0, 1). For some n in N+ we have

1

|a− b| < 2n,

This theorem is commonly attributed to Schröder and Bernstein, who, according to [,
p. ], proved the theorem independently in the s. But the theorem is attributed to
Cantor in [, § ., p. ].
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so 1/2n < |a− b|. If (a1, . . . , an−1) = (b1, . . . , bn−1), then an 6= bn.

We know |R| = ℵα for some nonzero ordinal α; but we do not know what
α is. The set R is called the continuum, and the statement that |R| = ℵ1 is
called the Continuum Hypothesis. Gödel showed that there are models of
the axioms of set-theory in which the Continuum Hypothesis is true; Cohen,
false.

Exercises

. Prove that the union of two finite sets is finite, and if A and B are finite,
then |A ∪B|+ |A ∩B| = |A|+ |B|.

. If A 4 ω and B ≈ ω, show that A×B ≈ ω.

. Show that, if A 4 ω, and n ∈ ω, then An 4 N .

. Show that, if A 4 ω, then
⋃

n∈ω
An 4 N .

. Show that R is equipollent with the set of functions from N to N.

. Show that R× R ≈ R.

. A real number α is algebraic if there is no positive integer n for which
there is an n-tuple ~a of rational numbers such that

∑

k<n

akα
k + αn = 0.

A real number that is not algebraic is transcendental. Show that there
are uncountably many transcendental numbers.



A. Aristotle’s Analytics

Below is a translation from the first few pages of the Aristotelian work called the
Prior Analytics. Like all of Aristotle’s extant works, the text appears to consist
of students’ lecture notes; perhaps these notes were never edited by Aristotle
himself.

I only want to observe three features of the text:
) the absence of any special notation;
) the definition of proposition;
) the use of proofs.
The translation here is mine, from the text in the Loeb edition []. Some of

the wording is from the English translation by Tredennick in that edition, but
there are deviations. For example, where I have ‘proposition’, Tredennick has
‘premiss’. The typography is entirely my own, based on the conception of the
text as lecture-notes; the Greek text indicates no special line-breaks. Likewise,
my English is highly abbreviated and ‘telegraphic’, as is the original Greek.

Here then is Aristotle:

First, to say what our study (σκέψις) is about and of :
) it is about demonstration (ἀπόδειξις), and
) it is of demonstrative science (ἐπιστήμη ἀποδεικτικῆ).

Next, to define:
) proposition (πρότασις), term (ὅρος), and syllogism (συλλογισμός), and
) which kinds [of syllogism] are complete (τέλειος) and incomplete (ἀτελής).

After these:
) what it is for one thing to be or not to be wholly (τὸ ἐν ὅλῳ εἶναι ἢ μὴ
εἶναι) in another, and

) what we mean by being predicated (κατηγορεῖσθαι) of all or of none.
A proposition is a statement affirming (καταφατικός) or denying (ἀποφατικός)
something of something. It is universal (καθόλου), particular (ἐν μερει), or
indefinite (ἀδιόριστος).

) By universal, I mean applying (ὑπάρχειν) to all or none;





 A. Aristotle’s Analytics

) by particular, applying to some, or not to some, or not to all;
) by indefinite, applying or not applying, without reference to whole or

part, as in ‘The same science studies contraries’ or ‘Pleasure is not good.’
[I skip some further discussion of propositions.]
A term is what a proposition is divided into, namely
) that which is predicated, and
) that of which it is predicated,

[a form of] to be or not to be being added or removed.
A syllogism is a ‘piece of language’ (λόγος) in which, some things being

assumed (τεθέντων τινῶν), because of these (τῷ ταῦτα εἶναι), something different
from what was laid down (τα κειμένα) necessarily follows. By saying:

) ‘because of these’, I mean it follows through these (διὰ ταῦτα);
) ‘it follows through these’, no additional term is needed for the necessity to

come about.
I call a syllogism:
) complete, if it needs nothing else, apart from what it [already] contains,

for the necessary [conclusion] to be evident;
) incomplete, if it needs one or more [propositions] not included among the

[given] propositions, although they are necessary through the terms that
have been laid down.

These are the same:
) for this to be wholly in that ;
) for that to be predicated of all of this.

We say that [that is] predicated of all [of this] when nothing of this can be taken
of which that cannot be said. Similarly if [that ] is predicated of none [of this].

Now, every proposition is
) an application (ὑπάρχειν), or
) a necessary (ἐξ ἀνάνκης) application, or
) a potential (τοῦ ἐνδέχεσθαι) application.

Of these,
) some are affirmative (καταφατικός),
) some negative (ἀποφατικός),

according to each application.
Again, of the affirmative and negative, some are universal, some particular,

some indefinite.
A universal
) negative (στερητικός) application is necessarily convertible (ἀντιστρέφειν)

in terms; for example, if no pleasure is a good thing, then no good thing
is a pleasure;





) affirmative (κατηγορικός) is necessarily convertible, not universally, but
particularly. For example, if every pleasure is good, then some good is a
pleasure.

Of the particular:
) the affirmative is necessarily convertible particularly; for, if some pleasure

is good, then some good will be a pleasure;
) the negative, not necessarily; for it does not follow that, if man does not

apply to some animal, then animal does not apply to some man.
First, let the proposition AB be negative universal. If then A applies to

nothing of B, then B will apply to nothing of A. For if to something, say C,
then it will not be true that A applies to nothing of B, for C is of B.

If A applies to all B, then B applies to some A. For if not, then A will apply
to no B; but it was supposed to apply to all.

Similarly if the proposition is particular:
If A to some of B, then B to some of A necessarily applies; for if not, then A

to nothing of B.
But if some of B does not apply to A, there is no necessity that some of A

should not be B. For example, suppose B is animal and A is man; man not to
every animal, but animal to every man applies.
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n! 
pred(b) 
min(A) 
|A| = n 

ℵα 
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