Small doubling problems in Baumslag-Solitar groups and sums of dilates

Patrizia LONGOBARDI

UNIVERSITÀ DEGLI STUDI DI SALERNO

Groups and Topological Groups Mimar Sinan Fine Arts University, Istanbul, Turkey 17 - 18 January 2014

3

Gregory A. Freiman, Marcel Herzog, P. L., Mercede Maj, Yonutz V. Stanchescu

Direct and inverse problems

in additive number theory and in non – abelian group theory

European Journal of Combinatorics, to appear.

A small doubling structure theorem in a Baumslag – Solitar group

・ロン ・回と ・ヨン ・ヨン

to appear.

Gregory A. Freiman, Marcel Herzog, P. L., Mercede Maj, Yonutz V. Stanchescu

Direct and inverse problems

in additive number theory and in non – abelian group theory

European Journal of Combinatorics, to appear.

A small doubling structure theorem in a Baumslag - Solitar group

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

to appear.

Gregory A. Freiman, Marcel Herzog, P. L., Mercede Maj, Yonutz V. Stanchescu

Direct and inverse problems

in additive number theory and in non - abelian group theory

European Journal of Combinatorics, to appear.

A small doubling structure theorem in a Baumslag - Solitar group

(日) (四) (三) (三) (三)

to appear.

Paper's authors

Gregory A. Freiman - Marcel Herzog

School of Mathematical Sciences, Tel Aviv University,

Tel Aviv 69978, Israel

e-mail: grisha@post.tau.ac.il

email: herzogm@post.tau.ac.il

Patrizia Longobardi - Mercede Maj

Dipartimento di Matematica, Universita' di Salerno, 84084 Fisciano (Salerno), Italy email: plongobardi@unisa.it email: mmaj@unisa.it

Yonutz V. Stanchescu

Afeka Academic College, Tel Aviv 69107, Israel and The Open University of Israel, Raanana 43107, Israel email: yonis@afeka.ac.il and ionut@openu.ac.il

Direct and Inverse theorems

G.A. Freiman, *Foundations of a structural theory of set addition* Translations of mathematical monographs, v. 37. American Mathematical Society, Providence, Rhode Island, 1973.

Direct and Inverse theorems

(ロ) (部) (E) (E) (E)

G.A. Freiman,

Foundations of a structural theory of set addition

Translations of mathematical monographs, v. 37. American Mathematical Society, Providence, Rhode Island, 1973.

Direct and Inverse theorems

M.B. Nathanson

Additive number theory – Inverse problems and geometry of sumsets Springer, New York, 1996

・ロト ・四ト ・ヨト ・ヨト

э

T. Sanders The structure theory of set addition revisited *Bull. Amer. Math. Soc.* **50** (1) (2013), 93-127

Direct and Inverse theorems

M.B. Nathanson

Additive number theory – Inverse problems and geometry of sumsets Springer, New York, 1996

(日) (國) (臣) (臣) (臣)

T. Sanders

The structure theory of set addition revisited *Bull. Amer. Math. Soc.* **50** (1) (2013), 93-127.

Definition

If X, Y are subsets of a group G, then we denote

 $XY := \{xy \mid x \in X, y \in Y\}$ and $X^2 := \{x_1x_2 \mid x_1, x_2 \in X\}$.

If $X = \{x\}$, then we denote XY by xY and if $Y = \{y\}$, then we write Xy instead of $X\{y\}$.

If G is an additive group, then we denote

 $X + Y = \{x + y \mid x \in X, y \in Y\} \text{ and } 2X = \{x_1 + x_2 \mid x_1, x_2 \in X\}.$

・ロト ・四ト ・ヨト ・ヨト

3

Definition

If X, Y are subsets of a group G, then we denote

 $XY := \{xy \mid x \in X, y \in Y\}$ and $X^2 := \{x_1x_2 \mid x_1, x_2 \in X\}$.

If $X = \{x\}$, then we denote XY by xY and if $Y = \{y\}$, then we write Xy instead of $X\{y\}$.

If G is an additive group, then we denote

 $X + Y = \{x + y \mid x \in X, y \in Y\}$ and $2X = \{x_1 + x_2 \mid x_1, x_2 \in X\}$.

(日) (國) (문) (문) (문)

Definition

If X, Y are subsets of a group G, then we denote

 $XY := \{xy \mid x \in X, y \in Y\}$ and $X^2 := \{x_1x_2 \mid x_1, x_2 \in X\}$.

If $X = \{x\}$, then we denote XY by xY and if $Y = \{y\}$, then we write Xy instead of $X\{y\}$.

If G is an additive group, then we denote

 $X + Y = \{x + y \mid x \in X, y \in Y\}$ and $2X = \{x_1 + x_2 \mid x_1, x_2 \in X\}$.

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Gregory A. Freiman, Structure theory of set addition, *Astérisque*, **258** (1999), 1-33

"Thus a **direct problem** in additive number theory is a problem which, given summands and some conditions, we discover something about the set of sums. An **inverse problem** in additive number theory is a problem in which, using some knowledge of the set of sums, we learn something about the set of summands."

Gregory A. Freiman, Structure theory of set addition, *Astérisque*, **258** (1999), 1-33

"Thus a direct problem in additive number theory is a problem which, given summands and some conditions, we discover something about the set of sums. An inverse problem in additive number theory is a problem in which, using some knowledge of the set of sums, we learn something about the set of summands."

Gregory A. Freiman, Structure theory of set addition, *Astérisque*, **258** (1999), 1-33

"Thus a **direct problem** in additive number theory is a problem which, given summands and some conditions, we discover something about the set of sums. An **inverse problem** in additive number theory is a problem in which, using some knowledge of the set of sums, we learn something about the set of summands." Subsets of $\ensuremath{\mathbb{Z}}$ of the form

 $r * A := \{ rx : x \in A \},$

where *r* is a **positive** integer and *A* is a **finite** subset of \mathbb{Z} , are called *r*-*dilates*.

Minkowski sums of dilates are defined as follows:

 $r_1 * A + \ldots + r_s * A := \{r_1 x_1 + \ldots + r_s x_s : x_i \in A, \ 1 \le i \le s\}.$

(□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● の�?

Subsets of $\ensuremath{\mathbb{Z}}$ of the form

$$r * A := \{rx : x \in A\},$$

where *r* is a **positive** integer and *A* is a **finite** subset of \mathbb{Z} , are called *r*-*dilates*.

Minkowski sums of dilates are defined as follows:

 $r_1 * A + \ldots + r_s * A := \{r_1 x_1 + \ldots + r_s x_s : x_i \in A, \ 1 \le i \le s\}.$

・ロ・・ 日本・ ・ 日本・ ・ 日本・

э

Subsets of $\ensuremath{\mathbb{Z}}$ of the form

$$r * A := \{rx : x \in A\},$$

where *r* is a **positive** integer and *A* is a **finite** subset of \mathbb{Z} , are called *r*-*dilates*.

Minkowski sums of dilates are defined as follows:

 $r_1 * A + \dots + r_s * A := \{r_1 x_1 + \dots + r_s x_s : x_i \in A, \ 1 \le i \le s\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

These sums have been recently studied in different situations by Bukh, Cilleruelo, Hamidoune, Plagne, Rué, Silva, Vinuesa.

In particular, they examined sums of two dilates of the form

$$A + r * A = \{a + rb \mid a, b \in A\}$$

and solved various direct and inverse problems concerning their sizes.

These sums have been recently studied in different situations by *Bukh*, *Cilleruelo*, *Hamidoune*, *Plagne*, *Rué*, *Silva*, *Vinuesa*.

In particular, they examined sums of two dilates of the form

$$A + r * A = \{a + rb \mid a, b \in A\}$$

and solved various *direct* and *inverse* problems concerning their sizes.

$|A+2*A| \ge 3|A|-2.$

Moreover, they proved that if

$$|A + 2 * A| = 3|A| - 2,$$

・ロン ・聞と ・ほと ・ ほと

э

$|A+2*A| \ge 3|A|-2.$

Moreover, they proved that if

$$|A + 2 * A| = 3|A| - 2,$$

・ロン ・聞と ・ヨン ・

э

 $|A+2*A| \ge 3|A|-2.$

Moreover, they proved that if

$$|A + 2 * A| = 3|A| - 2,$$

(日) (四) (三) (三) (三)

 $|A+2*A| \ge 3|A|-2.$

Moreover, they proved that if

$$|A + 2 * A| = 3|A| - 2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dilates

Let A is a **finite** subset of \mathbb{Z} .

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

 $|A+2*A| \ge 3|A|-2.$

Question

What about |A + r * A|, where $r \ge 3$?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Let A is a **finite** subset of \mathbb{Z} .

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

 $|A+2*A| \ge 3|A|-2.$

Question

What about
$$|A + r * A|$$
, where $r \ge 3$?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Let A is a **finite** subset of \mathbb{Z} .

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

 $|A+2*A| \ge 3|A|-2.$

Question

What about
$$|A + r * A|$$
, where $r \ge 3$?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If |A + 2 * A| = 3|A| - 2, then A must be an arithmetic progression.

Question

What is the structure of the set A if |A + 2 * A| < 4|A| - 4?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If |A+2*A| < 4|A|-4, $|A| \ge 3$,

then A is a subset of an arithmetic progression of size $\leq 2|A| - 3$.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If |A + 2 * A| = 3|A| - 2, then A must be an arithmetic progression.

