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IINNTTRROODDUUCCTTIIOONN 

 

The definition 
 

A group of finite RM is a structure  G  equipped with a 

definable group law such that 
 

1. Each definable set in  Geq  has a Cantor rank, which 

is finite  

2. For uniform families of definable sets, the Cantor 

rank is definable 

3. In a uniform family of finite definable sets, the 

number of elements of the sets is bounded.  
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Consequences of the definition 

 

 

1. The conditions are preserved under elementary 

extension (and elementary equivalence) 

2. The Cantor rank is in fact the Morley rank, that is, 

it is preserved under elementary extension 

3. The Cantor rank is additive, and equal to the U-

rank of Lascar (and to the weight) 
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Algebraic groups 
 

Algebraic groups over an algebraically closed field, 

equipped with the full structure given by the field, are 

examples of groups of finite Morley rank, the rank being 

the geometric dimension.  

Many well-known properties of algebraic groups can 

be extended to the general context of groups of finite RM, 

and the question is whether they are typical as examples ; 

more precisely whether a simple group of finite RM must 

be an algebraic group. 
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A note for non-model theorists 
 

In an algebraically closed field  K , a definable set is a 

constructible subset of some Cartesian power of  K , that is 

a finite Boolean combination of Zariski closed sets. Its 

Morley rank is the same thing as the algebraic dimension 

of its Zariski closure. 

Elimination of quantifiers : the projection on  Kn  of a 

constructible subset of  Kn+1  is constructible. 

Elimination of imaginaries : at the constructible level 

we can take quotients, the quotient of any constructible set 

by a constructible equivalence relation being in construc-

tible bijection with a constructible set. 
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For instance, from a constructible point of view, the 

projective line, the affine line with a doubled point, and 

the affine line plus a point, are the same object. 

 

A constructible group is constructibly isomorphic to an 

algebraic group  G  ; the constructible subgroups of  G  

are Zariski closed, and the connected ones are irreducible. 
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Four conjectural properties 
 

The answer to the big question seems now very 

uncertain, and in fact some properties of algebraic groups 

seem not to hold in general, although we cannot provide 

counter-examples.  

Many of them are sophisticated facts concerning simple 

groups, but what we like to discuss here are easily 

formulated properties of a general character. We mention 

four of them, that we shall meet in our forthcoming study 

of the generic centralizers. 
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1. Is the Morley degree definable ? Can we define the 

connected component in a uniform family of 

definable groups ? (see Hrushovski’s paper on 

fusion for the definability of the Morley degree in 

the case of algebraically closed fields) 
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2.      We say that  X  is almost included in  Y  if the 

points of  X  which are not in  Y  form a set of rank 

strictly less than  RM(X) .  

For any formula  (x,y) , we denote by  Cl(X)   

the union of  X  and of the cosets modulo the 

subgroups defined by formulae of the kind  (x,a)  

which are almost included in  X .  

Do  X  and  Cl(X)  have the same rank ? (In the 

algebraic case,  Cl(X)  is included in the Zariski-

closure of  X , which has the same dimension) 
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3. In a connected group, are the centralizers of the 

generic points of minimal dimension ? (consequence 

of the Hauptidealsatz in the algebraic case) 

 

4. A Borel subgroup is a maximal connected definable 

solvable subgroup of  G . Are the Borel subgroups 

conjugate ? (fixed point theorem for the action of a 

solvable group on a complete variety in the 

algebraic case) 
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What happens in a simple algebraic group ? 
 

In a simple algebraic group, the centralizers of the 

generic points are connected, conjugated and of finite 

index in their normalizer. 

They are conjugated for a very good reason : there is 

only a finite number of centralizers of elements of the 

group, up to conjugacy ! 

In fact, they are the maximal tori : they are divisible 

commutative groups, and they contain elements of order  

p  for every prime number except possibly one (the 

characteristic of the field). 
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 SECTION 1 
 

Generic centralizers and conjugacy classes : 
basic rank computations 

 

When it is question of Morley rank, we speak of 

dimension for a definable set,  RM(X) = dim(X) , and of 

rank for a type,  RM(tp(a/A)) = rg(a/A) .  
 

The dimension is not sensitive to the parameters, 

provided they allow to define the set ; the rank is, since  

rg(a/A)  is the minimal dimension of a set definable over  

A  to which  a  belongs.  
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Additivity 
 

For Morley rank :   If  f  is a definable surjection 

from  X  onto  Y , each fiber of it being of dimension  d , 

then  dim(X) = dim(Y) + d .  

 

For Lascar rank :    rg(a^b) = rg(a) + rg(b/a) .   

 

In general, people prefers the first version ; but we 

shall use both. 
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Notations 
 

We consider a group  G  of finite RM, and a point  g  of 

this  group, which is generic over   , or any fixed set  A  

of parameters ;   rg(g) = dim(G) .  
 

We note  C  the conjugacy class of  g , and  c  its 

canonical parameter  ; we note  Z  the centralizer of  g , 

and  z  its canonical parameter, and we note  N  the 

normalizer of  Z .   
 

Since  Z  and its centre  Z(Z)  are each the centralizer 

of the other, they have the same canonical parameter, and 

the same normalizer.   



15 

 

 

The action of  G  on itself by inner automorphisms 

induces a definable (with  g  as a parameter) bijection 

between  C  and the right quotient of  G  by  Z  ; all the 

fibers of this quotient having the same dimension as  Z , 

by additivity :   

   

dim(G) = dim(Z) + dim(C) . 

 

 

To compute the rank of  c , we need a small lemma. 
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Lemma 1.  We consider a definable  (over   , or  A ) set X ,  

g  a point of  X  of maximal rank (i.e.  rg(g) = dim(X) ),  

E(x,y)  a definable (id.) equivalence relation on  X  ; we note   

d  the dimension of the class  E(x,g)  and  c  its canonical 

parameter. Then  rg(c) = dim(X) - d ,  rg(g/c) = d  ; in other 

words  g  has maximal rank in its class, and, if all the 

classes have dimension  d ,  c  has maximal rank in  X/E . 
 

 

Therefore :      
 

rg(g/c) = dim(C) ,  rg(c) = dim(G) - dim(C) = dim(Z) . 
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We obtain also :   
 

rg(g/z^c) = dim(N) - dim(Z) . 
 

For that, consider the intersection    of  C  and of the 

centre of  Z  ;    is in bijection with the quotient of  N  by  

Z , so that  dim() = dim(N) - dim(Z) . Then apply the 

lemma over  {c} , since    is the class of  g  modulo the 

equivalence relation “to have the same centralizer”  

(restricted to  C ).   
 

 



18 

 

 

For the rank of  z , we obtain only an inequality. Since  

g  is in  Z , and  rg(g) = rg(g^z) = rg(z) + rg(g/z)  : 

 

rg(g/z) ≤ dim(Z) ,    rg(z) ≥ dim(C) . 

 

In fact,  g  belongs to the center of  Z , so that  rg(g/z) ≤ 

dim(Z(Z)) ; when  rg(g/z) = dim(Z) ,  Z°   is central in  Z . 
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Our ultimate goal is to describe the circumstances 

when  z  and  c  are independent : in a connected group, 

we shall see that this means that the centralizers of the 

generic points are conjugated. We begin with a direct 

consequence of the inequalities above : 

 

Corollary 2.  If  z  and  c  are independent, then  rg(z) = 

dim(C) ,  rg(g/z) = dim(Z) , and  g  is algebraic over  z^c  

(and reciprocally !). 
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Some examples of (algebraic) groups 
 

1. If  G  is commutative,  rg(z) = 0 ,  rg(g) = rg(c) . 
 

2. If  G  is connected, nilpotent and non-commutative, 

every proper definable subgroup has infinite index in 

its normalizer, so that  z  and  c  are dependent. 
 