Question

What is the structure of the set A if |A + 2 * A| < 4|A| - 4?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If |A+2*A| < 4|A|-4, $|A| \ge 3$,

then A is a subset of an arithmetic progression of size $\leq 2|A| - 3$.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If |A + 2 * A| = 3|A| - 2, then A must be an arithmetic progression.

Question

What is the structure of the set A if |A + 2 * A| < 4|A| - 4?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If |A+2*A| < 4|A|-4, $|A| \ge 3$,

then A is a subset of an arithmetic progression of size $\leq 2|A| - 3$.

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let *A* and *B* finite subsets of \mathbb{Z} . It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of *k* integers. By the *length* $\ell(A)$ of *A* we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A:=\ell(A)+1-|A|$

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$.

Let A and B finite subsets of Z. It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of k integers. By the *length* $\ell(A)$ of A we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A:=\ell(A)+1-|A|$

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let A and B finite subsets of \mathbb{Z} .

It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of k integers. By the *length* $\ell(A)$ of A we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A:=\ell(A)+1-|A|$

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let *A* and *B* finite subsets of \mathbb{Z} . It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of *k* integers By the *length* $\ell(A)$ of *A* we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A:=\ell(A)+1-|A|$

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let *A* and *B* finite subsets of \mathbb{Z} . It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of *k* integers. By the *length* $\ell(A)$ of *A* we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A:=\ell(A)+1-|A|$

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let A and B finite subsets of Z. It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of k integers. By the *length* $\ell(A)$ of A we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A:=\ell(A)+1-|A|$

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Useful results

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let A and B finite subsets of Z. It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of k integers. By the *length* $\ell(A)$ of A we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A := \ell(A) + 1 - |A|$

denotes the number of *holes* in A, that is $h_A = |[a_0, a_{k-1}] \setminus A|$. Finally, if $k \ge 2$, then we denote

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Useful results

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let A and B finite subsets of Z. It is well known that $|A + B| \ge |A| + |B| - 1$. Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of k integers. By the *length* $\ell(A)$ of A we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A := \ell(A) + 1 - |A|$

denotes the number of *holes* in A, that is $h_A = |[a_0, a_{k-1}] \setminus A|$. Finally, if $k \ge 2$, then we denote

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Useful results

Theorem (V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu)

Let A and B be finite subsets of \mathbb{N} such that $0 \in A \cap B$. Define

$$\delta_{A,B} = \begin{cases} 1, & \text{if } \ell(A) = \ell(B), \\ 0, & \text{if } \ell(A) \neq \ell(B). \end{cases}$$

Then the following statements hold:

(i) If $\ell(A) = \max(\ell(A), \ell(B)) \ge |A| + |B| - 1 - \delta_{A,B}$ and d(A) = 1, then

$$|A + B| \ge |A| + 2|B| - 2 - \delta_{A,B}.$$

(ii) If $\max(\ell(A), \ell(B)) \le |A| + |B| - 2 - \delta_{A,B}$, then

 $|A+B| \ge (|A|+|B|-1) + \max(h_A, h_B) = \max(\ell(A)+|B|, \ell(B)+|A|).$

If
$$|A+2*A| < 4|A|-4$$
 ,

then A is a subset of an arithmetic progression of size $\leq 2|A| - 3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(a) If $1 \le k \le 2$, then |A + 2 * A| = 3k - 2 and A is an arithmetic progression of size k.

(b) If k ≥ 3, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then h≥ 0, |A + 2 * A| ≥ 3k - 2 and the set A is a subset of an arithmetic progression P = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (t - 1)d} of size |P| bounded by |P| ≤ k + h = |A + 2 * A| - 2k + 2 ≤ 2k - 3.
(c) If k ≥ 1 and |A + 2 * A| = 3k - 2, then A is an arithmetic progression A = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (k - 1)d}.

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(a) If $1 \le k \le 2$, then |A + 2 * A| = 3k - 2 and A is an arithmetic progression of size k.

(b) If k ≥ 3, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then h≥ 0, |A + 2 * A| ≥ 3k - 2 and the set A is a subset of an arithmetic progression P = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (t - 1)d} of size |P| bounded by |P| ≤ k + h = |A + 2 * A| - 2k + 2 ≤ 2k - 3.
(c) If k ≥ 1 and |A + 2 * A| = 3k - 2, then A is an arithmetic progression A = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (k - 1)d}.

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

- (a) If $1 \le k \le 2$, then |A + 2 * A| = 3k 2 and A is an arithmetic progression of size k.
- (b) If $k \ge 3$, assume that |A + 2 * A| = (3k 2) + h < 4k 4.

Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a subset of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, \dots, a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$. (c) If $k \ge 1$ and |A + 2 * A| = 3k - 2, then A is an arithmetic progression $A = \{a_0, a_0 + d, a_0 + 2d, \dots, a_0 + (k - 1)d\}$.

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

- (a) If $1 \le k \le 2$, then |A + 2 * A| = 3k 2 and A is an arithmetic progression of size k.
- (b) If k ≥ 3, assume that |A + 2 * A| = (3k 2) + h < 4k 4. Then h≥ 0, |A + 2 * A| ≥ 3k - 2 and the set A is a subset of an arithmetic progression P = {a₀, a₀ + d, a₀ + 2d,..., a₀ + (t - 1)d} of size |P| bounded by |P| ≤ k + h = |A + 2 * A| - 2k + 2 ≤ 2k - 3.
 (c) If k ≥ 1 and |A + 2 * A| = 3k - 2, then A is an arithmetic progression A = {a₀, a₀ + d, a₀ + 2d,..., a₀ + (k - 1)d}.

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

- (a) If $1 \le k \le 2$, then |A + 2 * A| = 3k 2 and A is an arithmetic progression of size k.
- (b) If k ≥ 3, assume that |A + 2 * A| = (3k 2) + h < 4k 4. Then h≥ 0, |A + 2 * A| ≥ 3k - 2 and the set A is a subset of an arithmetic progression P = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (t - 1)d} of size |P| bounded by |P| ≤ k + h = |A + 2 * A| - 2k + 2 ≤ 2k - 3.
 (c) If k ≥ 1 and |A + 2 * A| = 3k - 2, then A is an arithmetic progression A = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (k - 1)d}.

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

- (a) If $1 \le k \le 2$, then |A + 2 * A| = 3k 2 and A is an arithmetic progression of size k.
- (b) If k ≥ 3, assume that |A + 2 * A| = (3k 2) + h < 4k 4. Then h≥ 0, |A + 2 * A| ≥ 3k - 2 and the set A is a subset of an arithmetic progression P = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (t - 1)d} of size |P| bounded by |P| ≤ k + h = |A + 2 * A| - 2k + 2 ≤ 2k - 3.
 (c) If k ≥ 1 and |A + 2 * A| = 3k - 2, then A is an arithmetic progression A = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (k - 1)d}.

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(a) If $1 \le k \le 2$, then |A + 2 * A| = 3k - 2 and A is an arithmetic progression of size k.

Proof (a) If k = 1, then |A + 2 * A| = 1 = 3k - 2 and A is an arithmetic progression of size k. If k = 2 and $A = \{a < b\}$, then

$$A + 2 * A = \{3a, a + 2b, b + 2a, 3b\}.$$

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(a) If $1 \le k \le 2$, then |A + 2 * A| = 3k - 2 and A is an arithmetic progression of size k.

Proof (a) If k = 1, then |A + 2 * A| = 1 = 3k - 2 and A is an arithmetic progression of size k.

If k = 2 and $A = \{a < b\}$, then

$$A + 2 * A = \{3a, a + 2b, b + 2a, 3b\}.$$

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(a) If $1 \le k \le 2$, then |A + 2 * A| = 3k - 2 and A is an arithmetic progression of size k.

Proof (a) If k = 1, then |A + 2 * A| = 1 = 3k - 2 and A is an arithmetic progression of size k. If k = 2 and $A = \{a < b\}$, then

$$A + 2 * A = \{3a, a + 2b, b + 2a, 3b\}.$$

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(a) If $1 \le k \le 2$, then |A + 2 * A| = 3k - 2 and A is an arithmetic progression of size k.

Proof (a) If k = 1, then |A + 2 * A| = 1 = 3k - 2 and A is an arithmetic progression of size k. If k = 2 and $A = \{a < b\}$, then

$$A + 2 * A = \{3a, a + 2b, b + 2a, 3b\}.$$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Proof (b) Suppose, first, that A is normal, i.e. $\min(A) = a_0 = 0$ and d = d(A) = gcd(A) = 1. Thus $\ell(A) = a_{k-1}$. We split the set A into a disjoint union $A = A_0 \cup A_1$, where $A_0 \subseteq 2\mathbb{Z}$ and $A_1 \subseteq 2\mathbb{Z} + 1$. Since $0 = a_0 \in A_0$ and d(A) = 1, it follows that $A_0 \neq \emptyset$ and $A_1 \neq \emptyset$. Therefore

 $m := |A_0| \ge 1, n := |A_1| \ge 1$ and k = m + n.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a **subset** of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, ..., a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

We denote

$$\begin{split} &A_0 = \{0 = 2x_0 < 2x_1 < \dots < 2x_{m-1}\}, \\ &A_0^* := \frac{1}{2}A_0 = \{0 < x_1 < \dots < x_{m-1}\}, \\ &A_1 = \{2y_0 + 1 < 2y_1 + 1 < \dots < 2y_{n-1} + 1\}, \text{ and} \\ &A_1^* := \frac{1}{2}(A_1 - 1) - y_0 = \{0 < y_1 - y_0 < y_2 - y_0 < \dots < y_{n-1} - y_0\}. \\ &\text{Thus} \end{split}$$

 $\ell(A_0^*) = x_{m-1} < a_{k-1} = \ell(A)$ and also $\ell(A_1^*) = y_{n-1} - y_0 < a_{k-1} = \ell(A)$.

The set A + 2 * A is the union of two disjoint subsets $A_0 + 2 * A \subseteq 2\mathbb{Z}$ and $A_1 + 2 * A \subseteq 2\mathbb{Z} + 1$ and therefore

 $|A + 2 * A| = |A_0 + 2 * A| + |A_1 + 2 * A| = |A_0^* + A| + |A_1^* + A|.$

We denote

$$\begin{split} &A_0 = \{0 = 2x_0 < 2x_1 < \dots < 2x_{m-1}\}, \\ &A_0^* := \frac{1}{2}A_0 = \{0 < x_1 < \dots < x_{m-1}\}, \\ &A_1 = \{2y_0 + 1 < 2y_1 + 1 < \dots < 2y_{n-1} + 1\}, \text{ and} \\ &A_1^* := \frac{1}{2}(A_1 - 1) - y_0 = \{0 < y_1 - y_0 < y_2 - y_0 < \dots < y_{n-1} - y_0\}. \\ &\text{Thus} \end{split}$$

 $\ell(A_0^*) = x_{m-1} < a_{k-1} = \ell(A)$ and also $\ell(A_1^*) = y_{n-1} - y_0 < a_{k-1} = \ell(A)$.

The set A + 2 * A is the union of two disjoint subsets $A_0 + 2 * A \subseteq 2\mathbb{Z}$ and $A_1 + 2 * A \subseteq 2\mathbb{Z} + 1$ and therefore

 $|A + 2 * A| = |A_0 + 2 * A| + |A_1 + 2 * A| = |A_0^* + A| + |A_1^* + A|.$

We denote

$$\begin{split} &A_0 = \{0 = 2x_0 < 2x_1 < \ldots < 2x_{m-1}\}, \\ &A_0^* := \frac{1}{2}A_0 = \{0 < x_1 < \ldots < x_{m-1}\}, \\ &A_1 = \{2y_0 + 1 < 2y_1 + 1 < \ldots < 2y_{n-1} + 1\}, \text{ and} \\ &A_1^* := \frac{1}{2}(A_1 - 1) - y_0 = \{0 < y_1 - y_0 < y_2 - y_0 < \ldots < y_{n-1} - y_0\}. \\ &\text{Thus} \end{split}$$

 $\ell(A_0^*) = x_{m-1} < a_{k-1} = \ell(A)$ and also $\ell(A_1^*) = y_{n-1} - y_0 < a_{k-1} = \ell(A)$.

The set A + 2 * A is the union of two disjoint subsets $A_0 + 2 * A \subseteq 2\mathbb{Z}$ and $A_1 + 2 * A \subseteq 2\mathbb{Z} + 1$ and therefore

 $|A + 2 * A| = |A_0 + 2 * A| + |A_1 + 2 * A| = |A_0^* + A| + |A_1^* + A|.$

We denote

$$\begin{split} &A_0 = \{0 = 2x_0 < 2x_1 < \dots < 2x_{m-1}\}, \\ &A_0^* := \frac{1}{2}A_0 = \{0 < x_1 < \dots < x_{m-1}\}, \\ &A_1 = \{2y_0 + 1 < 2y_1 + 1 < \dots < 2y_{n-1} + 1\}, \text{ and} \\ &A_1^* := \frac{1}{2}(A_1 - 1) - y_0 = \{0 < y_1 - y_0 < y_2 - y_0 < \dots < y_{n-1} - y_0\}. \\ &\text{Thus} \end{split}$$

 $\ell(A_0^*) = x_{m-1} < a_{k-1} = \ell(A)$ and also $\ell(A_1^*) = y_{n-1} - y_0 < a_{k-1} = \ell(A)$.

The set A + 2 * A is the union of two disjoint subsets $A_0 + 2 * A \subseteq 2\mathbb{Z}$ and $A_1 + 2 * A \subseteq 2\mathbb{Z} + 1$ and therefore

 $|A + 2 * A| = |A_0 + 2 * A| + |A_1 + 2 * A| = |A_0^* + A| + |A_1^* + A|.$

We denote

$$\begin{split} &A_0 = \{0 = 2x_0 < 2x_1 < \dots < 2x_{m-1}\}, \\ &A_0^* := \frac{1}{2}A_0 = \{0 < x_1 < \dots < x_{m-1}\}, \\ &A_1 = \{2y_0 + 1 < 2y_1 + 1 < \dots < 2y_{n-1} + 1\}, \text{ and} \\ &A_1^* := \frac{1}{2}(A_1 - 1) - y_0 = \{0 < y_1 - y_0 < y_2 - y_0 < \dots < y_{n-1} - y_0\}. \\ &\text{Thus} \end{split}$$

 $\ell(A_0^*) = x_{m-1} < a_{k-1} = \ell(A)$ and also $\ell(A_1^*) = y_{n-1} - y_0 < a_{k-1} = \ell(A)$.

The set A + 2 * A is the union of two disjoint subsets $A_0 + 2 * A \subseteq 2\mathbb{Z}$ and $A_1 + 2 * A \subseteq 2\mathbb{Z} + 1$ and therefore

 $|A + 2 * A| = |A_0 + 2 * A| + |A_1 + 2 * A| = |A_0^* + A| + |A_1^* + A|.$

We denote

$$\begin{split} &A_0 = \{0 = 2x_0 < 2x_1 < \dots < 2x_{m-1}\}, \\ &A_0^* := \frac{1}{2}A_0 = \{0 < x_1 < \dots < x_{m-1}\}, \\ &A_1 = \{2y_0 + 1 < 2y_1 + 1 < \dots < 2y_{n-1} + 1\}, \text{ and} \\ &A_1^* := \frac{1}{2}(A_1 - 1) - y_0 = \{0 < y_1 - y_0 < y_2 - y_0 < \dots < y_{n-1} - y_0\}. \\ &\text{Thus} \end{split}$$

 $\ell(A_0^*) = x_{m-1} < a_{k-1} = \ell(A)$ and also $\ell(A_1^*) = y_{n-1} - y_0 < a_{k-1} = \ell(A)$.

The set A + 2 * A is the union of two disjoint subsets $A_0 + 2 * A \subseteq 2\mathbb{Z}$ and $A_1 + 2 * A \subseteq 2\mathbb{Z} + 1$ and therefore

 $|A + 2 * A| = |A_0 + 2 * A| + |A_1 + 2 * A| = |A_0^* + A| + |A_1^* + A|.$

Claim 1:

$\ell(A) \leq k + \max(m, n) - 2 \leq 2k - 3.$

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:

$$|A+2*A| \ge (3k-2)+h_A.$$

Recall that $h_A = \ell(A) + 1 - |A|$. For the proof of Claim 2 we shall use Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 1:

$$\ell(A) \leq k + \max(m, n) - 2 \leq 2k - 3.$$

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:

$$|A+2*A| \ge (3k-2)+h_A.$$

Recall that $h_A = \ell(A) + 1 - |A|$. For the proof of Claim 2 we shall use Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 1:

$$\ell(A) \leq k + \max(m, n) - 2 \leq 2k - 3.$$

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:

$$|A+2*A| \ge (3k-2)+h_A.$$

Recall that $h_A = \ell(A) + 1 - |A|$. For the proof of Claim 2 we shall use Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 1:

$$\ell(A) \leq k + \max(m, n) - 2 \leq 2k - 3.$$

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:

$$|A+2*A| \ge (3k-2)+h_A.$$

Recall that $h_A = \ell(A) + 1 - |A|$. For the proof of Claim 2 we shall use Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 1:

$$\ell(A) \leq k + \max(m, n) - 2 \leq 2k - 3.$$

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:

$$|A+2*A| \ge (3k-2)+h_A.$$

Recall that $h_A = \ell(A) + 1 - |A|$. For the proof of Claim 2 we shall use Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 1:

$$\ell(A) \leq k + \max(m, n) - 2 \leq 2k - 3.$$

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:

$$|A+2*A| \ge (3k-2)+h_A.$$

Recall that $h_A = \ell(A) + 1 - |A|$. For the proof of Claim 2 we shall use Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu.

In both cases we obtain that h_A , the total number of holes in the normal set A, satisfies

$$0 \le h_A \le |A+2*A| - (3k-2) =: h \le k-3.$$

Hence

$$h \ge h_A \ge 0$$
 and $|A+2*A| \ge (3k-2)$.

Moreover, the set A is contained in the arithmetic progression

$$P = \{a_0, a_0 + 1, a_0 + 2, ..., a_{k-1}\} = \{0, 1, 2, ..., a_{k-1}\}$$

of size $a_{k-1} + 1 = k + h_A \le k + h \le 2k - 3$.