3. In a simple algebraic group  G ,  z  and  c  are 

independent : the centralizers of the generic points 

are connected, commutative, and conjugate. In fact, 

there is only a finite number of centralizers of 

elements of  G  up to conjugacy.  
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4. GL2(K) ;  g = [  ;  ]  where    et    are 

transcendental and independent,  rg(g) = 4  ; the 

conjugacy class  C  is determined by the set  {}  of 

the eigenvalues, that is the coefficıents of the 

characteristic polynomial,  c = () ,  rg(c) = 

2 = dim(Z) , dim(C) = 2 ; the centralizer is given by 

the eigenvektors, which form two lines in generic 

position that can be chosen independently from the 

eigenvalues,  rg(z) = 2  and  z  is independent from  c .  

More precisely, the centralizer  Z  is defined by the 

system  .v = .w  and  .(u-t) = ().w , whose 

canonical coefficients are  z = (, ) . 
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5. TL2(K) ;  g = [  ; 0 ] ,  rg(g) = 3  ;  C  is given by 

the diagonal,  c = () ,  rg(c) = 2 = dim(Z) ,  dim(C) = 

1  ;  Z  is defined by the equation  .u + ().v + .w 

= 0 , with canonical coefficient    ;  rg(z) = 1 ,  z  

and  c  are independent.   

 

6. TU3(K) ; rg(g) = 3  ;  c = 

() ,  rg(c) = 2 ,  dim(Z) = 2 ,  dim(C) = 1  ;  Z  is 

defined by the equation  .w = .u ,  z =   and  rg(z) 

= 1 , but  rg(z/c) = 0 ,  z  and  c  are not independent.  
 

In a 2-nilpotent  group,  z  is always definable over  c  !  
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7. In characteristic  p , in  G = [1 u v ; 0 1 u
p
 ; 0 0 1]  the 

generic centralizers are not connected, and in   G =    

[1 u v w ; 0 1 0 t ; 0 0 1 up ; 0 0 0 1]  the generic 

centralizers are connected but not commutative. 
 

It is possible to build in characteristic zero a 

unipotent algebraic group with non commutative 

(connected !) generic centralizers. 
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Examples wanted 
(if possible algebraic) 

 

 

Z°  commutative but not central in  Z . 

 

 

Z  of finite index in  N  but  Z°   not central in  Z . 
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SECTION 2 
 

When the generic is generic in its own centralizer ? 
 

We study here the situatıon where  rg(g/z) = dim(Z) , as it is 

the case when  z  et  c  are independent. 
 

Theorem 3. In a connected group  G  of finite RM tfcae :  

(i) Each generic point  g  is generic in its own centralizer  Z . 

(ii)  rg(z) = dim(C) . 

(iii) The points of  Z  whose centralizer is  Z  form a generic 

subset of  Z . 

(iv) The centre of  Z  has finite index in Z , and the points of  Z  

whose centralizer has the same dimension as  Z  form a generic 

subset of  Z . 
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Question 1. Is it sufficient that  Z°  be central in  Z  ?   

 

Lemme 4.  Let  G  be an algebraic group,  g  be a generic point 

of  G , and  H  be a definable connected subgroup of  G  ; then 

every generic point of  g.H  is generic in  G  (even when  g  is not 

generic over the parameters of  H ). 

 

Corollary 5. In a connected algebraic group, every generic  point   

g  is generic in the center of its centralizer  Z(Z)  ; otherwise 

said,  rg(g/z) = dim(Z(Z)) ,  rg(z) =  dim(G) - dim(Z(Z)) , and 

for  g  to be generic in  Z  it is enough that  Z°  be central in  Z .    
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We conclude the section by a result that will be useful later. 
 

Theorem 6.  We consider, in a group   G  of finite Morley rank, 

a generic point  g   with centralizer  Z  ; then tfcae : 

(i)  g  is generic in the coset  g.Z° . 

(ii)  Z°  is commutative, and the points of  g.Z°  whose centralizer 

have the same dimension as  Z  form a generic subset of it. 

(In the algebraic case it is enough than  Z°  be commutative.) 
  
 We observe in the proof that  g  is generic in the centralizer 

of  g’ , and that  g’  is generic in the centralizer of  g .  
 