In both cases we obtain that h_A , the total number of holes in the normal set A, satisfies

$$0 \le h_A \le |A+2*A| - (3k-2) =: h \le k-3.$$

Hence

$$h \ge h_A \ge 0$$
 and $|A+2*A| \ge (3k-2)$.

Moreover, the set A is contained in the arithmetic progression

$$P = \{a_0, a_0 + 1, a_0 + 2, ..., a_{k-1}\} = \{0, 1, 2, ..., a_{k-1}\}$$

of size $a_{k-1} + 1 = k + h_A \le k + h \le 2k - 3$.

In both cases we obtain that h_A , the total number of holes in the normal set A, satisfies

$$0 \le h_A \le |A+2*A| - (3k-2) =: h \le k-3.$$

Hence

$$h \ge h_A \ge 0$$
 and $|A + 2 * A| \ge (3k - 2)$.

Moreover, the set A is contained in the arithmetic progression

$$P = \{a_0, a_0 + 1, a_0 + 2, ..., a_{k-1}\} = \{0, 1, 2, ..., a_{k-1}\}$$

of size $a_{k-1} + 1 = k + h_A \le k + h \le 2k - 3$.

In both cases we obtain that h_A , the total number of holes in the normal set A, satisfies

$$0 \le h_A \le |A+2*A| - (3k-2) =: h \le k-3.$$

Hence

$$h \ge h_A \ge 0$$
 and $|A + 2 * A| \ge (3k - 2)$.

Moreover, the set A is contained in the arithmetic progression

$$P = \{a_0, a_0 + 1, a_0 + 2, ..., a_{k-1}\} = \{0, 1, 2, ..., a_{k-1}\}$$

of size $a_{k-1} + 1 = k + h_A \le k + h \le 2k - 3$.

It follows that Theorem (b) holds for **normal** sets A satisfying the hypothesis.

Let now A be an **arbitrary** finite set of $k = |A| \ge 3$ integers satisfying the hypothesis. We define

$$B = \frac{1}{d(A)}(A - a_0) = \{\frac{1}{d(A)}(x - a_0) : x \in A\}.$$

・ロト ・四ト ・ヨト ・ヨト

э

It follows that Theorem (b) holds for **normal** sets A satisfying the hypothesis.

Let now A be an **arbitrary** finite set of $k = |A| \ge 3$ integers satisfying the hypothesis. We define

$$B = \frac{1}{d(A)}(A - a_0) = \{\frac{1}{d(A)}(x - a_0) : x \in A\}.$$

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

It follows that Theorem (b) holds for **normal** sets A satisfying the hypothesis.

Let now A be an **arbitrary** finite set of $k = |A| \ge 3$ integers satisfying the hypothesis. We define

$$B = \frac{1}{d(A)}(A - a_0) = \{\frac{1}{d(A)}(x - a_0) : x \in A\}.$$

...

//

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Let G be a group and S a finite subset of G. Let $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}.$

Problem

What if the structure of S if $|S^2|$ satisfies

 $|S^2| \le \alpha |S| + \beta,$

for some small $lpha \geq 1$ and small |eta| ?

Definition

The subset *S* of *G* is said to satisfy the *small doubling property* if

 $|S^2| \le \alpha |S| + \beta,$

Let G be a group and S a finite subset of G. Let $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}.$

Problem

What if the structure of S if $|S^2|$ satisfies

 $|S^2| \le \alpha |S| + \beta,$

for some small $lpha \geq 1$ and small |eta| ?

Definition

The subset *S* of *G* is said to satisfy the *small doubling property* if

 $|S^2| \le \alpha |S| + \beta,$

Let G be a group and S a finite subset of G. Let $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}.$

Problem

What if the structure of S if $|S^2|$ satisfies

 $|S^2| \le \alpha |S| + \beta,$

for some small $\alpha \geq 1$ and small $|\beta|$?

Definition

The subset *S* of *G* is said to satisfy the *small doubling property* if

 $|S^2| \le \alpha |S| + \beta,$

Let G be a group and S a finite subset of G. Let $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}.$

Problem

What if the structure of S if $|S^2|$ satisfies

 $|S^2| \le \alpha |S| + \beta,$

for some small $\alpha \geq 1$ and small $|\beta|$?

Definition

The subset S of G is said to satisfy the *small doubling property* if

$$|S^2| \le \alpha |S| + \beta,$$

・ロト ・四ト ・ヨト ・ヨト

э

For integers *m* and *n*, the general Baumslag-Solitar group $\mathcal{BS}(m, n)$ is a group with two generators *a*, *b* and one defining relation $b^{-1}a^mb = a^n$:

$$\mathcal{BS}(m,n) := \langle a, b \mid a^m b = ba^n \rangle.$$

"The Baumslag-Solitar groups are a particular class of two-generator one-relator groups which have played a surprisingly useful role in combinatorial and, more recently (the 1990s), geometric group theory. In a number of situations they have provided examples which mark boundaries between different classes of groups and they often provide a testbed for theories and techniques."

Encyclopedia of Mathematics

For integers *m* and *n*, the general Baumslag-Solitar group $\mathcal{BS}(m, n)$ is a group with two generators *a*, *b* and one defining relation $b^{-1}a^mb = a^n$:

$$\mathcal{BS}(m,n) := \langle a, b \mid a^m b = ba^n \rangle.$$

"The Baumslag-Solitar groups are a particular class of two-generator one-relator groups which have played a surprisingly useful role in combinatorial and, more recently (the 1990s), geometric group theory. In a number of situations they have provided examples which mark boundaries between different classes of groups and they often provide a testbed for theories and techniques."

Encyclopedia of Mathematics

For integers *m* and *n*, the general Baumslag-Solitar group $\mathcal{BS}(m, n)$ is a group with two generators *a*, *b* and one defining relation $b^{-1}a^mb = a^n$:

$$\mathcal{BS}(m,n) := \langle a, b \mid a^m b = ba^n \rangle.$$

"The Baumslag-Solitar groups are a particular class of two-generator one-relator groups which have played a surprisingly useful role in combinatorial and, more recently (the 1990s), geometric group theory. In a number of situations they have provided examples which mark boundaries between different classes of groups and they often provide a testbed for theories and techniques."

Encyclopedia of Mathematics

$\mathcal{BS}(m,n) = \langle a, b \mid a^m b = b a^n \rangle$

These groups were introduced by Gilbert Baumslag and Donald Solitar in 1962 in order to provide some simple examples of non-Hopfian groups. ("Some two generator one-relator non-Hopfian groups", *Bull. Amer. Math. Soc.*, **689** (1962), 199-201).

A group is called *Hopfian* (or nowadays *Hopf*) if every epimorphism from the group to itself is an isomorphism.

The name is derived from the topologist *Heinz Hopf* and is thought to reflect the fact that whether fundamental groups of manifolds are *Hopfian* is of interest.

$\mathcal{BS}(m,n) = \langle a, b \mid a^m b = b a^n \rangle$

These groups were introduced by Gilbert Baumslag and Donald Solitar in 1962 in order to provide some simple examples of non-Hopfian groups. ("Some two generator one-relator non-Hopfian groups", *Bull. Amer.*

Math. Soc., 689 (1962), 199-201).

A group is called *Hopfian* (or nowadays *Hopf*) if every epimorphism from the group to itself is an isomorphism.

The name is derived from the topologist *Heinz Hopf* and is thought to reflect the fact that whether fundamental groups of manifolds are *Hopfian* is of interest.

$\mathcal{BS}(m,n) = \langle a, b \mid a^m b = b a^n \rangle$

These groups were introduced by Gilbert Baumslag and Donald Solitar in 1962 in order to provide some simple examples of non-Hopfian groups. ("Some two generator one-relator non-Hopfian groups", *Bull. Amer.*

Math. Soc., 689 (1962), 199-201).

A group is called *Hopfian* (or nowadays *Hopf*) if every epimorphism from the group to itself is an isomorphism.

The name is derived from the topologist *Heinz Hopf* and is thought to reflect the fact that whether fundamental groups of manifolds are *Hopfian* is of interest.

In 1944 *Reinhold Baer* published an example of a non-Hopfian 2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely related non-Hopfian group.

("A two-generator group isomorphic to a proper facotor group, *J. London Math. Soc.*, **25** (1950), 247-248)

In 1944 *Reinhold Baer* published an example of a non-Hopfian 2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely related non-Hopfian group.

("A two-generator group isomorphic to a proper facotor group, *J. London Math. Soc.*, **25** (1950), 247-248)

In 1944 *Reinhold Baer* published an example of a non-Hopfian 2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely related non-Hopfian group.

("A two-generator group isomorphic to a proper facotor group, *J. London Math. Soc.*, **25** (1950), 247-248)

・ロン ・聞と ・ヨン ・

In 1944 *Reinhold Baer* published an example of a non-Hopfian 2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely related non-Hopfian group.

("A two-generator group isomorphic to a proper facotor group, *J. London Math. Soc.*, **25** (1950), 247-248)

Next year *Graham Higman* exhibited an example of a finitely presented non-Hopfian group; more precisesely, this group was 3-generator and with 2 defining relations.

("A finitely related group with an isomorphic proper factor group, *J. London Math. Soc.*, **26** (1951), 59-61).

In his paper he quoted *Bernhard* and *Hanna Neumann* for a proof that one-relator groups had to be Hopfian, but they were only trying to show this, unsuccessfully.

Finally, in 1962, *Gilbert Baumslag* and *Donald Solitar* showed that the group

$$\mathcal{BS}(2,3) = \langle a, b \mid a^2b = ba^3 \rangle$$

is non-Hopfian.

Next year *Graham Higman* exhibited an example of a finitely presented non-Hopfian group; more precisesely, this group was 3-generator and with 2 defining relations.

("A finitely related group with an isomorphic proper factor group, *J. London Math. Soc.*, **26** (1951), 59-61).

In his paper he quoted *Bernhard* and *Hanna Neumann* for a proof that one-relator groups had to be Hopfian, but they were only trying to show this, unsuccessfully.

Finally, in 1962, *Gilbert Baumslag* and *Donald Solitar* showed that the group

$$\mathcal{BS}(2,3) = \langle a, b \mid a^2 b = b a^3 \rangle$$

is non-Hopfian.

Next year *Graham Higman* exhibited an example of a finitely presented non-Hopfian group; more precisesely, this group was 3-generator and with 2 defining relations.

("A finitely related group with an isomorphic proper factor group, *J. London Math. Soc.*, **26** (1951), 59-61).

In his paper he quoted *Bernhard* and *Hanna Neumann* for a proof that one-relator groups had to be Hopfian, but they were only trying to show this, unsuccessfully.

Finally, in 1962, *Gilbert Baumslag* and *Donald Solitar* showed that the group

$$\mathcal{BS}(2,3) = \langle a, b \mid a^2 b = b a^3 \rangle$$

is non-Hopfian.

More generally:

$$\mathcal{BS}(m,n) = \langle a,b \mid a^mb = ba^n
angle$$

is Hopfian if and only if : (i) |m| = |n| or (ii) |m| = 1 or (iii) |n| = 1 or (iv) $\pi(m) = \pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m

We shall concentrate on the Baumslag-Solitar groups

$$\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle.$$

More generally:

$$\mathcal{BS}(m,n) = \langle a,b \mid a^mb = ba^n
angle$$

is Hopfian if and only if :

(i) |m| = |n| or (ii) |m| = 1 or (iii) |n| = 1 or (iv) $\pi(m) = \pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

$$\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle.$$

More generally:

$$\mathcal{BS}(m,n) = \langle a,b \mid a^mb = ba^n
angle$$

is Hopfian if and only if : (i) |m| = |n| or (ii) |m| = 1 or (iii) |n| = 1 or (iv) $\pi(m) = \pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

$$\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle.$$

More generally:

$$\mathcal{BS}(m,n) = \langle a,b \mid a^mb = ba^n
angle$$

is Hopfian if and only if : (i) |m| = |n| or (ii) |m| = 1 or (iii) |n| = 1 or (iv) $\pi(m) = \pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

$$\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle.$$

More generally:

$$\mathcal{BS}(m,n) = \langle a,b \mid a^mb = ba^n
angle$$

is Hopfian if and only if : (i) |m| = |n| or (ii) |m| = 1 or (iii) |n| = 1 or (iv) $\pi(m) = \pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

$$\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle.$$

Let S be a finite subset of $\mathcal{BS}(1,n)$ of size k contained in the coset $b^r < a >$ for some $\mathbf{r} \geq \mathbf{0}$. Then

$$S = \{b^r a^{x_0}, b^r a^{x_1}, \dots, b^r a^{x_{k-1}}\},\$$

where $A = \{x_0, x_1, \dots, x_{k_1-1}\}$ is a subset of \mathbb{Z} . We introduce now the notation

 $S = \{b^r a^x : x \in A\} =: b^r a^A.$

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $\mathbf{r} \ge \mathbf{0}$. Then

 $S = \{b^r a^{x_0}, b^r a^{x_1}, \dots, b^r a^{x_{k-1}}\},\$

where $A = \{x_0, x_1, \dots, x_{k_1-1}\}$ is a subset of \mathbb{Z} . We introduce now the notation

 $S = \{b^r a^x : x \in A\} =: b^r a^A.$

▲圖▶ ▲ 国▶ ▲ 国▶

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $\mathbf{r} \ge \mathbf{0}$. Then

$$S = \{b^r a^{x_0}, b^r a^{x_1}, \dots, b^r a^{x_{k-1}}\},\$$

where $A = \{x_0, x_1, \dots, x_{k_1-1}\}$ is a subset of \mathbb{Z} . We introduce now the notation

 $S = \{b^r a^x : x \in A\} =: b^r a^A.$

・ロ・ ・ 日・ ・ 日・ ・ 日・

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $\mathbf{r} \ge \mathbf{0}$. Then

$$S = \{b^r a^{x_0}, b^r a^{x_1}, \dots, b^r a^{x_{k-1}}\},\$$

where $A = \{x_0, x_1, \dots, x_{k_1-1}\}$ is a subset of \mathbb{Z} . We introduce now the notation

$$S = \{b^r a^x : x \in A\} =: b^r a^A.$$

Let S be a finite subset of $\mathcal{BS}(1,n)$ of size k contained in the coset $b^r < a >$ for some $\mathbf{r} \ge \mathbf{0}$. Then

$$S = \{b^r a^{x_0}, b^r a^{x_1}, \dots, b^r a^{x_{k-1}}\},\$$

where $A = \{x_0, x_1, \dots, x_{k_1-1}\}$ is a subset of \mathbb{Z} . We introduce now the notation

$$S = \{b^r a^x : x \in A\} =: b^r a^A.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

The groups $\mathcal{BS}(1,n) = \langle a,b \mid ab = ba^n angle$

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $r \in \mathbb{N}$ and let T be a finite subset of $\mathcal{BS}(1, n)$ of size h contained in the coset $b^s < a >$ for some $s \in \mathbb{N}$.

Then

$${\it S}={\it b}^{
m r}{\it a}^{
m A}$$
 , ${\it T}={\it b}^{
m s}{\it a}^{
m B}$

for some subsets $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ of \mathbb{Z} . From $a^x b = ba^{nx}$ for each $x \in \mathbb{Z}$ it follows

 $(b^{r}a^{x})(b^{s}a^{y}) = b^{r}(a^{x}b^{s})a^{y} = b^{r}(b^{s}a^{n^{s}x})a^{y} = b^{r+s}a^{n^{s}x+y}.$

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $r \in \mathbb{N}$ and let T be a finite subset of $\mathcal{BS}(1, n)$ of size h contained in the coset $b^s < a >$ for some $s \in \mathbb{N}$.

Then

$$S=b^ra^A$$
 , $T=b^sa^B$

for some subsets $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ of \mathbb{Z} . From $a^{\times}b = ba^{n^{\times}}$ for each $x \in \mathbb{Z}$ it follows

 $(b^{r}a^{x})(b^{s}a^{y}) = b^{r}(a^{x}b^{s})a^{y} = b^{r}(b^{s}a^{n^{s}x})a^{y} = b^{r+s}a^{n^{s}x+y}.$

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $r \in \mathbb{N}$ and let T be a finite subset of $\mathcal{BS}(1, n)$ of size h contained in the coset $b^s < a >$ for some $s \in \mathbb{N}$.

Then

$$S=b^ra^A$$
 , $T=b^sa^B$

for some subsets $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ of \mathbb{Z} . From $a^{\times}b = ba^{n\times}$ for each $x \in \mathbb{Z}$ it follows

 $(b^{r}a^{x})(b^{s}a^{y}) = b^{r}(a^{x}b^{s})a^{y} = b^{r}(b^{s}a^{n^{s}x})a^{y} = b^{r+s}a^{n^{s}x+y}.$

The groups $\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle$

Therefore if

$$S=b^ra^A$$
 , $T=b^sa^B$

where $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ are subsets of \mathbb{Z} , from $(b^r a^x)(b^s a^y) = b^{r+s} a^{n^s x+y}$ it follows

$$ST = b^{r+s}a^{n^s*A+B}$$
 and $|ST| = |n^s*A+B|$.

In particular

$$S^2 = b^{2r}a^{n^r*A+A}$$
 and $|S^2| = |n^r*A+A|.$

The groups $\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle$

Therefore if

$$S=b^ra^A$$
 , $T=b^sa^B$

where $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ are subsets of \mathbb{Z} , from $(b^r a^x)(b^s a^y) = b^{r+s} a^{n^s x+y}$ it follows

$$ST = b^{r+s}a^{n^s*A+B}$$
 and $|ST| = |n^s*A+B|$.

In particular

$$S^2 = b^{2r}a^{n^r*A+A}$$
 and $|S^2| = |n^r*A+A|$.