Exemple 9. How to make an exemple, if possible algebraic, 

where  Z°  is commutative but not central in  Z  ? 
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SECTION 3 
 

A digression on the minimal group of the generic 
 

  In a group of finite Morley rank, every point is contained in 

a smallest definable subgroup. 

 In a simple algebraic group, the centralizer of a generic 

point is also its minimal subgroup. 

 

Lemma 8. Consider a group  A  of finite Morley rank, which is 

the minimal group of one of its point  a  ; then, if  g  is a point of  

A°  generic over  a ,  A  is also the minimal group of  a.g . 

 



29 

Remark 2.   An abelian torsion-free group abélien, of minimal 

dimension, whose generic (in fact every element !) is contained 

in a proper definable subgroup is a  K-vector space of 

dimension two. According to Zil'ber, a field is definable in a 

torsion-free nilpotent group  G  ; indeed, in the quotient of  G  

by its last center, each point belongs to the image of its 

centralizer modulo the last-but-one center. 

 

Corollaire 9. In a group of finite Morley rank, each generic 

point is generic in its minimal group. 
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SECTİON 4 

Generous centralizers 
 

Assume that  G  acts on  A . Let  B  be a definable subset of  

A , and  N  be its normalizer ; the set of conjugates of  B  can 

be identified with  G/N  ; for each integer  r  we note  Br  the set 

of  x’s  in  B  such that the conjugates of  B  going through  x  

form a set of rank  r . 
 

Jaligot’s Lemma.  If  Br  is not void,  dim( gG Br
g 

) = dim(G) - 

dim(N) + dim(Br) - r . 
 

Cherlin’s proof.  Consider the set  C  of   (x,y)  where  x  is in  

 Br
g
  and   y   is a conjugate of  B  to which  x  belongs.   
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Définition 1. A definable subset of  G  is generous if the union 

of its conjugates is generic.   
 

Lemma 12. Consider, in a group  G  of finite RM,  H  a 

definable subgroup and an element  a  normalizing   H°  ; the 

coset  aH  is generous iff : 

(i)   H°  has finite index in the normalizer  N  of  aH 

(ii)  the points of the coset which belongs only to a finite 

number of its conjugate form a generic subset of it.  
 

Corollaire 13. A definable subgroup  H  of  G  is generous iff : 

(i)   H  has finite index in its normalizer  

(ii)  the points of  H  which belongs only to a finite number of 

its conjugate form a generic subset of it.  
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Remark that if  A  is the minimal subgroup of  A , it is 

generous iff it has finite index in its normalizer.  
 

Theorem 14. If  G has finite RM and   a  and  g  are two 

elements of   G ,  g  being generic over  a , then  g  commutes 

with only a finite number of conjugates of   a . 
 

Question 3. In an existentially closed group, if   a ≠1 , every  b  

commutes with an infinite number of conjugates of  a . Is this 

property compatible with MC-condition, linearity, stability, 

superstability, or omega-stability ?  
 

Lemma 15.  If  G is connected,   a  has a generous centralizer, 

and  g  is generic over  a , the connected component of the 

centralizer of  a  contains the connected component of the 

centralizer of a conjugate of  g .  
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In the two next lemmata, we consider the following situation :  

G  is connected, and the centralizer  Z  of its generic point  g  is 

generous.  

 

Lemma 16.  The coset  g.Z°  is generous, and  g  is a generic 

point of it. 
 

Lemma 17.  The coset  g.Z° contains only a finite number of 

conjugates of    g . 
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Theorem 18, and last. In a connected group of finite RM tfae : 

(ı) The generic centralizers are generous. 

(ıı) A generic point  g  is generic in its centralızer  Z , which 

contains only a finite number of conjugates of   g .  

(ııı) When  g  is generic,  z  and  c  are  independent. 

(ıv) The generic centralizers are conjugate. 

(v) The centers of the generic centralizers are conjugate. 

(vı)  G  has an abelian generous subgroup. 

(vıı) G  has a generous commutative subset (non nec. definable) 

(vııı) There exists a commutative coset, modulo a connected 

definable subgroup, which is generous.   