The groups $\mathcal{BS}(1, n) = \langle a, b \mid ab = ba^n \rangle$

Theorem

Suppose that $S = b^r a^A \subseteq \mathcal{BS}(1, n), T = b^s a^B \subseteq \mathcal{BS}(1, n),$ where $r, s \in \mathbb{Z}, r, s \ge 0$ and A, B are finite subsets of \mathbb{Z} . Then

 $ST = b^{r+s}a^{n^s*A+B}$

and

$$|ST| = |n^s * A + B|.$$

In particular,

$$S^2 = b^{2r} a^{n^r * A + A}$$

and

$$|S^2| = |n^r * A + A| = |A + n^r * A|.$$

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If A is a finite set of integers, then $|A + 2 * A| \ge 3|A| - 2$ and |A + 2 * A| = 3|A| - 2 if and only if A is an arithmetic progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu) If $S = ba^A \subseteq \mathcal{BS}(1,2)$, where A is a finite subset of \mathbb{Z} , then $|S^2| \ge 3|S| - 2$

and if $|S^2| = 3|S| - 2$, then A is an arithmetic progression and S is a geometric progression.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If A is a finite set of integers, then $|A + 2 * A| \ge 3|A| - 2$ and |A + 2 * A| = 3|A| - 2 if and only if A is an arithmetic progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu) If $S = ba^A \subseteq \mathcal{BS}(1,2)$, where A is a finite subset of \mathbb{Z} , then $|S^2| \ge 3|S| - 2$

and if $|S^2| = 3|S| - 2$, then A is an arithmetic progression and S is a geometric progression.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If A is a finite set of integers, then $|A + 2 * A| \ge 3|A| - 2$ and |A + 2 * A| = 3|A| - 2 if and only if A is an arithmetic progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu) If $S = ba^A \subseteq \mathcal{BS}(1,2)$, where A is a finite subset of \mathbb{Z} , then $|S^2| > 3|S| - 2$

and if $|S^2| = 3|S| - 2$, then A is an arithmetic progression and S is a geometric progression.

If A is a finite set of integers, $|A| \ge 3$ and |A + 2 * A| < 4|A| - 4, then A is a subset of an arithmetic progression of size $\le 2|A| - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $S = ba^A \subseteq \mathcal{BS}(1,2)$, $|S| \ge 3$ and $|S^2| < 4|S| - 4$, then A is a subset of an arithmetic progression of size $\le 2|S| - 3$.

・ロト ・四ト ・ヨト ・ヨト

If A is a finite set of integers, $|A| \ge 3$ and |A + 2 * A| < 4|A| - 4, then A is a subset of an arithmetic progression of size $\le 2|A| - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $S = ba^A \subseteq \mathcal{BS}(1,2)$, $|S| \ge 3$ and $|S^2| < 4|S| - 4$, then A is a subset of an arithmetic progression of size $\le 2|S| - 3$.

The group $\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $S = b^m a^A \subseteq BS(1, 2)$, where A is a finite set of integers of size $k \ge 2$ and $m \ge 2$. Then

 $|S^2| \ge 4k - 4.$

The group
$$\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$$

If A is a finite set of integers, $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $S = b^m a^A \subseteq BS(1, 2)$, where A is a finite set of integers of size $k \ge 2$ and $m \ge 2$. Then

 $|S^2| \ge 4k - 4.$

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

The groups $\mathcal{BS}(1, n) = \langle a, b \mid ab = ba^n \rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $S \subseteq \mathcal{BS}(1, n)$ be a finite set of size $k = |S| \ge 2$ and suppose that $n \ge 3$ and

 $S = ba^A$,

where $A \subseteq \mathbb{Z}$ is a finite set of integers. Then

$$|S^2| = |A + n * A| \ge 4k - 4.$$

The groups $\mathcal{BS}(1, n) = \langle a, b \mid ab = ba^n \rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $S \subseteq \mathcal{BS}(1, n)$ be a finite set of size $k = |S| \ge 2$ and suppose that $n \ge 3$ and

 $S = ba^A$,

where $A \subseteq \mathbb{Z}$ is a finite set of integers. Then

$$|S^2| = |A+n*A| \ge 4k-4.$$

The group
$$\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$$

What is the structure of an arbitrary subset of $\mathcal{BS}(1,2)$, satisfying some small doubling condition?

Very difficult!

Definition

Consider the submonoid

 $\mathcal{BS}^+(1,2) := \{b^m a^x \in \mathcal{BS}(1,2) \mid x, m \in \mathbb{Z}, m \ge 0\}$ $\mathcal{BS}(1,2).$

The group
$$\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$$

What is the structure of an arbitrary subset of $\mathcal{BS}(1,2)$, satisfying some small doubling condition?

Very difficult!

Definition

Consider the submonoid

 $\mathcal{BS}^+(1,2) := \{ b^m a^x \in \mathcal{BS}(1,2) \mid x, m \in \mathbb{Z}, m \ge 0 \}$ $\mathcal{BS}(1,2).$

The group
$$\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$$

What is the structure of an arbitrary subset of $\mathcal{BS}(1,2)$, satisfying some small doubling condition?

Very difficult!

Definition

Consider the submonoid

 $\mathcal{BS}^+(1,2) := \{b^m a^x \in \mathcal{BS}(1,2) \mid x, m \in \mathbb{Z}, m \ge 0\}$ $\mathcal{BS}(1,2).$

The group
$$\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$$

What is the structure of an arbitrary subset of $\mathcal{BS}(1,2)$, satisfying some small doubling condition?

Very difficult!

Definition

Consider the submonoid

 $\mathcal{BS}^+(1,2):=\{b^ma^x\in\mathcal{BS}(1,2)\mid x,m\in\mathbb{Z},m\geq 0\}$ of $\mathcal{BS}(1,2).$

Definition

Consider the submonoid

$$\mathcal{BS}^+(1,2) = \{b^m a^x \in \mathcal{BS}(1,2) \mid x, m \in \mathbb{Z}, m \ge 0\}$$

 $\mathcal{BS}(1,2).$

Remark

of

All elements of

$\mathcal{BS}^+(1,2)$

can be uniquely represented by a word of the form $b^m a^{\times}$, which is not the case in $\mathcal{BS}(1,2)$.

Definition

```
Consider the submonoid
```

 $\mathcal{BS}^+(1,2)=\{b^ma^x\in\mathcal{BS}(1,2)\mid x,m\in\mathbb{Z},m\geq 0\}$ of $\mathcal{BS}(1,2).$

Remark

All elements of

 $\mathcal{BS}^+(1,2)$

can be uniquely represented by a word of the form $b^m a^x$, which is not the case in $\mathcal{BS}(1,2)$.

$$\mathcal{BS}^+(1,2)=\{b^m\mathsf{a}^x\in\mathcal{BS}(1,2)\mid x,m\in\mathbb{Z},m\geq 0\}$$

Let S be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that

$$|S^2| < \frac{7}{2}|S| - 4.$$

Then

$$S = ba^A$$
,

where A is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

$$\mathcal{BS}^+(1,2)=\{b^m\mathsf{a}^x\in\mathcal{BS}(1,2)\mid x,m\in\mathbb{Z},m\geq 0\}$$

Let S be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that

$$|S^2| < \frac{7}{2}|S| - 4.$$

Then

$$S = ba^A$$
,

where A is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Let *S* be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that $|S^2| < \frac{7}{2}|S| - 4$. Then $S = ba^A$, where *A* is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Remark

This result is best possible.

In fact, there exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

Let *S* be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that $|S^2| < \frac{7}{2}|S| - 4$. Then $S = ba^A$, where *A* is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Remark

This result is best possible.

In fact, there exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

(日) (國) (문) (문) (문)

There exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

Example Let $S:=a^{A_0}\cup\{b\}\subset\mathcal{BS}^+(1,2),$ where $A_0=\{0,1,2,...,k-2\} ext{ and } k>2 ext{ is even}.$

There exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

Example Let $S := a^{A_0} \cup \{b\} \subset \mathcal{BS}^+(1,2),$ where $A_0 = \{0, 1, 2, ..., k-2\}$ and k > 2 is even.

There exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

Example Let $S := a^{A_0} \cup \{b\} \subset \mathcal{BS}^+(1,2),$ where $A_0 = \{0, 1, 2, ..., k-2\}$ and k > 2 is even.

There exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

Example Let $S := a^{A_0} \cup \{b\} \subset \mathcal{BS}^+(1,2),$ where $A_0 = \{0, 1, 2, ..., k-2\}$ and k > 2 is even.

$S = a^{\overline{A}_0} \cup \{b\} \subset \mathcal{BS}^+(1,2)$, $A_0 = \overline{\{0,1,2,...,k-2\},k>2}$ even

For,

$$S^{2} = a^{A_{0}}a^{A_{0}} \cup ba^{A_{0}} \cup a^{A_{0}}b \cup \{b^{2}\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0} + A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0} + A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}.$

Since

$$a^{A_0+A_0} \subseteq a^{\mathbb{Z}}, \qquad ba^{A_0 \cup 2*A_0} \subseteq ba^{\mathbb{Z}}, \qquad \{b^2\} \subseteq b^2 a^{\mathbb{Z}},$$

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3) + (\frac{3}{2}k-2) + 1 = \frac{7}{2}k - 4.$$

$S = a^{\mathcal{A}_0} \cup \{b\} \subset \mathcal{BS}^+(1,2)$, $A_0 = \{0,1,2,...,k-2\}, k>2$ even

For,

$$S^2 = a^{A_0}a^{A_0} \cup ba^{A_0} \cup a^{A_0}b \cup \{b^2\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0} + A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0} + A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}.$

Since

$$a^{A_0+A_0} \subseteq a^{\mathbb{Z}}, \qquad ba^{A_0 \cup 2*A_0} \subseteq ba^{\mathbb{Z}}, \qquad \{b^2\} \subseteq b^2 a^{\mathbb{Z}},$$

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3) + (\frac{3}{2}k-2) + 1 = \frac{7}{2}k - 4.$$

$$S=a^{\mathcal{A}_0}\cup\{b\}\subset\mathcal{BS}^+(1,2)$$
, $A_0=\{0,1,2,...,k-2\},k>2$ even

$$S^2 = a^{A_0}a^{A_0} \cup ba^{A_0} \cup a^{A_0}b \cup \{b^2\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0}+A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0}+A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}.$

Since

$$a^{A_0+A_0} \subseteq a^{\mathbb{Z}}, \qquad ba^{A_0\cup 2*A_0} \subseteq ba^{\mathbb{Z}}, \quad \{b^2\} \subseteq b^2 a^{\mathbb{Z}},$$

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3) + (\frac{3}{2}k-2) + 1 = \frac{7}{2}k - 4.$$

$$S=a^{\mathcal{A}_0}\cup\{b\}\subset\mathcal{BS}^+(1,2)$$
, $A_0=\{0,1,2,...,k-2\},k>2$ even

$$S^2 = a^{A_0}a^{A_0} \cup ba^{A_0} \cup a^{A_0}b \cup \{b^2\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0}+A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0}+A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}.$

Since

$$a^{A_0+A_0}\subseteq a^{\mathbb{Z}}, \qquad ba^{A_0\cup 2*A_0}\subseteq ba^{\mathbb{Z}}, \quad \{b^2\}\subseteq b^2a^{\mathbb{Z}},$$

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3) + (\frac{3}{2}k-2) + 1 = \frac{7}{2}k - 4.$$

$$S=a^{\mathcal{A}_0}\cup\{b\}\subset\mathcal{BS}^+(1,2)$$
, $A_0=\{0,1,2,...,k-2\},k>2$ even

$$S^2 = a^{A_0}a^{A_0} \cup ba^{A_0} \cup a^{A_0}b \cup \{b^2\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0}+A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0}+A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}.$

Since

$$a^{A_0+A_0}\subseteq a^{\mathbb{Z}}, \qquad ba^{A_0\cup 2*A_0}\subseteq ba^{\mathbb{Z}}, \quad \{b^2\}\subseteq b^2a^{\mathbb{Z}},$$

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3) + (\frac{3}{2}k-2) + 1 = \frac{7}{2}k - 4.$$

$$S=a^{\mathcal{A}_0}\cup\{b\}\subset\mathcal{BS}^+(1,2)$$
, $A_0=\{0,1,2,...,k-2\},k>2$ even

$$S^2 = a^{A_0}a^{A_0} \cup ba^{A_0} \cup a^{A_0}b \cup \{b^2\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0}+A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0}+A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}.$

Since

$$a^{A_0+A_0}\subseteq a^{\mathbb{Z}}, \qquad ba^{A_0\cup 2*A_0}\subseteq ba^{\mathbb{Z}}, \quad \{b^2\}\subseteq b^2a^{\mathbb{Z}},$$

it follows that the three components of S^2 are disjoint in pairs and hence

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3)+(\frac{3}{2}k-2)+1=\frac{7}{2}k-4.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem - sketch of the Proof

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that $|S^2| < \frac{7}{2}|S| - 4$. Then $S = ba^A$, where A is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Write

 $S = S_0 \cup S_1 \cup \ldots \cup S_t,$

where $t \geq 0$,

$$S_i = b^{m_i} a^{A_i} \subseteq b^{m_i} a^{\mathbb{Z}},$$

 $0 \leq m_0 < m_1 < \ldots < m_t,$

and

$$k_i=|S_i|=|A_i|\geq 1.$$

Theorem - sketch of the Proof

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that $|S^2| < \frac{7}{2}|S| - 4$. Then $S = ba^A$, where A is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Write

 $S = S_0 \cup S_1 \cup \ldots \cup S_t,$

where $t \ge 0$,

$$S_i = b^{m_i} a^{A_i} \subseteq b^{m_i} a^{\mathbb{Z}},$$

 $0 \leq m_0 < m_1 < ... < m_t,$

and

$$k_i=|S_i|=|A_i|\geq 1.$$

$\mathsf{Lemma}\ (1)$

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|. Suppose that $t \ge 1$ and there is $0 \le j \le t$ such that $k_j = |S_j| \ge 2$. Then S generates a non-abelian group.

Proof. If j = 0 and $m_0 = 0$, then $k_0 = |S_0| = |A_0| \ge 2$ implies that $S_0 \ne \{1\}$ and $A_0 \ne \{0\}$. Since $t \ge 1$, it follows that there are three integers m, x, z such that $m \ge 1, x \ne 0, a^x \in S_0$ and $b^m a^z \in S_1$. In this case

$$a^{x}(b^{m}a^{z})=b^{m}a^{z+2^{m}x}
eq(b^{m}a^{z})a^{x}=b^{m}a^{z+x}$$

Lemma (1)

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|. Suppose that $t \ge 1$ and there is $0 \le j \le t$ such that $k_j = |S_j| \ge 2$. Then S generates a non-abelian group.

Proof. If j = 0 and $m_0 = 0$, then $k_0 = |S_0| = |A_0| \ge 2$ implies that $S_0 \ne \{1\}$ and $A_0 \ne \{0\}$. Since $t \ge 1$, it follows that there are three integers m, x, z such that $m \ge 1$, $x \ne 0$, $a^x \in S_0$ and $b^m a^z \in S_1$. In this case

$$a^{x}(b^{m}a^{z})=b^{m}a^{z+2^{m}x}
eq(b^{m}a^{z})a^{x}=b^{m}a^{z+x}$$

Lemma (1)

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|. Suppose that $t \ge 1$ and there is $0 \le j \le t$ such that $k_j = |S_j| \ge 2$. Then S generates a non-abelian group.

Proof. If j = 0 and $m_0 = 0$, then $k_0 = |S_0| = |A_0| \ge 2$ implies that $S_0 \ne \{1\}$ and $A_0 \ne \{0\}$. Since $t \ge 1$, it follows that there are three integers m, x, z such that $m \ge 1$, $x \ne 0$, $a^x \in S_0$ and $b^m a^z \in S_1$. In this case

$$a^{x}(b^{m}a^{z})=b^{m}a^{z+2^{m}x}
eq(b^{m}a^{z})a^{x}=b^{m}a^{z+x}$$

Lemma (1)

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|. Suppose that $t \ge 1$ and there is $0 \le j \le t$ such that $k_j = |S_j| \ge 2$. Then S generates a non-abelian group.

Proof. If j = 0 and $m_0 = 0$, then $k_0 = |S_0| = |A_0| \ge 2$ implies that $S_0 \ne \{1\}$ and $A_0 \ne \{0\}$. Since $t \ge 1$, it follows that there are three integers m, x, z such that $m \ge 1, x \ne 0, a^x \in S_0$ and $b^m a^z \in S_1$. In this case

$$a^{\mathsf{x}}(b^{m}a^{z}) = b^{m}a^{z+2^{m}\mathsf{x}} \neq (b^{m}a^{z})a^{\mathsf{x}} = b^{m}a^{z+\mathsf{x}}$$

Lemma (1)

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|. Suppose that $t \ge 1$ and there is $0 \le j \le t$ such that $k_j = |S_j| \ge 2$. Then S generates a non-abelian group.

Proof. If j = 0 and $m_0 = 0$, then $k_0 = |S_0| = |A_0| \ge 2$ implies that $S_0 \ne \{1\}$ and $A_0 \ne \{0\}$. Since $t \ge 1$, it follows that there are three integers m, x, z such that $m \ge 1, x \ne 0, a^x \in S_0$ and $b^m a^z \in S_1$. In this case

$$a^{ imes}(b^{m}a^{ imes})=b^{m}a^{ imes+2^{m} imes}
eq(b^{m}a^{ imes})a^{ imes}=b^{m}a^{ imes+ imes}a^{ imes+ imes}$$

and therefore S generates a non-abelian group.

(i) $j \ge 1$. (ii) j = 0 and $m_0 > 1$.

If $j \ge 1$, then $m_j \ge 1$ and $k_j = |S_j| = |b^{m_j} a^{A_j}| \ge 2$ implies that $|A_j| \ge 2$. On the other hand, if j = 0 and $m_0 \ge 1$, then $k_0 = |S_0| = |b^{m_0} a^{A_0}| \ge 2$ implies that $|A_0| \ge 2$. In both cases, let $m = m_j$. Then $m \ge 1$ and there are two integers $x \ne y$ such that $\{b^m a^x, b^m a^y\} \subseteq S_j$. We conclude that

$$(b^{m}a^{x})(b^{m}a^{y}) = b^{2m}a^{y+2^{m}x} \neq (b^{m}a^{y})(b^{m}a^{x}) = b^{2m}a^{x+2^{m}y},$$

- (i) $j \ge 1$.
- (ii) j = 0 and $m_0 \ge 1$.

If $j \ge 1$, then $m_j \ge 1$ and $k_j = |S_j| = |b^{m_j} a^{A_j}| \ge 2$ implies that $|A_j| \ge 2$. On the other hand, if j = 0 and $m_0 \ge 1$, then $k_0 = |S_0| = |b^{m_0} a^{A_0}| \ge 2$ implies that $|A_0| \ge 2$. In both cases, let $m = m_j$. Then $m \ge 1$ and there are two integers $x \ne y$ such that $\{b^m a^x, b^m a^y\} \subseteq S_j$. We conclude that

$$(b^{m}a^{x})(b^{m}a^{y}) = b^{2m}a^{y+2^{m}x} \neq (b^{m}a^{y})(b^{m}a^{x}) = b^{2m}a^{x+2^{m}y},$$

(i) $j \ge 1$. (ii) j = 0 and $m_0 \ge 1$. If $j \ge 1$, then $m_j \ge 1$ and $k_j = |S_j| = |b^{m_j} a^{A_j}| \ge 2$ implies that $|A_j| \ge 2$. On the other hand, if j = 0 and $m_0 \ge 1$, then $k_0 = |S_0| = |b^{m_0} a^{A_0}| \ge 2$ implies that $|A_0| \ge 2$. In both cases, let $m = m_j$. Then $m \ge 1$ and there are two integers $x \ne y$ such that $\{b^m a^x, b^m a^y\} \subseteq S_j$. We conclude that

$$(b^{m}a^{x})(b^{m}a^{y}) = b^{2m}a^{y+2^{m}x} \neq (b^{m}a^{y})(b^{m}a^{x}) = b^{2m}a^{x+2^{m}y},$$

- (i) $j \ge 1$.
- (ii) j = 0 and $m_0 \ge 1$.

If $j \ge 1$, then $m_j \ge 1$ and $k_j = |S_j| = |b^{m_j}a^{A_j}| \ge 2$ implies that $|A_j| \ge 2$. On the other hand, if j = 0 and $m_0 \ge 1$, then $k_0 = |S_0| = |b^{m_0}a^{A_0}| \ge 2$ implies that $|A_0| \ge 2$. In both cases, let $m = m_j$. Then $m \ge 1$ and there are two integers $x \ne y$ such that $\{b^m a^x, b^m a^y\} \subseteq S_j$. We conclude that

$$(b^{m}a^{x})(b^{m}a^{y}) = b^{2m}a^{y+2^{m}x} \neq (b^{m}a^{y})(b^{m}a^{x}) = b^{2m}a^{x+2^{m}y}$$

- (i) $j \ge 1$.
- (ii) j = 0 and $m_0 \ge 1$.

If $j \ge 1$, then $m_j \ge 1$ and $k_j = |S_j| = |b^{m_j}a^{A_j}| \ge 2$ implies that $|A_j| \ge 2$. On the other hand, if j = 0 and $m_0 \ge 1$, then $k_0 = |S_0| = |b^{m_0}a^{A_0}| \ge 2$ implies that $|A_0| \ge 2$. In both cases, let $m = m_j$. Then $m \ge 1$ and there are two integers $x \ne y$ such that $\{b^m a^x, b^m a^y\} \subseteq S_j$. We conclude that

$$(b^{m}a^{x})(b^{m}a^{y}) = b^{2m}a^{y+2^{m}x} \neq (b^{m}a^{y})(b^{m}a^{x}) = b^{2m}a^{x+2^{m}y},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$S = S_0 \cup S_1 \cup ... \cup S_t$, $t \ge 0$, $S_i = b^{m_i} a^{\mathcal{A}_i}$, $0 \le m_0 < m_1 < ... < m_t$

Let $S\subseteq BS^+(1,2)$ be a finite set of size k=|S| .

Lemma (2)

Suppose that t = 1. Then $|S^2| \ge \frac{7}{2}|S| - 4$.

_emma (3)

Suppose that $t \ge 2$. If $k_0 = |S_0| \ge 2$ and $k_i = |S_i| = 1$ for every $1 \le i \le t$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

_emma (4

$\overline{S = S_0 \cup S_1 \cup ... \cup S_t}$, $t \ge 0$, $\overline{S_i} = b^{m_i} a^{\mathcal{A}_i}$, $0 \le m_0 < m_1 < ... < m_t$

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|.

Lemma (2)

Suppose that t = 1. Then $|S^2| \ge \frac{7}{2}|S| - 4$.

_emma (3)

Suppose that $t \ge 2$. If $k_0 = |S_0| \ge 2$ and $k_i = |S_i| = 1$ for every $1 \le i \le t$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

_emma (4)

$\overline{S = S_0 \cup S_1 \cup ... \cup S_t}$, $t \ge 0$, $\overline{S_i} = b^{m_i} a^{\mathcal{A}_i}$, $0 \le m_0 < m_1 < ... < m_t$

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|.

Lemma (2)

Suppose that t = 1. Then $|S^2| \ge \frac{7}{2}|S| - 4$.

₋emma (3`

Suppose that $t \ge 2$. If $k_0 = |S_0| \ge 2$ and $k_i = |S_i| = 1$ for every $1 \le i \le t$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

_emma (4)

$\overline{S = S_0 \cup S_1 \cup ... \cup S_t}$, $t \ge 0$, $\overline{S_i} = b^{m_i} a^{\mathcal{A}_i}$, $0 \le m_0 < m_1 < ... < m_t$

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|.

Lemma (2)

Suppose that t = 1. Then $|S^2| \ge \frac{7}{2}|S| - 4$.

Lemma (3)

Suppose that $t \ge 2$. If $k_0 = |S_0| \ge 2$ and $k_i = |S_i| = 1$ for every $1 \le i \le t$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

_emma (4)

$S = S_0 \cup S_1 \cup ... \cup S_t$, $t \ge 0$, $S_i = b^{m_i} a^{\mathcal{A}_i}$, $0 \le m_0 < m_1 < ... < m_t$

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|.

Lemma (2)

Suppose that t = 1. Then $|S^2| \ge \frac{7}{2}|S| - 4$.

Lemma (3)

Suppose that $t \ge 2$. If $k_0 = |S_0| \ge 2$ and $k_i = |S_i| = 1$ for every $1 \le i \le t$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

Lemma (4)

Suppose that $t \ge 2$. If $k_t = |S_t| \ge 2$ and $k_i = |S_i| = 1$ for every $0 \le i \le t - 1$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

...

Thank you for the attention !

イロン イロン イヨン イヨン

э

P. Longobardi Dipartimento di Matematica Università di Salerno via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy E-mail address : plongobardi@unisa.it

3

- O. Bogopolski, Abstract commensurators of solvable Baumslag-Solitar groups, *Communications of Algebra*, 40(7) (2012), 2494-2502.
- E. Breuillard, B. Green, T. Tao, The structure of approximate groups, *arXiv*:1110.5008 (2011), preprint, 1–91.
- B. Bukh, Sums of dilates, *Combin. Probab. Comput.* **17** (2008), no. 5, 627–639.
- J. Cilleruelo, Y. O. Hamidoune, O. Serra, On sums of dilates, *Combin. Probab. Comput.* **18** (2009), no. 6, 871–880.
- J. Cilleruelo, Y. O. Hamidoune, O. Serra, On sums of dilates, *Combin. Probab. Comput.* **18** (2009), no. 6, 871–880.

- J. Cilleruelo, M. Silva, C. Vinuesa, A sumset problem, J. Comb. Number Theory 2 (2010), no. 1, 79–89.
- G. A. Freiman, Foundations of a structural theory of set addition. Translations of mathematical monographs, v. 37. American Mathematical Society, Providence, Rhode Island, 1973.
- G. A. Freiman, Structure Theory of Set Addition, *Astérisque*, **258** (1999), 1-33.
- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Small doubling in ordered groups, *J. Austral. Math. Soc.* (to appear).
- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, A small doubling structure theorem in a Baumslag-Solitar group, to appear.

- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Direct and inverse problems in Additive Number Theory and in non-abelian group theory, *European Journal of Combinatorics*, to appear.
- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Inverse problems in Additive Number Theory and in Non-Abelian Group Theory, *arXiv*:1303.3053 (2013), preprint, 1–31.
- B. Green, What is ... an approximate group ?, *Notices Amer. Math. Soc.* **59** (2012), no. 5, 655–656.
- Y. O. Hamidoune, A. Plagne, A generalization of Freiman's 3k-3 theorem, *Acta Arith.* **103** (2002), no. 2, 147–156.

- Y. O. Hamidoune, J. Rué, A lower bound for the size of a Minkowski sum of dilates, *Combin. Probab. Comput.* **20** (2011), no. 2, 249–256.
- M. I. Kargapolov, Completely orderable groups, *Algebra i Logica (2)* **1** (1962), 16-21.
- V. F. Lev, P. Y. Smeliansky, On addition of two distinct sets of integers, *Acta Arith.* **70** (1995), no. 1, 85–91.
- M. B. Nathanson, Inverse problems for linear forms over finite sets of integers, *J. Ramanujan Math. Soc.* **23** (2008), no. 2, 151–165.
- Z. Ruzsa, Generalized arithmetic progressions and sumsets, *Acta Math. Hungar.* **65(4)** (1994), 379-388.

- T. Sanders, The structure theory of set addition revisited, Bull. Amer. Math. Soc. **50(1)** (2013), 93-127.
- D. Shan-Shan, C. Hui-Qin, S. Zhi-Wei, On a sumset problem for integers, *arXiv*:1011.5438 (2010).
- Y. V. Stanchescu, On addition of two distinct sets of integers, *Acta Arith.* **75** (1996), no. 2, 191–194.
- Y. V. Stanchescu, On the structure of sets with small doubling property on the plane.I., *Acta Arith.* **83** (1998), no. 2, 127–141.
- Y. V. Stanchescu, The structure of d-dimensional sets with small sumset, *J. Number Theory* **130** (2010), no. 2, 289–303.
- T. C. Tao, Product set estimates for non-commutative groups, *Combinatorica* **28(5)** (2008), 547-594.